Aging in place: Management of OA

Amanda E. Nelson, MD MSCR RhMSUS
Assistant Professor of Medicine
Thurston Arthritis Research Center
Division of Rheumatology, Allergy, and Immunology
aenelson@med.unc.edu
Disclosures

• I will mention a few brand names and some non-FDA approved drugs and drugs under study
• My funding sources include NIH/NIAMS, CDC, Rheumatology Research Foundation
• Editorial Board of *Osteoarthritis & Cartilage* and a member of the ACR and OARSI
• Consultant to GSK
• I attended Overland HS in Aurora and got my BA from The Colorado College
Overview

- Osteoarthritis as a common chronic condition
- OA and aging, mobility, and independence
- The Johnston County OA Project overview
- OA management guidelines summary
- The OA Action Alliance: a resource for patients and providers
- Future directions in OA management
OA is a common chronic condition
Prevalence of OA

- Arthritis is the most common cause of disability (1) in the US
 - MSK disorders are 2nd globally
- OA is the most common form of arthritis
- Over 50 million in the U.S. were affected as of 2012 (2), projected >75 million by 2040
- Numbers continue to increase due to aging and obesity trends

Joint replacement for OA

• Most joint replacements are done for OA.
• Rates of joint replacement are on the rise and will soon outpace capacity.

http://hcupnet.ahrq.gov/HCUPnet.jsp
OA is a key factor in aging, mobility, and independence
Aging and OA (Aging ≠ OA)

- **Age-related factors**
 - “Inflammaging”
 - Reduced muscle mass
 - Increased fat mass
 - Low grade inflammation
 - Altered mechanical properties of cartilage, meniscus, and ligaments
 - Altered function and composition of bone

- **Normal aging**
 - Intact but thin cartilage
 - Cartilage cross-linking by AGEs
 - Increased chondrocyte density overall
 - Reduced matrix activity
 - Decreased bone mass and density

- **OA**
 - Fibrillation of cartilage surface and focal loss of GAGs
 - Clusters of chondrocytes near tissue damage
 - Increased matrix activity
 - Synovial inflammation
 - Subchondral bone thickening

Burden of chronic disease on HRQL

- 5849 UK participants, mean age 74, ½ male, 1/3 with one and ¼ with 2 or more morbid conditions
- The greatest and clinically significant negative impacts on HRQL were seen for:
 - osteoarthritis (-0.08)
 - neurologic disease (-0.17)
 - depression (-0.27)
- Smaller declines were seen from htn, CHF, cancer, RA, diabetes, and CAD

OA and mobility: The Ontario Hip and Knee Cohort

• >18,000 respondents, median age 68, 60% female, median BMI 26
 – 10% had hip, 15% had knee, 16% had hand OA
 – ¼ reported walking limitation
• Over 13-year follow-up, 32% had 1+ CV event
 – Dose-response relationship between # joints and CV risk
 – Fully attenuated by adjustment for walking limitation

63% of people with knee/hip OA had walking limitations compared with 17% of those without OA
OA and mobility: The Ontario Hip and Knee Cohort

- Among those with hip or knee sx OA and self-reported physician diagnosed diabetes (n=359)
 - Mean age 71, 2/3 women, median of moderate to severe walking disability at baseline
- Over 6 years follow-up, ½ were hospitalized for a diabetes complication
- Time to complications was shorter for those who were older, had pre-existing CV disease, and greater difficulty walking including use of walking aids

Multimorbidity, OA, and participation restriction

- Adults from UK, median age 65, 2/3 female, with lower extremity OA (n=1053)
- 17% had incident participation restriction at 3 years
 - Limitations in social activity, volunteering, working, etc.
- **2-3x higher odds of PR** with multimorbidity
- Locomotor disability and depression had the greatest mediation effect and are potentially modifiable

Mobility outside the home

- 1802 UK adults, mean age 66, 56% female
- 13% had restricted mobility (RM) at 3-year follow-up
- Associated with health and environmental factors
- Associations between health conditions and RM were greater in the presence of environmental factors

<table>
<thead>
<tr>
<th>Frequency of the onset of restricted mobility outside the home at 3-year follow-up</th>
<th>Crude</th>
<th>Associations adjusted for confounders*</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>OR (95% CI)</td>
<td>Adjusted OR (95% CI)</td>
</tr>
<tr>
<td>Walking disability and hills and steep slopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No walking disability, no hills and steep slopes</td>
<td>6.8</td>
<td>1</td>
</tr>
<tr>
<td>Walking disability, no hills and steep slopes</td>
<td>29.3</td>
<td>5.71 (4.00 to 8.13)</td>
</tr>
<tr>
<td>No walking disability, hills and steep slopes</td>
<td>29.2</td>
<td>5.69 (3.69 to 8.78)</td>
</tr>
<tr>
<td>Walking disability, and hills and steep slopes</td>
<td>47.9</td>
<td>12.67 (8.05 to 19.94)</td>
</tr>
</tbody>
</table>
Environmental barriers to participation

- Data from MOST (n=322): associations between environmental barriers (Home and Community Environment Q) and participation restriction (Late Life Disability Index) in those with/at risk for knee OA
 - Mean age 70, 93% white, 69% female
- 18% had developed participation restriction @ 30mo, increasing to 27% at 60mo
- Those with high community mobility barriers* had 2x risk of participation restriction at 5 years
 *Uneven sidewalks, lack of parks, benches, curb ramps

Long term value of improved mobility

- Combined data (clinical trial and 2012 MEPS) to model the effects of improved QoL and mobility on health economic outcomes
- Compared status quo to improvement of ~550 steps/day
- Over 18-year simulation, improved mobility resulted in:
 - 7.4 million fewer patient years of ADL limitations
 - 6% fewer patients each year with ADL limitations
 - Medical savings of $44 billion (over half to Medicare)
 - 2.8% reduction in nursing home utilization
 - 1.2 million employed patient-years, $78 billion in earnings
 - A total “value to society” of ~$482 billion

Summary

• Aging and OA are related but not synonymous
• OA along with other comorbidities reduces QoL
• Reduced mobility due to OA contributes to morbidity and mortality, including participation restriction
• Restricted mobility and participation restriction are associated with environmental factors
 – Poor walking conditions, unsafe, lack of seating
• Modification of these factors could improve individual and societal outcomes
The Johnston County OA Project
The Johnston County OA Project

Dr. Joanne Jordan, PI 1990-2017

Drs. Amanda Nelson and Yvonne Golightly, Co-PIs 2017-
The Johnston County OA Project

- prospective, population-based cohort study
- non-institutionalized adults 45+ years
- African American and white, men and women
- Began in 1990 and has involved more than 4000 individuals over ~25 years
- follow-up approximately every 5 years
The Johnston County OA Project

- Recruited from 6 townships
- Over-sampled African Americans
The Johnston County OA Project

• All participants provide/undergo:
 – self-report data via questionnaires
 • general health, comorbidities, function, pain, psychosocial, etc.
 – physical examination
 – radiography (hips, knees; later hands, spine, feet)
 – blood and urine samples
 – performance-based functional assessment
The Johnston County OA Project

• In general, participants:
 – range from 45 to over 90 years of age
 – have a mean BMI around 30 kg/m²
 – are 1/3 women
 – are 1/3 African American
The Johnston County OA Project

- A sampling of findings…
The Johnston County OA Project

- Population-based OA prevalence

<table>
<thead>
<tr>
<th></th>
<th>KNEE</th>
<th>Symptoms</th>
<th>Radiographic</th>
<th>Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>47.1%</td>
<td>32.4%</td>
<td>19.0%</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>42.4%</td>
<td>26.8%</td>
<td>15.9%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HIP</th>
<th>Symptoms</th>
<th>Radiographic</th>
<th>Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>37.1%</td>
<td>32.1%</td>
<td>12.0%</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>36.0%</td>
<td>26.6%</td>
<td>9.2%</td>
<td></td>
</tr>
</tbody>
</table>

The Johnston County OA Project

Annual Incidence Rates (IR) per 1000 person-years, age and sex-standardized

- Population-based OA incidence

<table>
<thead>
<tr>
<th>KNEE</th>
<th>Symptoms</th>
<th>Radiographic OA</th>
<th>Symptomatic OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>58</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>African American</td>
<td>68</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>White</td>
<td>55</td>
<td>35</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIP</th>
<th>Symptoms</th>
<th>Radiographic OA</th>
<th>Symptomatic OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>38</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>African American</td>
<td>28</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>White</td>
<td>39</td>
<td>24</td>
<td>15</td>
</tr>
</tbody>
</table>

Lifetime risk of symptomatic OA

- Estimated risk by 85 years of age:
 - 40% for **hand** OA (higher for women and whites)\(^1\)
 - 25% for **hip** OA (no differences)\(^2\)
 - 45% for **knee** OA (higher for obesity, injury)\(^3\)

JoCo OA: OA outcomes and function

- Knee pain is more significantly associated with difficulty performing HAQ activities compared with radiographic OA1
- A composite score of symptoms (pain/aching/stiffness in multiple sites) was strongly related to gait speed and HAQ while radiographic measures were not2

Fall risk and OA

- Baseline to 6 year follow up, mean age 62, mean BMI 31, 1/3 African American and 1/3 men
- The odds of self-reported falls increased with an increasing number of symptomatic OA joints
- Higher odds of falls for whites, women, older participants, and those with prior falls

Table 2. Associations between number of lower-extremity joints with symptomatic OA, covariates, and future falls*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptomatic OA joints†</td>
<td>1.00</td>
</tr>
<tr>
<td>1 symptomatic OA joint</td>
<td>1.53 (1.10–2.14)</td>
</tr>
<tr>
<td>2 symptomatic OA joints</td>
<td>1.74 (1.19–2.53)</td>
</tr>
<tr>
<td>3–4 symptomatic OA joints</td>
<td>1.85 (0.96–3.55)</td>
</tr>
<tr>
<td>White</td>
<td>1.39 (1.05–1.84)</td>
</tr>
<tr>
<td>Female</td>
<td>1.36 (1.04–1.77)</td>
</tr>
<tr>
<td>Age, per year</td>
<td>1.02 (1.01–1.04)</td>
</tr>
<tr>
<td>BMI, per kg/m²</td>
<td>1.01 (0.99–1.03)</td>
</tr>
<tr>
<td>Falls at baseline</td>
<td>2.37 (1.80–3.12)</td>
</tr>
<tr>
<td>Lung problems</td>
<td>1.50 (1.12–2.01)</td>
</tr>
<tr>
<td>Neurologic problems</td>
<td>1.63 (1.07–2.49)</td>
</tr>
<tr>
<td>Narcotic use</td>
<td>1.88 (0.99–3.57)</td>
</tr>
</tbody>
</table>

* OA = osteoarthritis; OR = odds ratio; 95% CI = 95% confidence interval; BMI = body mass index.
† Symptomatic OA is defined as radiographic evidence of OA and pain, aching, or stiffness in the same joint.

Mortality and Knee OA

<table>
<thead>
<tr>
<th></th>
<th>No Knee rOA or Pain</th>
<th>Knee Pain Only</th>
<th>Knee rOA Only</th>
<th>Both Knee rOA and Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths/Cohort</td>
<td>511/1271</td>
<td>264/561</td>
<td>497/1173</td>
<td>550/1177</td>
</tr>
<tr>
<td>All-Cause Deaths§</td>
<td>ref.</td>
<td>0.95 (0.83-1.09)</td>
<td>1.19 (1.04-1.35)</td>
<td>1.17 (1.03-1.34)</td>
</tr>
<tr>
<td>Deaths/Cohort</td>
<td>189/1271</td>
<td>88/561</td>
<td>178/1173</td>
<td>222/550</td>
</tr>
<tr>
<td>CVD Deaths*</td>
<td>ref.</td>
<td>0.96 (0.76-1.23)</td>
<td>1.11 (0.89-1.38)</td>
<td>1.21 (0.97-1.51)</td>
</tr>
</tbody>
</table>

§ Adjusted for birth cohort, age, sex, race, education, enrollment cohort, hip rOA, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depressive symptoms, physical activity, obesity, diabetes, cardiovascular disease

* Adjusted for birth cohort, age, sex, race, education, enrollment cohort, hip rOA, knee injury, cancer, non-steroidal anti-inflammatory drugs, hypertension, smoking, liver disease, alcohol use, depressive symptoms, physical activity, obesity, diabetes
Mortality and Hip OA

<table>
<thead>
<tr>
<th></th>
<th>No Hip rOA or Pain</th>
<th>Hip Pain Only</th>
<th>Hip rOA Only</th>
<th>Both Hip rOA and Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths/Cohort</td>
<td>560/1321</td>
<td>382/787</td>
<td>509/1156</td>
<td>311/655</td>
</tr>
<tr>
<td>All-Cause Deaths§</td>
<td>ref.</td>
<td>1.04 (0.91-1.17)</td>
<td>1.33 (1.17-1.51)</td>
<td>1.01 (0.87-1.18)</td>
</tr>
<tr>
<td>Deaths/Cohort</td>
<td>205/1321</td>
<td>142/787</td>
<td>199/1156</td>
<td>115/655</td>
</tr>
<tr>
<td>CVD Deaths*</td>
<td>ref.</td>
<td>1.01 (0.82-1.24)</td>
<td>1.22 (0.99-1.50)</td>
<td>1.01 (0.80-1.28)</td>
</tr>
</tbody>
</table>

§ Adjusted for birth cohort, age, sex, race, education, enrollment cohort, knee rOA, hip injury, cancer, non-steroidal anti-inflammatory drug use, high blood pressure, smoking, liver disease, alcohol use, depressive symptoms, physical activity, body mass index, diabetes, cardiovascular disease

*Adjusted for birth cohort, age, sex, race, education, enrollment cohort, knee rOA, hip injury, cancer, non-steroidal anti-inflammatory drug use, high blood pressure, smoking, liver disease, alcohol use, depressive symptoms, physical activity, body mass index, diabetes
OA Management Guidelines

A systematic review of recommendations and guidelines for the management of osteoarthritis: The Chronic Osteoarthritis Management Initiative of the U.S. Bone and Joint Initiative

Amanda E. Nelson, MD, MSCRa,b,*, Kelli D. Allen, PhDc, Yvonne M. Golightly, PT, PhDa,d,e, Adam P. Goode, DPT, PhDf, Joanne M. Jordan, MD, MPHa,b,d,g

*Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC
bDepartment of Medicine, University of North Carolina, Chapel Hill, NC
cDepartment of Medicine, Duke University Medical Center & Health Services Research & Development, VA Medical Center, Durham, NC
dDepartment of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
eInjury Prevention Research Center, University of North Carolina, Chapel Hill, NC
fDepartment of Community and Family Medicine, Duke University Medical Center, Durham, NC
gDepartment of Orthopaedics, University of North Carolina, Chapel Hill, NC

Guidelines Review

- MEDLINE 2003-2013: 188 articles, 16 included in final synthesis
- Quality of guidelines assessed using AGREEII
- Generated summary statements regarding recommendations (following slides)
- Found high levels of agreement across guidelines, indicating that suboptimal uptake is more likely due to lack of dissemination and utilization in practice
Non-pharmacologic 1

• **Education and self-management**
 – Provide or refer pts to self-management programs, provide education, regular contact to promote self-care, joint protection strategies, and individualized treatment plans to OA pts

• **Exercise and weight loss**
 – Encourage pts to engage in low-impact aerobic exercise and if overweight to lose weight. Consider ROM/flexibility and/or endurance/strengthening exercises, combination exercise with manual therapy, and PT/OT referral.
Evidence: Exercise and Weight Loss

• The IDEA trial
 – Compared a restrictive diet to an exercise intervention and the combination
 – Combination group vs. Exercise alone at 18 months:
 • 50% reduction in pain
 • 40% had little or no pain
 • Better WOMAC function scores
 • Reduced knee joint loads
 • Reduced plasma IL-6 levels
 • Improved walking speeds

Messier et al, JAMA 2013;310(12):1263-73
http://walkwithadoc.org/our-locations/chapel-hill-north-carolina/

We were the first arthritis-based group to have a chapter.
Non-pharmacologic 2

• Assistive devices, bracing, taping
 – Walking aids (cane, crutch) and other assistive devices for ADLs recommended as needed (PT/OT)
 – Inconclusive evidence for bracing, heel wedges, thumb splints

• Alternative and complementary modalities
 – Thermal modalities are recommended. Therapeutic ultrasound is not, and insufficient evidence for acupuncture, Tai Chi, or TENS

• Surgical
 – Joint replacement is recommended when appropriate. Arthroscopy with debridement is not recommended*.

Pharmacologic

• First line
 – Acetaminophen up to 3 grams/day
 – Topical NSAIDs (especially in 75+ or with comorbidities)

• Second line
 – Oral NSAIDs (with appropriate risk stratification, GI prophylaxis)
 – COX-2 inhibitor with or without gastroprotection
 – Intra-articular corticosteroids (knee and hip)

• Other (refractory disease)
 – Tramadol (recommended)
 – +/- Opioid analgesics (consider, along with AE’s)
 – +/- Duloxetine (less evidence)

• Controversies
 – Glucosamine/chondroitin
 – Intra-articular hyaluronan
<table>
<thead>
<tr>
<th>Core recommendations (always recommended):</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Self-management programs</td>
</tr>
<tr>
<td>✓ Education</td>
</tr>
<tr>
<td>✓ Individualized treatment plans</td>
</tr>
<tr>
<td>✓ Weight loss or maintenance</td>
</tr>
<tr>
<td>✓ Exercise (land or water-based)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended for most situations (if appropriate for clinical situation, comorbidities, etc.):</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Intra-articular corticosteroid injection</td>
</tr>
<tr>
<td>✓ Topical non-steroidal anti-inflammatory medications (NSAIDs)</td>
</tr>
<tr>
<td>✓ Acetaminophen</td>
</tr>
<tr>
<td>✓ Oral NSAIDs or COX-2 inhibitors</td>
</tr>
<tr>
<td>✓ Walking aids and assistive devices</td>
</tr>
<tr>
<td>✓ Thermal modalities</td>
</tr>
<tr>
<td>✓ Physical or Occupational therapy referral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consider in some situations (e.g. specific patient populations or presentations):</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Duloxetine</td>
</tr>
<tr>
<td>✓ Capsaicin</td>
</tr>
<tr>
<td>✓ Mind and body therapies (e.g. yoga, Tai Chi, acupuncture)</td>
</tr>
<tr>
<td>✓ Splinting and bracing</td>
</tr>
<tr>
<td>✓ Transcutaneous electrical nerve stimulation (TENS)</td>
</tr>
<tr>
<td>✓ Surgical intervention (specifically joint replacement)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not recommended:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Therapeutic ultrasound</td>
</tr>
<tr>
<td>✗ Needle lavage</td>
</tr>
<tr>
<td>✗ Arthroscopy with debridement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controversial across guidelines, insufficient data, or not addressed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intra-articular hyaluronic acid injection</td>
</tr>
<tr>
<td>• Other intra-articular treatments (e.g. platelet rich plasma, stem cells)</td>
</tr>
<tr>
<td>• Glucosamine/chondroitin</td>
</tr>
<tr>
<td>• Other surgical interventions (e.g. osteotomy, partial joint replacement)</td>
</tr>
<tr>
<td>• Herbal or botanical treatments</td>
</tr>
</tbody>
</table>
OARSI Guidelines for the Non-surgical Management of Knee OA

Core Treatments
Appropriate for all individuals
- Land-based exercise
- Weight management
- Strength training
- Water-based exercise
- Self-mgmt and education

Recommended treatments*
Appropriate for the following OA types:

Knee-only OA without co-morbidities
- Biomechanical interventions
- Intra-articular Corticosteroids
- Topical NSAIDs
- Walking Cane
- Oral COX-2 Inhibitors
 (selective NSAIDs)
- Capsaicin
- Oral Non-selective NSAIDs
- Duloxetine
- Acetaminophen (Paracetamol)

Knee-only OA with co-morbidities
- Biomechanical interventions
- Walking Cane
- Intra-articular Corticosteroids
- Topical NSAIDs

Multi-joint OA without co-morbidities
- Oral COX-2 Inhibitors
 (selective NSAIDs)
- Intra-articular Corticosteroids
- Oral Non-selective NSAIDs
- Duloxetine
- Biomechanical interventions
- Acetaminophen (Paracetamol)

Multi-joint OA with co-morbidities
- Balneotherapy
- Biomechanical interventions
- Intra-articular Corticosteroids
- Oral COX-2 Inhibitors
 (selective NSAIDs)
- Duloxetine

*OARSI also recommends referral for consideration of open orthopedic surgery if more conservative treatment modalities are found ineffective.

Fig. 1. Appropriate treatments summary.
OA algorithms

- Used prior systematic review to inform example algorithms

Meneses, OAC 2016;24:1487-99
Arthritis Foundation: Living with Arthritis

March 5, 2018: 6 tips for adapting your house when you have arthritis

1. Identify the issues
 - Consider an OT Certified Aging-in-Place Specialist or Certified in Environmental Modification

2. Conserve energy
 - Keep items at counter-height, downsize items, sit to wash dishes

3. Avoid falls
 - Transfer aids, seats for bathroom

4. Stair and hallway safety
 - Slip grips on stairs, cane, guard rail, lighting, remove rugs

5. Kitchen habits
 - Keep cookware/appliances on counter, replace heavy pans, ergonomic utensils

6. Change locations
 - Move bedroom downstairs, mini-fridge for medications, relocate laundry facilities
The OA Action Alliance
OA Action Alliance

• The OA Action Alliance is a national coalition of over 90 member organizations.

• Advancing the recommendations outlined in the National Public Health Agenda for Osteoarthritis (2010), or the OA Agenda.
• **Policy & Advocacy** – educating federal and state level legislators about OA, OAAA, importance of evidence-based programs

• **Community + Healthcare + Individuals** – WWE mini-grant program; developing value propositions for health systems and large employers; WWE health messaging to encourage participation

• **OA Prevention**
 - *Weight Management* – childhood obesity, physical activity, joint health
 - *Injury Prevention* – training strategies to minimize risk for lower limb injury and maintain joint health
OAAA: Connecting

OAAction.unc.edu

OAAction

#OAActionAllianc

Osteoarthritis Action Alliance

Osteoarthritis Action Alliance

CONTACT US

OAAction@unc.edu

#StandUp2OA
OAAA: Community Programming

• Physical activity can decrease pain and improve physical function by about 40% and may reduce healthcare costs.
 – **BUT** 1 in 3 adults with arthritis are inactive

• Adults with arthritis also can reduce their symptoms by participating in disease management education programs.
 – **BUT** only 1 in 10 have taken part in these programs

Walk With Ease

• Walking program
• 2 formats: Group/Instructor-led OR self-directed
• 1 hour; 3x/week; 6 weeks
• Includes:
 – Pre-walk discussion covering a specified topic related to exercise and arthritis
 – 10- to 40-minute walk (includes warm-up and cool-down)
• Trained group exercise leaders

www.arthritis.org/living-with-arthritis/tools-resources/walk-with-ease/
Future directions in OA management
Future directions in management

- Anti-NGF
- Sprifermin/FGF-18
- TissueGene
- Joint distraction
- MSC/PRP

Anti-NGF

• Higher levels of NGF = more pain via nociceptor sensitization
• Tanezumab: Anti-nerve growth factor
• Highly significant improvements at 16 weeks in 2010 clinical trial

Meta-analysis of anti-NGF in OA

- 10 RCTs with over 7000 participants
- Similar effect size for pain and function, smaller for PGA
- More AE for tx
- ?RPOA

Sprifermin/FGF-18

- Fibroblast growth factor 18 (FGF-18) is a signal for chondrocyte proliferation, osteoblast differentiation, and matrix production.
- Sprifermin is a recombinant, truncated, non-glycosylated form given intra-articularly.
- The first-in-human study (1) showed no safety concerns and possible benefit to cartilage\(^1\).
- Subsequent abstracts on phase II work suggest prevention of cartilage loss (by MRI, next slide) at 2 and 3 years with no difference in symptoms\(^2,3\).

Sprifermin 2 year cartilage thickness

Figure 2. Primary endpoint: change from baseline in cartilage thickness in the TFJ over 2 years (qMRI)

Analysis population: modified ITT (all subjects with BL and ≥1 post-treatment qMRI in the double-blind treatment period); error bars = 95% CI.

Total qMRI cartilage thickness = total volume divided by total surface area (i.e. average cartilage thickness)

At baseline, qMRI total cartilage thickness was similar in all treatment arms and averaged ~ 1.8 mm.

CI, confidence interval; q6mo, every 6 months; q12 mo, every 12 months; qMRI, quantitative magnetic resonance imaging; TFJ, total femorotibial joint

Hochberg ACR 2017;69 (suppl10), 1L.
TissueGene

- Currently phase III
- IA injection of genetically engineered chondrocytes transduced with TGF-beta 1 (TGF-B stimulates PG synthesis, chondrocyte proliferation)
- Modest benefits in pain and IKDC
- No clear safety signals

Cherian, Osteoarthritis Cartilage 2015;23;2109-18.
Joint Distraction

• External fixation to distract the joint
• Knee oint distraction for ~6 weeks demonstrated increased joint space width at 1-2 year follow-up1,2
 – Improved collagen synthesis: breakdown, reduced pain
 – Pain still better at 5 years, reduced progression
• May reduce secondary inflammatory and resultant cartilage degeneration and bone remodeling
• Most troubling AE is pin tract infection

MSCs and PRP

- MSCs: Mesenchymal stem cells
- PRP: Platelet-rich plasma
- Given IA, both have theoretical benefits (and risks!) on cartilage and joint tissues
- Suffer from lack of standardization and sound RCTs
- Neither recommended by any guidelines, high quality studies are needed
- Many active studies are listed on clinicaltrials.gov

Ongoing trials

• As of 8/6/18, there were 733 studies active or recruiting on ClinicalTrials.gov
• These included behavioral, biomechanical, topical, IA, and drug interventions as well as device trials
• A few examples:
 – Senolytic in phase I
 – Longer duration IA corticosteroids
 – Drugs to enhance chondrogenesis (IA), phase I-II
 – Novel analgesic pathways (neurotrophin)
 – RFA for geniculate nerves
 – Geniculate artery embolization
Take Home Points

• Osteoarthritis is common, increasing in prevalence, and debilitating
• OA in relation to other common chronic diseases significantly affects QoL and mobility
• The JoCo OA Project has provided unique insights
• OA management is primarily through lifestyle and behavioral interventions
 – Resources are available including WWAD, AF, OAAA
• There are several promising treatments under study
Acknowledgments

Thank you!