Pragmatism:
Finding and Answering the Important Question

Scott Evans, PhD, MS
Director, The Biostatistics Center
Professor, Department of Epidemiology and Biostatistics
George Washington University

Modern Study Designs for Pragmatic Translational Research
June 5, 2019
A Leaky Roof...

- Created a water bubble in my wall

- In addition to a new roof, I had to re-paper the wall

- I asked my neighbor, who recently papered a similar-sized room in his house:

 “How much paper did you buy?”

- He replied: “Six rolls.”
Upon finishing the papering of the wall…

- I had only used only 4 rolls
- I told my neighbor that I had 2 rolls left
- He replied:

 “Oh. That happened to you too?”
Two Things I’ve Learned about Traditional Trials and Diagnostic Studies

1. They are rigorously conducted by experts closely adhering to the highest standards and fundamental principles of randomized clinical trials and diagnostic studies

2. They are essentially useless for helping clinicians make treatment and diagnostic decisions
Most clinical trials fail to provide the evidence needed to inform medical decision-making. However, the serious implications of this deficit are largely absent from public discourse.

DeMets and Califf, *JAMA*, 2011
Outline

- Pragmatism and Pragmatic Clinical Trials
- Pragmatic Benefit:risk Evaluation
 - DOOR
 - Partial Credit
- SMART COMPASS
- Pragmatic Diagnostic Studies
PRAGMATIC CLINICAL TRIALS
Clinical Trials Today

- 18,000 RCTs published each year but reviews often conclude that more evidence is needed to inform clinical decision-making

- Research often not directly relevant to clinical practice

- Typical trial setting is a parallel universe, e.g.,
 - Selective enrollment criteria
 - Surrogate endpoints instead of clinical outcomes
 - Limited use of concomitant therapies

- Analyses not designed to evaluate global effects on patients
Pragmatic Clinical Trials

- Purpose to inform decisions about practice and policy

- Improve relevance and applicability

- Focus on effectiveness rather than efficacy
 - Evaluation under usual (vs. ideal) conditions
 - Extraneous variation, patient biases, and clinician inexperience is not to be controlled but part of the game

- Address questions about strategies for treating patients in practice vs. biology (mechanisms of action; causal pathways)
Characteristics

- Diverse and representative populations
- Multiple heterogeneous real-world settings, i.e., generalizable
 - Settings of everyday care (community clinics, hospitals, and health systems)
- Comparison to real-world alternatives rather than e.g., placebo
- Flexible study protocols
- Important patient-centered outcomes
Explanatory vs. Pragmatic: A Continuum

Terminology:

Explanatory trials are often referred to as **efficacy trials**.

Pragmatic trials are often referred to as **effectiveness trials**.

Characteristic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanatory</th>
<th>Pragmatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>Efficacy: can it work?</td>
<td>Effectiveness: Will it work?</td>
</tr>
<tr>
<td>Goal</td>
<td>Evaluate biological mechanisms.</td>
<td>Improve practice and policy.</td>
</tr>
<tr>
<td>Relevance to Practice</td>
<td>Indirect and rare. Generally little effort made to link design to practical decision-making in setting where intervention will be applied.</td>
<td>Direct. Useful for everyday decision-making.</td>
</tr>
<tr>
<td>Participants</td>
<td>Selected with highly-defined entry criteria. Exclude patients unlikely to comply, with confounding conditions, and likely to have complications. Include people likely to respond.</td>
<td>Representative. Few restrictions or entry criteria. Patients as seen in practice.</td>
</tr>
<tr>
<td>Control group</td>
<td>Placebo.</td>
<td>Real world alternative. Best available therapy.</td>
</tr>
<tr>
<td>Variation</td>
<td>Minimized. Standardization encouraged.</td>
<td>Local customization allowed.</td>
</tr>
<tr>
<td>Intervention Flexibility</td>
<td>Strict instructions for use.</td>
<td>Flexible.</td>
</tr>
<tr>
<td>Practitioner Expertise</td>
<td>Requirements for experience. Training may be required.</td>
<td>Full range of practitioners. Training not required.</td>
</tr>
<tr>
<td>Participant Adherence</td>
<td>Monitored and enforced.</td>
<td>May not be monitored.</td>
</tr>
<tr>
<td>Practitioner Adherence</td>
<td>Monitored. Poor adherers may be dropped.</td>
<td>May not be monitored.</td>
</tr>
<tr>
<td>Patient Follow-up</td>
<td>Formal. Frequently scheduled visits.</td>
<td>Informal.</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Surrogates and process measures. May require training regarding methods of measurement.</td>
<td>Relevant to patients / practitioners. No formal training required.</td>
</tr>
<tr>
<td>Analyses</td>
<td>Often ITT however frequently supplemented with PP analyses of e.g., compliers.</td>
<td>ITT. Includes all patients.</td>
</tr>
</tbody>
</table>

PRECIS-2 Tool

Most late-phase trials are somewhat pragmatic, or should be – we almost always evaluate an intervention strategy.
Concerns with Aspects of Pragmatic Trials

- Lack of blinding in many cases
 - Treatment crossover (but part of the game too)
 - Subjective and patient centered evaluations in particular could be biased
 - Objective evaluations are not entirely immune to biases
 - E.g., patients may selectively drop-out causing a distortion of the estimated effects

- Suggestion to consider blinding
Partially Blinded Trial

Objective vs. Subjective Endpoint

Figure 1. Schema for Study Interventions.
The time between blocks varied, but was generally 3 to 7 days.

Figure 3. Percent Change in Maximum Forced Expiratory Volume in 1 Second (FEV₁) with Each of the Four Interventions.
The relative improvement in FEV₁ achieved with albuterol was significantly greater than that achieved with each of the other three interventions (P<0.001). No other differences among the four experimental conditions were significant. T bars indicate standard errors.

Figure 4. Percent Change in Subjective Improvement with Each of the Four Interventions.
The relative improvement in subjective outcomes, assessed with the use of a visual-analogue scale (with 0 indicating no improvement and 10 indicating complete improvement), was significantly greater with the albuterol inhaler, placebo inhaler, and sham acupuncture interventions than with the no-intervention control (P<0.001). No other differences among the four experimental conditions were significant. T bars indicate standard errors.
Pragmatism vs. RWE

- Real world evidence (RWE) concerns the data source i.e., evidence acquired using non-traditional sources e.g., EHR

- Pragmatism concerns the question

- One does not necessarily imply the other

- To answer important questions for clinical practice, conduct pragmatic studies

- To gain the cost and resource efficiencies of existing data, then consider utilizing real world data
What is the Motivation?

- Many want the resource efficiencies of RWD but do not want the dilution of treatment effects associated with pragmatic trials.
How Pragmatic Are You?

- Suppose an RCT is conducted comparing A and B
- Efficacy is evaluated as a binary response at time T from randomization
- Safety is evaluated as the occurrence of SAEs
- Patient is randomized to A
- Prior to T the patient is changed to treatment C
- The patient subsequently experiences an SAE commonly associated with C
- Patient meets criteria of a responder at time T
- How is this patient evaluated for efficacy?
- For safety?
- Pragmatic evaluation consists of the evaluation of the strategy of application of treatment A
- The positive response and the SAE are considered downstream consequences to the initial assignment to A and are thus attributed to the strategy of application of A

We should be more interested in downstream effects even after modification of therapy. If a patient is struggling and therapeutic adjustments can recover them, then the strategy of use worked! If a patient cannot recover with adjustments then the strategy of application failed.
Analysis Populations in Anti-Infective Clinical Trials: Whom to Analyze?

1. **Department of Epidemiology and Biostatistics, Milken Institute School of Public Health of the George Washington University, Innovations in Design, Education, and Analysis (IDEA) Committee, The Biostatistics Center, 6640 Executive Blvd., Suite 750 Rockville, United States of America, Email: SCI@bjpgrcwur.com**
2. **Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA**
3. **Clinical Research Directorate, Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD 21702, USA**
4. **George Washington University School of Medicine, Washington DC, USA**
5. **National Institute of Allergy and Infectious Diseases of the National Institutes of Health, Rockville, United States of America**

Table 1: Recommended analysis populations for various research foci in clinical trials.

<table>
<thead>
<tr>
<th>Research Focus</th>
<th>Primarily Useful to</th>
<th>Whom To Analyze</th>
<th>Clinical Utility/Pragmatism for Empiric Therapy</th>
<th>Clinical Utility/Pragmatism for Confirmatory Therapy</th>
<th>Preserves Integrity of Randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate strategy to treat clinical disease, i.e. empiric therapy in real-world setting</td>
<td>Todays’ clinicians and patients</td>
<td>ITT (or mITT if blinded and uniformly assessed and small difference in number of participants with ITT)** mITT**</td>
<td>High</td>
<td>High</td>
<td>Yes***</td>
</tr>
<tr>
<td>Evaluate strategy to treat clinical disease caused by specific pathogen(s), i.e. confirmatory therapy*</td>
<td>Future clinicians and patients (i.e. with development of rapid point of care diagnostics)</td>
<td>Today; Variable (indirect) Future: possibly high with development of rapid diagnostics assuming affects do not change over time Variable</td>
<td>High</td>
<td>Yes***</td>
<td></td>
</tr>
<tr>
<td>Understanding biological mechanisms of action, or evaluating potential for use if therapy can be tolerated/adhered to</td>
<td>Biologists, chemists</td>
<td>PP</td>
<td>Variable</td>
<td>Variable</td>
<td>No. Subject to the biases of observational studies</td>
</tr>
</tbody>
</table>
How pragmatic are typical trials?
We are drowning in data but starving for knowledge.

Many of our wounds are self-inflicted.
What is the Question?

- We define analysis populations
 - Efficacy: ITT population
 - Safety: safety population

- Efficacy population ≠ safety population

- We combine these analyses into benefit:risk analyses. To whom does this analysis apply? What is the estimand?

- How do we do personalized medicine if we do not evaluate associations between outcomes?

- Is this what we need to inform clinical practice?
Example: Infectious Disease Trial

- Suppose we measure the duration of hospitalization

- Shorter duration is better … or is it?

- The faster the patient dies, the shorter the duration

- Interpretation of an outcome needs context of other clinical outcomes for the same patient

- So why do we analyze them separately?
Example: Cardiovascular Event Prevention Trial

- Evaluate time-to-first event (e.g., death, MI, stroke)
 - But there can be multiple events

- Fail to distinguish differential importance of events
 - Death > non-fatal event
 - Disabling > non-disabling event
 - Permanent sequelae > transient sequelae

- In deciding how to treat patients, shouldn’t we consider this information?

- If so, why are we not designing and analyzing trials in this way?
Example: Cardiovascular Event Prevention Trial

- Competing risk challenge: death informatively censors time to stroke

- Decision analysis approach: summarize the marginal effects
 - Double-counting: Fatal bleed counted as a death and a major bleed
 - How do we interpret this?
Quiz

- Suppose a loved one is diagnosed with a serious disease
- You are selecting treatment
- 3 treatment options: A, B, and C
- 2 outcomes, equally important
 - Treatment success: yes/no
 - Safety event: yes/no
Analysis of Outcomes

<table>
<thead>
<tr>
<th></th>
<th>A (N=100)</th>
<th>B (N=100)</th>
<th>C (N=100)</th>
</tr>
</thead>
</table>

RCT Comparing A, B, and C

Analysis of Outcomes

<table>
<thead>
<tr>
<th></th>
<th>A (N=100)</th>
<th>B (N=100)</th>
<th>C (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success:</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Group</td>
<td>N</td>
<td>Success</td>
<td>Safety Event</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>A (N=100)</td>
<td>100</td>
<td>50%</td>
<td>30%</td>
</tr>
<tr>
<td>B (N=100)</td>
<td>100</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>C (N=100)</td>
<td>100</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
RCT Comparing A, B, and C

Analysis of Outcomes

A (N=100)
Success: 50%
Safety event: 30%

B (N=100)
Success: 50%
Safety event: 50%

C (N=100)
Success: 50%
Safety event: 50%

Which treatment would you choose?
RCT Comparing A, B, and C

Analysis of Outcomes

A (N=100)
Success: 50%
Safety event: 30%

B (N=100)
Success: 50%
Safety event: 50%

C (N=100)
Success: 50%
Safety event: 50%

Which treatment would you choose?

They all have the same success rate.
RCT Comparing A, B, and C

Analysis of Outcomes

<table>
<thead>
<tr>
<th>A (N=100)</th>
<th>B (N=100)</th>
<th>C (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success: 50%</td>
<td>Success: 50%</td>
<td>Success: 50%</td>
</tr>
<tr>
<td>Safety event: 30%</td>
<td>Safety event: 50%</td>
<td>Safety event: 50%</td>
</tr>
</tbody>
</table>

Which treatment would you choose?

They all have the same success rate.

A has the lowest safety event rate.
RCT Comparing A, B, and C
Analysis of Outcomes

A (N=100)
Success: 50%
Safety event: 30%

B (N=100)
Success: 50%
Safety event: 50%

C (N=100)
Success: 50%
Safety event: 50%

Which treatment would you choose?
They all have the same success rate.
A has the lowest safety event rate.
B and C are indistinguishable.
RCT Comparing A, B, and C

Analysis of Outcomes

<table>
<thead>
<tr>
<th></th>
<th>A (N=100)</th>
<th>B (N=100)</th>
<th>C (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Safety event</td>
<td>30%</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Which treatment would you choose?

They all have the same success rate.

A has the lowest safety event rate.

B and C are indistinguishable.

Choose A…right?
Analysis of Patients: 4 Possible Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Success</th>
<th></th>
<th>Success</th>
<th></th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>A (N=100)</td>
<td>15</td>
<td>15</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Success: 50%</td>
<td></td>
<td>Safety event: 30%</td>
<td></td>
<td></td>
<td>Safety event: 50%</td>
</tr>
<tr>
<td>B (N=100)</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Success: 50%</td>
<td></td>
<td>Safety event: 50%</td>
<td></td>
<td></td>
<td>Safety event: 50%</td>
</tr>
<tr>
<td>C (N=100)</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Success: 50%</td>
<td></td>
<td>Safety event: 50%</td>
<td></td>
<td></td>
<td>Safety event: 50%</td>
</tr>
</tbody>
</table>
Analysis of Patients: 4 Possible Outcomes

A (N=100)
Success: 50%
Safety event: 30%

<table>
<thead>
<tr>
<th>Success</th>
<th>+</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>SE-</td>
<td>35</td>
<td>35</td>
<td>70</td>
</tr>
</tbody>
</table>

B (N=100)
Success: 50%
Safety event: 50%

<table>
<thead>
<tr>
<th>Success</th>
<th>+</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>SE-</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

C (N=100)
Success: 50%
Safety event: 50%

<table>
<thead>
<tr>
<th>Success</th>
<th>+</th>
<th>-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>SE-</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
Analysis of Patients: 4 Possible Outcomes

<table>
<thead>
<tr>
<th>Group</th>
<th>Success Rate</th>
<th>Safety Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (N=100)</td>
<td>50%</td>
<td>30%</td>
</tr>
<tr>
<td>B (N=100)</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>C (N=100)</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE</th>
<th>Success (+)</th>
<th>Success (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SE-</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE</th>
<th>Success (+)</th>
<th>Success (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>SE-</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE</th>
<th>Success (+)</th>
<th>Success (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE+</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>SE-</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>
Analysis of Patients: 4 Possible Outcomes

<table>
<thead>
<tr>
<th></th>
<th>SE</th>
<th>Success</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A (N=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td></td>
<td>+</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>B (N=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td></td>
<td>+</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>C (N=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td></td>
<td>+</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
Our culture is to use patients to analyze the outcomes.

Shouldn’t we use outcomes to analyze the patients?
Scott’s father (a math teacher) to his confused son many years ago:

“The order of operations is important…”
A Vision

The good physician treats the disease.
The great physician treats the patient.

William Osler

Perhaps we should analyze the patient.
Before we analyze several hundred patients, we must understand how to analyze one.

- **The patient journey**: “exit examination” or “discharge review” based on a synthesis of benefits, harms, QOL

- **DOOR probability**: probability of a more desirable global outcome when assigned to the new vs. the control treatment
Motivating question:

Should we use ceftazidime-avibactam or colistin for the initial treatment of CRE infection?
DOOR

- DOOR with 4 levels
 - Alive; discharged home
 - Alive; not discharged home; no renal failure
 - Alive; not discharged home; renal failure
 - Death

- Looking for northward migration of patients in these categories
DOOR

<table>
<thead>
<tr>
<th></th>
<th>Colistin (N=46)</th>
<th>Caz-Avi (N=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharged home</td>
<td>4 (9%)</td>
<td>6 (23%)</td>
</tr>
<tr>
<td>Alive; not discharged home; no renal failure</td>
<td>25 (54%)</td>
<td>17 (65%)</td>
</tr>
<tr>
<td>Alive; not discharged home; renal failure</td>
<td>5 (11%)</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Death</td>
<td>12 (26%)</td>
<td>2 (8%)</td>
</tr>
</tbody>
</table>

- **IPTW-adjusted DOOR Probability**: 64% (53%, 75%)
- **IPTW-adjusted Win Ratio**: 3.0 (1.32, 9.72)

IPTW adjustments: Pitt score, infection type (BSI vs. UTI), and creatinine (sensitivity analyses only)
Challenges

- Cultural change

- Composites
 - Are tricky and require great care
 - Several very good references (e.g., Neaton et.al., J Cardiac Failure, 2005)
 - Commonly used
 - E.g., PFS in oncology, MACE in cardiovascular disease
 - Though the motive is often to reduce the sample size in event-time trials
Challenges

- Construction of ordinal DOOR is novel and challenging
- Careful deliberation is essential to synthesize the outcomes
- An example strategy …

Good Studies Evaluate the Disease While Great Studies Evaluate the Patient: Development and Application of a DOOR Endpoint for *Staphylococcus aureus* Bloodstream Infection
BAC DOOR

- ARLG conducted a pre-trial sub-study to develop DOOR in *Staphylococcus aureus* bacteremia

- 20 representative patient profiles (benefits, harms, and QoL) constructed based on experiences observed in prior trials

- Profiles sent to 43 expert clinicians. They were asked to rank the patient profiles by desirability of outcome.

- Examined clinician consensus and component outcomes that drive clinician rankings
Things that we learned
- Cumulative effect
- Symptoms important
- Major non-fatal outcomes had similar importance
Can we account for:

1. Potential unequal steps between categories?
2. Varying perspectives among patients/clinicians regarding the desirability of the categories?
PARTIAL CREDIT

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharged home</td>
<td>100</td>
</tr>
<tr>
<td>Alive; not discharged home; no renal failure</td>
<td>Partial credit</td>
</tr>
<tr>
<td>Alive; not discharged home; renal failure</td>
<td>Partial credit</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
</tbody>
</table>
Partial Credit: How Much?

A clinical trials doctrine:

Transparency and pre-specification are the law …

except when it comes to defining the relative importance of different outcomes… in which case it is shunned.

But once study conclusions have been drawn, we have made a decision about the value of the outcomes without transparency…

and the decision-makers may not consciously know what those values are.
Partial Credit: How Much?

- Strategies
 - Survey expert clinicians for grading key
 - Patient-guided using QOL
Partial Credit

People have different perspectives.

Display treatment contrast as partial credit varies, allowing people to make their own choices based on their own value system.
Contours of Effects as Partial Credit Varies

<table>
<thead>
<tr>
<th>Category</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharged home</td>
<td>100</td>
</tr>
<tr>
<td>Alive;</td>
<td></td>
</tr>
<tr>
<td>Not discharged home;</td>
<td>Partial credit</td>
</tr>
<tr>
<td>No renal failure</td>
<td></td>
</tr>
<tr>
<td>Alive;</td>
<td></td>
</tr>
<tr>
<td>Not discharged home;</td>
<td>Partial credit</td>
</tr>
<tr>
<td>Renal failure</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
</tbody>
</table>

\[x_1: \text{alive in hospital or discharged not to home, incident renal failure} \]

\[x_2: \text{alive in hospital or discharged not to home, no incident renal failure} \]
Survival

Caz-avi advantage: 0.16 (-0.04, 0.32), p = 0.10
Discharged Home

Caz-avi advantage: 0.13 (-0.03, 0.31), p = 0.12
Alive without Renal Failure

Caz-avi advantage: 0.22 (0.02, 0.40), p = 0.03
Compromise

Caz-avi advantage: 0.17 (0.01, 0.30), p = 0.04
Tailoring Medicine

Who benefits from this new therapy?
DOOR STEPP
Caz-Avi-Colistin Contrast as a Function of Disease Severity

DOOR Probability
Partial Credit (80/60)

Largest differences are in the most severe patients.
DOOR STEPP
PROVIDE

- Prospective multi-center observational evaluation among adult hospitalized patients with MRSA bloodstream infections

- Research Question
 - What is the vancomycin pharmacodynamic exposure target associated with optimal treatment outcome?

- N=265
<table>
<thead>
<tr>
<th>Better outcome</th>
<th>Treatment success without AKI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment success with AKI</td>
</tr>
<tr>
<td></td>
<td>Treatment failure (persistent bacteremia) without AKI</td>
</tr>
<tr>
<td></td>
<td>Treatment failure with AKI</td>
</tr>
<tr>
<td></td>
<td>Death</td>
</tr>
<tr>
<td>Worse outcome</td>
<td></td>
</tr>
</tbody>
</table>

DOOR
IPTW adjustments for: presence of infective endocarditis, baseline calculated creatinine clearance, Apache II score, and indicator of any of: prosthetic joint, cardiac prosthetic device, intravascular prosthetic material.
DOOR STEPP: Partial Credit Clinician A

Category	Credit
Treatment Success; No Kidney Injury | 100
Treatment Success; Kidney Injury | 80
Treatment Failure; No Kidney Injury | 75
Treatment Failure; Kidney Injury | 50
Death | 0

Optimal Dose: 301.2
DOOR STEPP: Partial Credit Clinician B

<table>
<thead>
<tr>
<th>Category</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Success; No Kidney Injury</td>
<td>100</td>
</tr>
<tr>
<td>Treatment Success; Kidney Injury</td>
<td>80</td>
</tr>
<tr>
<td>Treatment Failure; No Kidney Injury</td>
<td>50</td>
</tr>
<tr>
<td>Treatment Failure; Kidney Injury</td>
<td>30</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimal Dose: 301.2
DOOR STEPP: Partial Credit Clinician C

Category	**Credit**
Treatment Success; No Kidney Injury | 100
Treatment Success; Kidney Injury | 50
Treatment Failure; No Kidney Injury | 50
Treatment Failure; Kidney Injury | 25
Death | 0

Optimal Dose: 301.2
ANOTHER EXAMPLE
International (674 centres in 33 countries), double-blind, randomised controlled trial of 13,199 participants randomised to ticagrelor vs. aspirin in acute stroke or transient ischemic attack (NCT01994720)

Primary end point: time to stroke, MI, or death by 90 days
- 6.7% event rate in ticagrelor group
- 7.5% event rate in aspirin group
- HR=0.89 (0.78, 1.01), p=0.07
SOCRATES Quotes

The unexamined life is not worth living.

Not life, but good life, is to be chiefly valued.

Wisdom begins in wonder.
<table>
<thead>
<tr>
<th>Benefit-risk category</th>
<th>Ticagrelor (N=6589) n (%)</th>
<th>Aspirin (N=6610) n (%)</th>
<th>Cumulative difference % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOST DESIRABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survived with no event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bleeding, 1 event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bleeding, >1 event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survived with disabling stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAST DESIRABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aspirin results

<table>
<thead>
<tr>
<th>Benefit-risk category</th>
<th>Ticagrelor (N=6589) n (%)</th>
<th>Aspirin (N=6610) n (%)</th>
<th>Cumulative difference % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survived with no event</td>
<td></td>
<td>6089 (92.1)</td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major bleeding, 1 event</td>
<td></td>
<td>171 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major bleeding, >1 event</td>
<td></td>
<td>11 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Survived with disabling stroke</td>
<td></td>
<td>281 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td>58 (0.9)</td>
<td></td>
</tr>
</tbody>
</table>

Will people on Ticagrelor migrate to a more desirable outcome?
Ticagrelor results

<table>
<thead>
<tr>
<th>Benefit-risk category</th>
<th>Ticagrelor (N=6589)</th>
<th>Aspirin (N=6610)</th>
<th>Cumulative difference % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survived with no event</td>
<td>6124 (92.9)</td>
<td>6089 (92.1)</td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major bleeding, 1 event</td>
<td>147 (2.2)</td>
<td>171 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Survived with non-disabling stroke, MI or PLATO major bleeding, >1 event</td>
<td>6 (0.1)</td>
<td>11 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Survived with disabling stroke</td>
<td>244 (3.7)</td>
<td>281 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>68 (1.0)</td>
<td>58 (0.9)</td>
<td></td>
</tr>
</tbody>
</table>
Analyses

- **DOOR probability** = 0.504 (95% CI 0.499–0.508, p=0.096)
 - The probability of a more desirable result with ticagrelor is 50.4%

- **Win ratio** = 1.11 (95% CI 0.98–1.26, p=0.096)
 - Ticagrelor wins 1.11 times more frequently than it loses

- Partial credit can be applied using QOL instruments
Sequential, Multiple-Assignment, Randomized Trials for COMparing Personalized Antibiotic Strategies (SMART-COMPASS)

Scott R. Evans,1 Dean Follmann,2 Ying Liu,3 Thomas Holland,4 Sarah B. Doernberg,5 Nadine Rouphael,6 Toshimitsu Hamasaki,7 Yunyun Jiang,1
Judith J. Lok,8 Thuy Tien T. Tran,9 Anthony D. Harris,9 Vance G. Fowler Jr,9 Helen Boucher,10 Barry N. Kreiswirth,11 Robert A. Bonomo,12
David van Duin,13 David L. Paterson,14 and Henry Chambers5

1The Innovations in Design, Education, and Analysis Committee of the Biostatistics Center, George Washington Milken Institute School of Public Health; 2National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; 3Biogen, Inc., Cambridge, Massachusetts; 4Duke University, Durham, North Carolina; 5University of California at San Francisco; 6Emory University, Atlanta, Georgia; 7National Cerebral and Cardiovascular Center, Japan; 8Boston University, Massachusetts; 9University of Maryland School of Medicine, Baltimore; 10Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts; 11New Jersey Medical School-Rutgers University, Newark; 12Case Western Reserve University, Cleveland, Ohio; 13University of North Carolina, Chapel Hill; and 14University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital Campus, Australia.
Clinical Patient Management

- Not a single decision

- Dynamic
 - Sequential treatment decisions with tailored (personalized!) adjustments of therapy over time

- Adjustments based on newly available information
 - E.g., AST, early clinical results (e.g., toxicity)
Treat today. Diagnose tomorrow.

1st decision: empiric therapy
- To antibiotic or not to antibiotic?
- Broad or narrow spectrum?
- Dual or mono therapy?

2nd decision: definitive therapy (48-72 hours later)
- Keep current therapy or modify?
COMparing Personalized Antibiotic Strategies

(COMPASS)

Compares decision-making strategies consistent with clinical practice rather than specific treatments
A strategy is a *decision-rule guiding patient treatment*

- Combines empiric and definitive therapy decisions based upon available data at that time

Strategy ≠ drug(s)

Distinction between the strategy dictating patient treatment vs. drugs received

- Patients on the same strategy can have different treatment experiences due to different early responses or AST results
Strategies

- Consider the following strategy for the oral step-down therapy for treatment of cUTI
- Empiric treatment with levofloxacin. For definitive therapy, if AST indicates resistance, then change to alternative. Otherwise continue levofloxacin. This is ONE strategy.
- Suppose Simon and Garfunkel are randomized to this strategy
 - Simon’s AST indicates resistance and thus is switched to an alternative
 - Garfunkel’s AST indicates susceptibility and thus remains on levofloxacin
- Simon and Garfunkel: different treatment experiences but are part of the same strategy
Tailoring Criterion

- Here AST is the *tailoring criterion* for directing patient treatment at the definitive stage.

- The tailoring criterion can incorporate short-term clinical response, e.g., toxicity requiring therapy adjustment.
SMART COMPASS

- If there are multiple definitive therapy options to be investigated, then appropriate trial participants can be re-randomized at the definitive stage.

- This allows the opportunity to evaluate which down-stream adjustments would be optimal when we have competing options.

- Uses sequential randomization, essentially nesting or embedding sub-trials.
SMART COMPASS

- Can address several types of research questions
 - Identification of optimal strategies
 - Evaluate empiric therapies
 - Evaluate definitive therapies (licensure questions)
 - Explore more refined tailoring criterions

- Provides efficiency compared to traditional multi-arm trials
 - Individual patient data can contribute to multiple strategies

- Pragmatic: mirrors clinical decision-making regarding treatment
 - Focus on finding optimal treatment strategies
 - Personalized medicine
PRAGMATIC DIAGNOSTIC STUDIES
Motivating Questions

Why do we set separate goals for sensitivity and specificity when the acceptable level for each depends on the other?

Suppose there is a choice between 2 diagnostics: one with a higher sensitivity and one with a higher specificity.

Which test should be selected to optimize clinical outcomes?
Accuracy

- Accuracy = total percent correctly classified
- Two challenges with interpretation
 1. Accuracy treats all errors as if they are equally important.
Accuracy

- Accuracy = total percent correctly classified

- Two challenges with interpretation
 1. Accuracy treats all errors as if they are equally important.

Type I error (false positive)

Type II error (false negative)
Accuracy

- Accuracy = total percent correctly classified

- Two challenges with interpretation
 1. Accuracy treats all errors as if they are equally important.
 2. It depends on prevalence. Thus accuracy is not generally comparable from study to study, as prevalence rates may differ between studies.
Benefit-risk Evaluation for Diagnostics: A Framework (BED-FRAME)

Scott R. Evans,1,6 Gene Ponnello,2 Norberto Pantoja-Galicia,1 Hongyu Jiang,5 Andrea M. Hoffer,4 Kristina M. Hoffer,4 Claudia Munca,4 Carol Hill,4 Michael R. Jacobs,3 Liang Chen,3 Robin Patel,1 Barry N. Kreiswirth,1 and Robert A. Bonomo1, for the Antibacterial Resistance Leadership Group

1Department of Biostatistics, and Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; 2Division of Biostatistics, Office of Surveillance and Biometrics, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland; 3Louis Stokes Cleveland Veterans Affairs Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; 4Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark; 5Cure Clinical Research Institute, Duke University, Durham, North Carolina; and 6Mayo Clinic, Rochester, Minnesota

The medical community needs systematic and pragmatic approaches for evaluating the benefit-risk trade-offs of diagnostics that assist in medical decision making. Benefit-Risk Evaluation of Diagnostics: A Framework (BED-FRAME) is a strategy for pragmatic evaluation of diagnostics designed to supplement traditional approaches. BED-FRAME evaluates diagnostic yield and addresses 2 key issues: (1) that diagnostic yield depends on prevalence, and (2) that different diagnostic errors carry different clinical consequences. As such, evaluating and comparing diagnostics depends on prevalence and the relative importance of potential errors. BED-FRAME provides a tool for communicating the expected clinical impact of diagnostic application and the expected trade-offs of diagnostic alternatives. BED-FRAME is a useful fundamental supplement to the standard analysis of diagnostic studies that will aid in clinical decision making.

Keywords: benefit-risk; diagnostics; diagnostic yield; pragmatism.

Comparing diagnostic tests on benefit-risk

Gene Ponnello*, Norberto Pantoja-Galicia*, and Scott Evans*

*Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA; Center for Biostatistics in AIDS Research and the Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
Welcome to Nerd Nirvana

AAP News
May 31, 2016

I'll Be Sleeping Well with This BED-FRAME for Diagnostic Tests

Dr Bud Wiedermann, MD,MA, Evidence eMended Editor, Grand Rounds

As much as I poke fun at contrived acronyms, I confess to favor this one. I felt like I was in Nerd Nirvana after reading this early release article:

I struggled whether to use this article for my precious 5th Tuesday posting, where I've freed myself from the confines of AAP Grand Rounds to comment on any article I want. I finally decided that I loved this article too much, so I'm indulging myself.

The article will appeal only to true EBM nerds. I promise not to bore you with the mathematical minutiae, but I really think these authors' approach, or something similar to it, represent a leap forward in how we use diagnostic tests.

We all know that no diagnostic test is perfect, but beyond that fact lies the dilemma of how these inaccuracies impact clinical outcomes in different patient scenarios. BED-FRAME is an attempt at a graphical display to understand how to use test results, based on the tests' diagnostic performance, incorporating all those delightful terms like sensitivity, specificity, likelihood ratios, and disease prevalence.
Diagnostic Yield

- The distribution of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) results

- Basis for evaluation considers
 - The magnitude of sensitivity and specificity
 - Prevalence of disease in a given region and time-frame
 - The *relative importance* of false positive vs. negative errors
Average Weighted Accuracy (AWA): Pragmatic Analysis for a RADICAL Study

Ying Liu (1), Ephraim L. Tsalik (2,3), Yunyun Jiang (4), Emily R. Ko (2), Christopher W. Woods (2,5), Ricardo Henao (2), Scott R. Evans (4)

1: Biogen, Inc.; 2: Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University; 3: Emergency Department Service, Durham VA Health Care System; 4: Biostatistics Center, George Washington Milken Institute School of Public Health; 5: Medicine Service, Durham VA Health Care System
Two Renown Doctors

What people think of as the discovery is really discovery of the question.

Jonas Salk

Sometimes the questions are complicated and the answers are simple.

Dr. Seuss
Significant Contributors (p<0.001)

- Dean Follmann
- Dan Rubin
- Chip Chambers
- David van Duin
- Gene Pennello
- The Antibacterial Resistance Leadership Group
- The SOCRATES Steering Committee
I have no doubt that you will enthusiastically applaud now ... because you are so relieved that it is over.

Thank you.