Post-Resuscitation Care

Paul Redstone, M.D.

July 28, 2008
Immediate Considerations

• Continue support and what is working
• Antiarrhythmics-usually amiodarone if v.fib or v. tach
• Ventilatory & pressor support
• Transfer to ICU if not already there
Immediate Considerations

- Frequent assessment of vital signs, rhythm
- Treat any electrolyte, acid-base disturbances
- Acidemia may self-correct if perfusion and ventilation restored
Evaluate for Cause

• What happened just before the arrest?
• 6 H’s: Hypovolema
 Hypoxia
 H+ ion: acidosis
 Hyper/hypokalemia
 Hypoglycemia
 Hyperthermia
• Five T’s: Toxins
 - Tamponade
 - Tension pneumothorax
 - Thrombosis: MI/PE
 - Trauma
Specific Situations

• Hyperthermia: Associated with worse outcomes—especially neurologic

• Hyperglycemia: Associated with worse outcomes

 - No specific studies but avoid extremes of sugars. Insulin drip the easiest way
Respiratory

• Most patients will need mechanical ventilation
 - Avoid hyperventilation - decreases cerebral blood flow
 - Avoid high airway pressure - decreases venous return & increases ICP
 - Best duration of sedation/paralysis unclear
Cardiovascular

- Transient myocardial stunning caused by:
 - Arrest itself
 - Defibrillation
- Cardiac markers increased - global ischemia &/or acute MI
- Hemodynamic instability: fluids, pressors, central monitoring
- Antiarrhythmics of unproven survival benefit
Cardiovascular

- Try to normalize oxygen and O2 transport
- Similar to protocols for goal directed therapy for sepsis but no good data to support this
Central Nervous System

- Brief hyperemia after arrest, then hypoperfusion
- Maintain normal to slightly elevated BP
- Cooling: lower temperature to 33°C x24hr.
 - Studied mostly in out of hospital arrests
 - Significant decrease in mortality and improved neurologic outcome
Neuronal Injury

- Initial ischemia-lipolysis & release of glutamate & accumulation of arachidonic acid
- Inflammation and release of cytokines
- Reprofusion-metabolism of arachidonic acid & free radical formation
- Cooling may slow these adverse metabolic events
Predictors of Poor Outcome

- Absent corneal reflex at 24 hours
- Absent pupillary response at 24 hours
- Absent withdrawal to pain at 24 hours
- No motor response at 24 hours
- No motor response at 72 hours
Summary

• Maintain circulation/respiration
• Look for causes of arrest
• Identify/correct electrolyte imbalances
• Avoid hyperthermia
• Consider cooling
• Frequent reassessments