Recognition and Treatment of Chronic Allograft Dysfunction

Alexander Wiseman, M.D.
Associate Professor, Division of Renal Diseases and Hypertension
Medical Director, Kidney and Pancreas Transplant Programs
University of Colorado Health Sciences Center
RECOGNITION: Terminology

• Chronic allograft dysfunction
• Chronic allograft nephropathy
• Interstitial fibrosis/tubular atrophy
• Chronic rejection
 – T cell mediated
 – Antibody mediated
• Calcineurin inhibitor nephrotoxicity
Chronic allograft nephropathy (CAN) is now segregated by immunological etiology vs IF/TA

Chronic allograft nephropathy:

“The histologic sequelae of a series of pathologic insults that result in incremental and cumulative damage to nephrons within the transplanted kidney”

- Chronic cellular or humoral rejection
- Calcineurin inhibitor nephrotoxicity
- Interstitial fibrosis and tubular atrophy (IF/TA)

- CAN: a clinical syndrome of renal function decline, proteinuria, and hypertension

2. Li C et al, Nat Rev Nephrol 2009; 5: 513
• Chronic Antibody-mediated rejection
 – Glomerular double contours, and/or
 – peritubular capillary basement membrane multilayering, and/or
 – interstitial fibrosis/tubular atrophy, and/or
 – fibrous intimal thickening in arteries,
 - C4d+

• Chronic T-cell-mediated rejection
 – Chronic allograft arteriopathy:
 – arterial intimal fibrosis with mononuclear cell infiltration in fibrosis, formation of neo-intima
Calcineurin inhibitor nephrotoxicity

De novo arteriolar hyalinosis (excluding other etiologies) +/- striped fibrosis

961 biopsy samples from 120 SPK recipients over 10y:

CNI nephrotoxicity is detected in ~100% patients at 10 years post-transplant

Interstitial Fibrosis/Tubular Atrophy (IF/TA): ~40% of patients at 2 years with TAC/MMF

- 240 patients randomized:
 - Protocol biopsy at 1, 2, 3, and 6 months and treatment, vs
 - Biopsy at 6 months (control)
- 160 patients: Bx at 24 months
 - (74 in biopsy arm, 86 in control arm)
- All patients on TAC/MMF/Prednisone
 - (goal TAC 8±2 ng/ml from months 4-24)
- eGFR in both groups at 24 months was 74 ml/min

<table>
<thead>
<tr>
<th>IF/TA ≥ 2 (25-50% of core):</th>
<th>Protocol Biopsy arm</th>
<th>Control arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantation</td>
<td>3.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Month 6</td>
<td>34.8%</td>
<td>20.5%</td>
</tr>
<tr>
<td>Month 24</td>
<td>48.2%</td>
<td>38.5%</td>
</tr>
</tbody>
</table>

Rush DN et al, Transplantation 2009: 88: 897
Why do kidneys fail?

- Mayo Clinic: 1317 consecutive kidney transplants 1996-2006, 330 with graft loss at mean 50.3 mo f/u
 - 138 (43.4%) due to death
 - 39 (11.8%) due to 1° nonfunction
 - 153 (46.3%) due to graft failure:

- Conclusion: glomerular pathology most common cause of graft loss other than death, not CNI nephrotoxicity

Why do kidneys fail?

- Of “IF/TA”
 - 1/4 history of acute rejection
 - 1/4 history of BKV
 - 1/6 recurrent pyelo
 - ?Poor graft/CNI/Other…

- Of “glomerular disease”
 - 40% “transplant glomerulopathy” (~HLA Ab?)
 - 40% “recurrent” GN
 - 20% “de novo” GN

- ~1/3 of graft losses can be directly or indirectly related to alloimmune injury
- Unusual for grafts to fail with a “pure” diagnosis of CNI nephrotoxicity

Impact of Type of Acute Rejection on Graft Survival: AUST/NZ 1997-2004

- Vascular rejection portends worse outcomes than cellular rejection

McDonald S et al, Am J Transplant 2007; 7: 1201
Hazard ratio* for graft loss after 6 months from first acute rejection episode
AUST/NZ 1997-2004

<table>
<thead>
<tr>
<th>Response to therapy</th>
<th>All Acute Rejection</th>
<th>Cellular rejection alone</th>
<th>Vascular rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Good” (return to baseline)</td>
<td>1.61</td>
<td>1.25 (ns)</td>
<td>2.35</td>
</tr>
<tr>
<td>“Poor”</td>
<td>1.88</td>
<td>1.74</td>
<td>2.23</td>
</tr>
</tbody>
</table>

*Multivariate analysis, P<0.05 for all HR except (ns)

- Even with “good” response to therapy, vascular rejection was associated with a >2-fold increased risk of chronic graft loss
- “Good” response to therapy for cellular rejection posed no greater risk for graft loss

McDonald S et al, Am J Transplant 2007; 7: 1201
The presence of HLA antibodies post-transplant predicts 4-year graft survival

1239 pts screened: if + HLA Ab, ~5% worse graft survival per year

Deceased donor tx

Living donor tx

BK Virus Nephropathy

- Uncommon before 1995, now diagnosed in 2-10% of all kidney transplants

- Usually diagnosed 6 months-2 years after transplant

- Related to over-immunosuppression, reactivation of virus latent in transplanted kidney

- Usually leads to graft loss unless identified early

Viral inclusion bodies within tubular epithelial cells, with associated TI inflammation

Wiseman AC, AJKD 2009
Proposed histologic “patterns” of PVAN

• A: viral cytopathic changes with no or negligible inflammation or tubular atrophy

• B: viral cytopathic changes with significant interstitial inflammation and atrophy of renal tubules
 – b1: < 25% of the core
 – b2: 25-50% of the core
 – b3: >50% of the core

• C: rare viral cytopathic changes in atrophic tubules, in a background of extensive tubular atrophy/fibrosis and chronic inflammation (end-stage PVAN).

• Graft outcomes:
 • A: 13% graft loss
 • B1: 40% graft loss
 • B2: 56% graft loss
 • B3: 78% graft loss
 • C: 100% graft loss

Blood pressure at 12 months following transplant predicts graft survival

Opelz et al, JASN 2006; 17: 3257
Sustained proteinuria >0.5 g/d is associated with graft loss, death and CV events.

Of 532 patients, 36.4% had persistent proteinuria >0.5 g/d.

Among those without preexisting CV disease:
- 35.4% of patients with proteinuria had CV event.
- 14.6% of patients without proteinuria had CV event.

Transplantation. 2002;73:1345
Degree of proteinuria predicts graft outcome and underlying disease

- Of 613 patients, 45% had proteinuria at 1y
- Proteinuria was associated with graft loss in a graded fashion
- Proteinuria >1.5 g/d was associated with glomerular pathology (1y protocol bx)

Amer H et al, Am J Transplant 2007;7: 2748
Chronic Allograft Dysfunction: Management

KNOWN:
- Minimize acute rejection
- Avoid BKV
- Hypertension control
- Low threshold for biopsy

UNKNOWN:
- Protocol biopsy?
- Treat proteinuria?
- What to do with *de novo* anti-HLA Ab?
- Alter immunosuppression?
- What to do with IF/TA?
The Symphony Trial: Defining today’s “Gold Standard”

- 12-month randomized open-label multicenter trial of 1645 KTX
- 4 Treatment arms: all receive MMF/Prednisone
 - 1. CSA 150-300 ng/ml x 3 months, then 100-200 ng/ml
 - 2. CSA 50-100 ng/ml
 - 3. TAC 3-7 ng/ml with Daclizumab induction
 - 4. SRL 4-8 ng/ml

At 12 months:

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Acute Rejection (%)</th>
<th>Graft Survival (%)</th>
<th>GFR (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA “standard”</td>
<td>25.8</td>
<td>89.3</td>
<td>57.1</td>
</tr>
<tr>
<td>CSA “low”</td>
<td>24.0</td>
<td>93.1</td>
<td>59.4</td>
</tr>
<tr>
<td>TAC “low”</td>
<td>12.3*</td>
<td>94.2*</td>
<td>65.4*</td>
</tr>
<tr>
<td>SRL “low”</td>
<td>37.2</td>
<td>89.3</td>
<td>56.7</td>
</tr>
</tbody>
</table>

NEJM 2007; 357: 2562-75
BK virus: treatment options

<table>
<thead>
<tr>
<th>Switch</th>
<th>Decrease</th>
<th>Discontinue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tac to CSA (100-150)</td>
<td>Tac (<6)</td>
<td>Tac or MMF: CSA/Pred</td>
</tr>
<tr>
<td>Tac to SRL (<6)</td>
<td>MMF (<1g/d)</td>
<td>-SRL/Pred</td>
</tr>
<tr>
<td>MMF to AZA</td>
<td>CSA (100-150)</td>
<td>-MMF/Pred</td>
</tr>
<tr>
<td>MMF to SRL (<6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMF to leflunomide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigational agents:

- Cidofovir
- Leflunomide
- IVIg
- Fluoroquinolones
Interventions to slow BKV progression: does anything work?

- Possible interventions:
 - Cidofovir 0.25 mg/kg q 2 weeks x 4
 - Transition to CSA (trough 125-175 ng/ml) vs reduction of TAC (4-6 ng/ml) combined with reduction of MMF (250 mg BID)
 - IVIg 1.25 g/kg x 2

- None demonstrated a benefit

Wadei HM et al, Am J Transplant 2006; 6: 1025
In established BKVAN: Immunosuppression Withdrawal (2-drug therapy) Preserves Graft Function Compared to Reduction

Weiss AS et al, CJASN 2008; 3: 1812

No association with graft survival using ancillary therapies (leflunomide, IVIG, or cidofovir)
Leflunomide +/- cidofovir in addition to immunosuppression reduction

- 26 patients with biopsy-proven BKVAN:
- MMF discontinued,
- 17 leflunomide alone
- 9 leflunomide + cidofovir
 - Leflunomide: 100 mg/d x 3, then 20mg/d, goal trough 50-100 ng/ml
 - Cidofovir: 0.25mg/kg IV biweekly x 4 doses

- Still, 4 of 26 lost graft during follow-up

Josephson M et al, Transplantation 2006;81: 74
Unexplained kidney dysfunction >0.3 mg/dl over baseline:
- Check blood BKV PCR as part of workup.

Blood studies (DNA PCR)
- Months 1, 2, 3, 6, 9, 12

Positive urine screen:
- Check blood BKV DNA PCR

Screening asymptomatic (stable) patients for BKV:
- Recommended if estimated prevalence >2%

Urinary studies (DNA PCR, mRNA, or cytology-decoy cell)
- Months 1, 3, 6, 9, 12

Blood BKV PCR >10,000 copies/ml:
- Kidney biopsy for BKV presence and staging
- Consider empiric immunosuppression dose reduction if renal function stable

No BKV identified:
- ("Presumptive BKVAN")
 - Decrease Immunosuppression

BKV and vascular rejection +/- C4d+:
- ("BKVAN and rejection")
 - IVIg, decrease immunosuppression, consider change to leflunomide

BKV +/- tubulitis:
- ("BKVAN, with/without features of cellular rejection")
 - Decrease immunosuppression, consider corticosteroids or IVIg for tubulitis (controversial)

Continue to follow BKV PCR every 2-4 weeks until negative
- Decrease immunosuppression as needed for elevations in BKV PCR titer
- Consider ancillary therapies (cidofovir, leflunomide, IVIg, fluoroquinolones)

BKV Blood PCR negative:
- Consider monitoring for recurrence via blood BKV PCR
- Biopsy for unexplained kidney dysfunction

Wiseman AC, AJKD 2009
ACEI/ARBs for kidney transplant recipients—"value added?"

2031 patients, single center, 1990-2003

10y death-censored graft survival 76% vs 71%

10y patient survival 74% vs 53%

ACEI were not specifically “graft protective” but were associated with reduced mortality

Heinze et al, JASN 2006; 17: 889
Are ACEI/ARBs protective in kidney transplant recipients?

- 17,929 patients, multi-center (107 centers, voluntary database), 1995-2004

Opelz et al, JASN 2006; 17: 3257
Prospective screening for *de novo* HLA Ab: Can this help identify patients at risk for Chronic Allograft Dysfunction?

246 patients transplanted 9/07 to 9/09

- 185 without de-novo DSA
- 61 developed de-novo DSA

*De-Novo DSA detected prospectively in 24.8%

12 in the setting of clinical suspicion (rejection)

49 by protocol screening at 1, 6, 12 months

HLA MFI

<table>
<thead>
<tr>
<th>All HLA</th>
<th>Total (168)</th>
<th>Average MFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA class I</td>
<td>48 (29%)</td>
<td>1698 (500-7577)</td>
</tr>
<tr>
<td>HLA class II</td>
<td>120 (71%)</td>
<td>3146 (510-11,008)</td>
</tr>
</tbody>
</table>

Cooper JE et al, ATC 2010
Clinical Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All (246)</th>
<th>No DSA (185)</th>
<th>DSA + (61)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt survival, N (%)</td>
<td>240 (98)</td>
<td>180 (97)</td>
<td>60 (98)</td>
<td>0.58</td>
</tr>
<tr>
<td>GFR 6 mo (236/246 available)</td>
<td>63.75</td>
<td>58.59</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>GFR 12 mo (177/192 available)</td>
<td>66.51</td>
<td></td>
<td>59</td>
<td>0.04</td>
</tr>
<tr>
<td>Rejection, N (%)</td>
<td>34 (14)</td>
<td>17 (9)</td>
<td>17 (28)</td>
<td><0.001</td>
</tr>
<tr>
<td>-AMR</td>
<td>5/34 (15)</td>
<td>0</td>
<td>5/61 (8)</td>
<td><0.001</td>
</tr>
<tr>
<td>-Cellular</td>
<td>29/34 (85)</td>
<td>17/185 (9)</td>
<td>12/61 (20)</td>
<td>0.03</td>
</tr>
<tr>
<td>Graft survival (death censored), N (%)</td>
<td>237 (96)</td>
<td>181 (98)</td>
<td>56 (92)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

De novo Donor-Specific HLA Ab in the first year was associated with AR, worse GFR, and graft loss

Cooper JE et al, ATC 2010
Outcomes in patients **without** acute rejection:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No DSA (168)</th>
<th>DSA (44)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt survival</td>
<td>163 (97)</td>
<td>44 (100)</td>
<td>0.23</td>
</tr>
<tr>
<td>Graft survival (death censored)</td>
<td>166 (99)</td>
<td>44 (100)</td>
<td>0.47</td>
</tr>
<tr>
<td>GFR 6 mo</td>
<td>64.67</td>
<td>60.3</td>
<td>0.11</td>
</tr>
<tr>
<td>GFR 12 mo</td>
<td>67.14</td>
<td>61.46</td>
<td>0.15</td>
</tr>
</tbody>
</table>

In the absence of clinically identified acute rejection, the development of *de novo* donor specific HLA antibodies was **not** associated with worse graft outcomes.

- Worthwhile to screen asymptomatic patients?
- Follow-up time too short?

Cooper JE et al, ATC 2010
The CONVERT study: Can CNIs be withdrawn later after transplant to preserve renal function?

Mean of 3.2 years after kidney transplantation

* Concomitant medications included mycophenolate mofetil (MMF) or azathioprine (AZA), and corticosteroids
* 93% of patients in the SRL arm and 88% of patients in the CNI arm had CAN≥1

Late conversion from CNI to SRL: no benefit, potential for harm

(ITT Analysis, baseline GFR > 40 mL/min)

<table>
<thead>
<tr>
<th></th>
<th>SRL conversion</th>
<th>CNI continuation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 month eGFR (mL/min)</td>
<td>59.0</td>
<td>57.7</td>
<td>0.28</td>
</tr>
<tr>
<td>24 month eGFR (mL/min)</td>
<td>53.7</td>
<td>52.1</td>
<td>0.30</td>
</tr>
</tbody>
</table>

• Late conversion to a sirolimus-based regimen showed no renal function benefit, with worsening proteinuria
 – Release of CsA-induced afferent arteriolar vasoconstriction\(^1\), antagonism of VEGF\(^2\), loss of nephrin expression with mTOR\(^3\) are potential mechanisms

“Late” CNI Withdrawal with MMF/Pred maintenance in chronic allograft dysfunction

122 subjects with allograft dysfunction (CAN or CNI toxicity) placed on MMF and CNI withdrawn (n=62) or remained on CsA (n=60)

CrCl (ml/min)

Run-in/Phase I

Phase II

Phase III

Weeks

Baseline 5 10 18 26 34 42 50 58

CsA MMF

Dudley C et al, Transplantation 2005;79: 466
Not all IF/TA is created equal?

- DeKAF study of 337 patients with “new onset late graft survival” undergoing biopsies:
 - Inflammation in areas of tubular atrophy (“iatr”) was associated with decreased graft survival
 - Does this reflect alloimmune response?

Mannon R et al, Am J Transplant 2010; 10: 2066
Management of allograft fibrosis: from theory to practice?

Chemokine antagonists?
Block TGF-β pathway?
Block epithelial mesenchymal transition?
Conclusions

• Chronic allograft dysfunction/failure is a multifactorial process, but predominant features/etiologies can be identified

• Unfortunately, both nonspecific and specific treatment strategies are not clearly helpful once an injury pattern has been declared

• Prevention of injury is the focus of current management, while treatment of chronic injury remains an area of active investigation