Skip to main content
Sign In

DEPARTMENT OF IMMUNOLOGY & MICROBIOLOGY, A Leader in Immunology, Microbiology and Microbial Pathogenesis Research and Training

Immunology and Microbiology

Rachel S. Friedman, Ph.D.

Assistant Professor, Department of Biomedical Research at National Jewish Health

1400 Jackson St., K501b
Denver, CO 80206
Phone: 303-398-1954

We are interested in understanding how T cell interactions with antigen presenting cells (including DCs and B cells) at the disease site can result in either T cell activation or tolerance. Our goals are to understand how the immune system dynamically regulates immune responses through cellular interactions and environmental cues, with the objective of developing therapeutic interventions to disrupt pathogenic cellular interactions that promote autoimmunity.


Type 1 diabetes is an autoimmune disease in which the immune system attacks the insulin-producing beta cells of the pancreatic islets of Langerhans. Autoreactive islet-specific T cells are one of the primary mediators of beta cell destruction. We are working in moue models of type 1 diabetes to understand the cues at the disease site that promote T cell pathogenesis. More specifically, we are interested in elucidating how cellular interactions between T cells and APCs in the islets modulate T cell pathogenesis in type 1 diabetes. To do so we have developed a novel imaging methods to analyze live pancreatic islets via 2-photon microscopy that allows us to analyze immune cell motility and interactions within the islets, trafficking, and islet infiltration during type 1 diabetes.

Determining the outcome of the cellular interactions we analyze is an important next step in gleaning functional data from 2-photon microscopy. To that end, we have also developed methods to image biosensors that can dynamically read out cellular signaling, proliferation or effector function acquisition in vivo. This allows us to directly analyze signaling events, induction of proliferation, and modulation of cytokine production that occur during cellular interactions in real-time within their native tissue environment. Importantly, this will enable us to study the events and functional outcomes in the pancreatic islets that lead to pathogenic T cell activation or protective tolerance in real-time with the long term goal of therapeutically blocking the events or cellular interactions that induce T cell pathogenesis.

We are also interested in understanding the mechanisms of T cell extravasation into the pancreatic islets. Using a novel method for intra-vital imaging of the pancreas, we have been able to directly observe and analyze the process of trans-endothelial migration (TEM) into the islets for the first time. We have found that this process is much slower and more restrictive than TEM into the lymph nodes. Our goals are to preferentially disrupt TEM into the islets to prevent islet infiltration without preventing normal T cell trafficking throughout the body. In collaboration with the Jacobelli lab, we are testing whether targeting cytoskeletal effectors of actin polymerization will accomplish that goal.


Rachel Friedman
Assistant Professor

Robin Lindsay
Graduate Student, Immunology Program

Adam Sandor
Graduate Student, Immunology Program

Eric Wigton
Lab Researcher

Matt Gerbert
Lab Researcher

Brianna Traxinger
Lab Researcher

Dr. Rachel Friedman runs a joint lab with Dr. Jordan Jacobelli.