Hypotheses Generation Toolkit

A hypothesis for a foodborne outbreak investigation is a reasonable and testable suspicion of a particular vehicle or exposure as the source of an outbreak. It is based on specific facts and circumstances from an initial investigation.

A hypothesis should be:

- Developed by an investigation team during the earliest stages of the investigation
- Modifiable, reasonable and testable.
- Refined as information is received

Without the right hypothesis, you will not get the right answer

Review the basics of hypothesis generation for foodborne illness outbreaks on CDC’s website and CIFOR’s Guidelines for Foodborne Disease Outbreak Response.

Use as specific a case definition as possible to reduce background noise

Use these three assessments to develop a hypothesis:

1. **Food-pathogen pairs**

Review previous outbreaks, known reservoirs, routes of transmission, and risk factors.

Use CDC’s NORS Dashboard, a web-based tool for searching reports of outbreaks of foodborne, waterborne, and enteric diseases spread by person-to-person contact, environmental contamination, animal contact, and other means.

For detailed information on *Salmonella* serotypes, review the *Salmonella* Exposure Tables, which lists past outbreaks associated with serotypes, and the Atlas of Salmonella in the United States, 1968-2011, which summarizes surveillance data in detail.

Other helpful resources for background on the pathogens that cause foodborne illness:

- FDA - Classification of Illness Attributed to Foods
- FDA - Bad Bug Book

Tip: Don’t rule out high-risk exposures that are easy to forget just because a low proportion of cases report the exposure! Examples include sprouts, raw milk, ground beef, leafy greens, and others.

2. **Descriptive data**
Descriptive epidemiology of cases, including person, place, and time characteristics, can point to potential food sources. When generating a hypothesis, review:

Case demographics. Enter information about your outbreak in the [Outbreak Source Prediction Tool](#) to see the probabilities of potential food sources compared to historical outbreak data.

Epidemic curve. What is the pattern of your epidemic curve? Cases spread over a limited time period suggest a perishable food, whereas a longer time period suggests a shelf-stable or frozen food item.

Geographic distribution. Diffuse outbreaks are more likely caused by a widely distributed commercial food product, whereas local or clustered illnesses are more likely caused by a local or regionally distributed food.

3. Case exposure assessment

Effective interviewing is crucial to a foodborne outbreak investigation. Interviewers should be trained in the use of standardized interview forms and techniques and can be done by one or multiple interviewers.

Review the following [hypothesis generating questionnaires](#):

- [National Hypothesis Generating Questionnaire](#)
- [Oregon Shotgun Questionnaire](#)
- [Minnesota Questionnaire](#)

Review the CO CoE’s [Interviewer Toolkit](#).

Additional methods to obtain case exposure information might be necessary, including shopper card information ([MN Key Points for Obtaining Food Transaction Records](#)). Use the [OR Binomial Probability Worksheet](#) to determine if a given exposure is significantly associated with cases.

Remember: a hypothesis is not a final answer. Use additional methods, including epidemiological studies or traceback investigations, to determine the source of your outbreak.