Name: __

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.
- Each problem is worth 20 points.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

Good luck!

1. __________ 5. __________
2. __________ 6. __________
3. __________ 7. __________
4. __________ 8. __________

Total __________

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:
Steve Billups, Julien Langou (Chair), Weldon Lodwick.
1. Find the least squares solution of $Ax = b$ where
\[
A = \begin{pmatrix}
1 & -2 \\
-1 & 2 \\
0 & 3 \\
2 & 5
\end{pmatrix}
\text{ and } b = \begin{pmatrix}
3 \\
1 \\
-4 \\
2
\end{pmatrix}.
\]

Solution

The linear least squares solution x is given by $x = (A^T A)^{-1} A^T b$.

\[
A^T b = \begin{pmatrix}
1 & -1 & 0 & 2 \\
-2 & 2 & 3 & 5
\end{pmatrix}
\begin{pmatrix}
3 \\
1 \\
-4 \\
2
\end{pmatrix}
= \begin{pmatrix}
6 \\
-6
\end{pmatrix}
\]

\[
A^T A = \begin{pmatrix}
1 & -1 & 0 & 2 \\
-2 & 2 & 3 & 5
\end{pmatrix}
\begin{pmatrix}
1 & -2 \\
-1 & 2 \\
0 & 3 \\
2 & 5
\end{pmatrix}
= \begin{pmatrix}
6 & 6 \\
6 & 42
\end{pmatrix}
= 6 \begin{pmatrix}
1 & 1 \\
1 & 7
\end{pmatrix}
\]

\[
(A^T A)^{-1} = \frac{1}{36} \begin{pmatrix}
7 & -1 \\
-1 & 1
\end{pmatrix}
\]

\[
x = (A^T A)^{-1} A^T b = \frac{1}{36} \begin{pmatrix}
7 & -1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
6 \\
-6
\end{pmatrix}
= \frac{1}{6} \begin{pmatrix}
7 & -1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
= \frac{1}{6} \begin{pmatrix}
8 \\
-2
\end{pmatrix}
= \begin{pmatrix}
4/3 \\
-1/3
\end{pmatrix}.
\]
2. Let \(F \) be a field. Let \(P_1 \) denote the standard vector space of polynomials \(f(t) \) with coefficients in the field \(F \) and having degree at most 1. Let \(S = \{1, t\} \) be the standard ordered basis of \(P_1 \).

(a) Define \(T \in \mathcal{L}(P_1) \) by

\[
T : p(t) = a + bt \mapsto q(t) = 5a - 2b + (4a - b)t.
\]

Construct the matrix \(A = [T]_S \) that represents \(T \) with respect to the basis \(S \). Is there an ordered basis \(B \) for \(P_1 \) such that \([T]_B \) is diagonal? If so, give such a basis and the corresponding matrix representation. If not, explain why not.

(b) Replace \(T \) of part (a) by \(S \in \mathcal{L}(P_1) \) defined by

\[
S : p(t) = a + bt \mapsto q(t) = -a + b - bt,
\]

and repeat question (a).

Solution

(a) Since \(T(1) = 5 + 4t \), the first column of \([T]_S\) is \(\begin{pmatrix} 5 \\ 4 \end{pmatrix} \). Similarly, \(T(t) = -2 - t \) implies the second column is \(\begin{pmatrix} -2 \\ -1 \end{pmatrix} \). So \(A = [T]_S = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} \).

\(A \) has eigenvalues 3 and 1 with corresponding eigenvectors \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \), respectively. Since \(T \) has \(2 = \dim(P_1) \) distinct eigenvalues, \(T \) is diagonalizable with diagonalization

\[
S^{-1}AS = D, \text{ with } S = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \text{ and } D = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Thus, the desired basis is \(B = \{1 + t, 1 + 2t\} \), for which \([T]_B = D \).

(b) \(A = [T]_S = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \). This matrix is in Jordan form and is an elementary Jordan block that is not diagonal. Hence \(A \) is not diagonalizable. Therefore, there is no basis for which the corresponding matrix representation is diagonal.
3. Let A be a real matrix. A *generalized inverse* of a matrix A is any matrix G such that $AGA = A$. Prove each of the following:

(a) If A is invertible, the unique generalized inverse of A is A^{-1}.
(b) If G is a generalized inverse of (X^TX), then

$$XGX^TX = X.$$

(c) For any real symmetric matrix A, there exists a generalized inverse of A.

Solution

(a) $AA^{-1}A = IA = A$, so A^{-1} is a generalized inverse. If $AA^+A = A$, then $AA^+ = AA^+AA^{-1} = AA^{-1} = I$, so A^+ is the inverse of A.

(b) For arbitrary vector v, we can write $v = u + w$, where $u \in \text{null}X^T$ and $w = X\lambda$. Then

$$v^TXGX^TX = (u^T + \lambda^T X^T)XGX^TX = \lambda^T X^TXGX^TX = \lambda^T X^TX = w^TX = v^TX.$$

Since v is arbitrary, $XGX^TX = X$.

(c) Since A is real symmetric, it is diagonalizable; so $A = P\Lambda P^T$, where P is orthogonal and Λ is diagonal real, with the eigenvalues $\lambda = (\lambda_1, \ldots, \lambda_n)$ on the diagonal. Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ where

$$\gamma_i = \begin{cases}
\frac{1}{\lambda_i} & \text{if } \lambda_i \neq 0 \\
0 & \text{if } \lambda_i = 0.
\end{cases}$$

Let Γ be the diagonal matrix with γ along the diagonal. Let $G = P\Gamma P^T$.

Since P is orthogonal, $P^TP = I$. Thus,

$$AGA = P\Lambda P^TP\Gamma P^TP\Lambda P^T = P\Lambda\Gamma\Lambda P^T = P\Lambda P^T = A.$$

Thus G is a generalized inverse of A.
4. Let A be a real symmetric n-by-n matrix which is not just a scalar multiple of the identity matrix. Let $f(x) = (x - 1)(x + 6)^3$ and suppose that $f(A) = 0$ and the trace of A is 0.

(a) Determine the minimal polynomial of A.
(b) Determine the trace of A^2 as a function of n.
(c) Show that n is a multiple of 7.
(d) Determine the characteristic polynomial of A as a function of n.

Solution

Since A is real symmetric, its minimal polynomial has no repeated factors, and since $f(A) = 0$ the minimal polynomial divides $f(x)$. Since A is not a scalar times the identity, the minimal polynomial of A has to be exactly $p(x) = (x - 1)(x + 6) = x^2 + 5x - 6$.

Since $p(A) = 0$, we have that $A^2 = -5A + 6I$. So the trace of A^2 is $-5(\text{trace}(A)) + 6n = 6n$.

As eigenvalues of A, suppose 1 has multiplicity u and -6 has multiplicity v. (Since A is real symmetric, algebraic and geometric multiplicities are the same.)

On the one hand, we have $u + v = n$. (I.e., for any matrix, the sum of the algebraic multiplicities is always n or, since A is real symmetric, A is diagonalizable, and so the sum of the geometric multiplicities is n.) On the other hand, we know that $\text{trace}(A) = 0$ and we know that $\text{trace}(A)$ is the sum of the eigenvalues counting (algebraic – in the general case) multiplicities, therefore $u - 6v = 0$.

Solving $u + v = n$ and $u - 6v = 0$, a system of two linear equations in the two unknowns u and v, we find $u = \frac{6n}{7}$ and $v = \frac{n}{7}$, both of which are positive integers. So there is some positive integer k for which $n = 7k$, $u = 6k$, $v = k$. n is a multiple of 7.

The characteristic polynomial is

\[
c_A(x) = (x - 1)^6n(x + 6)^1n.
\]

\[
c_A(x) = (x^7 - 21x^5 + 70x^4 - 105x^3 + 84x^2 - 35x + 6)^\frac{n}{7}.
\]
5. Let U and W be subspaces of the finite-dimensional inner product space V.

(a) Prove that $U^\perp \cap W^\perp = (U + W)^\perp$.

(b) Prove that

$$\dim(W) - \dim(U \cap W) = \dim(U^\perp) - \dim(U^\perp \cap W^\perp).$$

Solution

Let $x \in U^\perp \cap W^\perp$. Then for any $u \in U$ and $w \in W$, $\langle x, u + w \rangle = \langle x, u \rangle + \langle x, w \rangle = 0$. Thus, $x \in (U + W)^\perp$, so $U^\perp \cap W^\perp \subset (U + W)^\perp$.

For any $y \in (U + W)^\perp$, and any $u \in U$ and $w \in W$, we have $u = u + 0 \in U + W$, so $\langle y, u \rangle = 0$. Similarly, $\langle y, w \rangle = 0$. Thus, $y \in U^\perp \cap W^\perp$. Thus, $(U + W)^\perp \subset U^\perp \cap W^\perp$.

It follows that $(U + W)^\perp = U^\perp \cap W^\perp$, proving part (a).

Keep in mind that for finite-dimensional inner product spaces we know that $\dim(U^\perp) = \dim(V) - \dim(U)$. Then for the proof of (b) consider the following:

$$\dim(U^\perp) - \dim(U^\perp \cap W^\perp) = (\dim(V) - \dim(U)) - \dim((U + W)^\perp)$$

$$= \dim(V) - \dim(U) - (\dim(V) - \dim(U + W))$$

$$= \dim(U) + \dim(W) - \dim(U \cap W) - \dim(U)$$

$$= \dim(W) - \dim(U \cap W), \text{ as desired.}$$
6. Let B be an n-by-n Hermitian matrix. Then B has real eigenvalues which we may order as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. For $\overline{0} \neq x \in \mathbb{C}^n$, and using the usual 2-norm $\|x\| = \|x\|_2$, define the Rayleigh Quotient $\rho_B(x)$ for B by

$$\rho_B(x) = \frac{\langle Bx, x \rangle}{\langle x, x \rangle} = \frac{x^*Bx}{\|x\|^2}.$$

Prove the following:

(i) If B is an n-by-n Hermitian with eigenvalues as above, prove that $\lambda_1 = \max\{\rho_B(x) : x \in \mathbb{C}^n \text{ and } \|x\| = 1\}$.

(ii) Let A be any $n \times n$ complex matrix with largest singular value σ_1. If $\|A\|_2 = \max\{\|Ax\| : x \in \mathbb{C}^n \text{ and } \|x\| = 1\}$, show that $\|A\|_2 = \sigma_1$.

Solution

First note that if $0 \neq k \in \mathbb{C}$ and $\overline{0} \neq x \in \mathbb{C}^n$, then $\rho_B(kx) = \rho_B(x)$. If we put $O = \{x \in \mathbb{C}^n : \|x\| = 1\}$, then

$$\sup\{\rho_B(x) : \overline{0} \neq x \in \mathbb{C}^n\} = \sup\{\rho_B(x) : x \in O\}.$$

Second, since B is hermitian, there is an orthonormal basis $B = (v_1, \ldots, v_n)$ of eigenvectors so that $Bv_j = \lambda_j v_j$, for $j = 1, 2, \ldots, n$. If we put v_j in as the jth column of the $n \times n$ matrix P, then P is unitary ($P^* = P^{-1}$) and $P^*BP = \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Since $y \mapsto Py = x$ maps O to O in a one-to-one and onto manner, we have

$$\sup\{\rho_B(x) : x \in O\} = \sup\{x^*Bx : x \in O\}$$

$$= \sup\{(Py)^*B(Py) : y \in O\} = \sup\{y^*\Lambda y : y \in O\}$$

$$= \sup\{\sum_{j=1}^n \lambda_j |y_j|^2 : (y_1, \ldots, y_n)^T \in O\}$$

$$\leq \sup\{\lambda_1 \sum_{j=1}^n |y_j|^2 : \sum_{j=1}^n |y_j|^2 = 1\} = \lambda_1.$$

So to prove part (i), we just need to find an $x \in O$ for which $\rho_B(x) = \lambda_1$. Clearly $x = v_1$ will work (with $y = P^{-1}x = (1, 0, \ldots, 0)^T$).

For part (ii), we note that $B = A^*A$ is hermitian, and we can adapt the notation of part (i) and use the fact that the largest eigenvalue of A^*A is $\lambda_1 = \sigma_1^2$ to obtain

$$\|A\|_2 = \max\{\|Ax\| : x \in \mathbb{C}^n \text{ and } \|x\| = 1\}$$

$$= \max\{\sqrt{x^*A^*Ax} : x \in O\}$$

$$= \sqrt{\sigma_1^2} = \sigma_1. \text{(By part (i))}$$
7. Let T be a normal operator on a finite-dimensional complex inner product space V.

(a) Prove that T is self-adjoint if and only if its eigenvalues are all real.
(b) Prove that T is positive (i.e., positive semidefinite) if and only if all its eigenvalues are nonnegative.

Solution

Since T is normal, by the complex spectral theorem, there is an orthonormal basis $\{e_1, \ldots, e_n\}$ of V consisting of eigenvectors of T, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. The matrix of T with respect to the basis $\{e_1, \ldots, e_n\}$ is the diagonal matrix $D = \text{diag} \{\lambda_1, \ldots, \lambda_n\}$.

(a) T is self-adjoint if and only if $D = D^*$ if and only if $\lambda_j = \bar{\lambda}_j$ (i.e., λ_j is real) for all j.

(b) First suppose T is positive, so $\langle Tv, v \rangle \geq 0$ for all $v \in V$. Then, for each eigenpair (λ_j, e_j), $\langle Te_j, e_j \rangle = \langle \lambda_j e_j, e_j \rangle = \bar{\lambda}_j \langle e_j, e_j \rangle = \lambda_j \geq 0$. So all eigenvalues are nonnegative.

Conversely, suppose all eigenvalues are nonnegative. For any $v \in V$, we can write $v = v_1 e_1 + \cdots + v_n e_n$. Then

$$\langle Tv, v \rangle = \left\langle \sum_{j=1}^n T(v_j e_j), v \right\rangle = \sum_{j=1}^n \lambda_j \langle v_j e_j, v \rangle = \sum_{j=1}^n \lambda_j \langle v_j e_j, v_j e_j \rangle \geq 0,$$

so T is positive.
8. (a) (Frobenius inequality) If A, B, and C are rectangular matrices such that the product ABC is defined, then

$$\text{rank}(AB) + \text{rank}(BC) \leq \text{rank}(B) + \text{rank}(ABC)$$

(b) In particular, prove that

$$\text{rank}(AB) \leq \min \{\text{rank}(A), \text{rank}(B)\}.$$

Solution

(a) Let A be m-by-n, B be n-by-p, and C be p-by-q.

We consider $A_{\text{Range}(B)}$, the restriction of A to the subspace $\text{Range}(B)$. We apply the rank theorem to $A_{\text{Range}(B)}$ and get

$$\text{Rank}(B) = \dim \text{Null} \left(A_{\text{Range}(B)} \right) + \text{Rank} \left(A_{\text{Range}(B)} \right).$$

Note that

$$\text{Range} \left(A_{\text{Range}(B)} \right) = \text{Range}(AB).$$

Therefore

$$\text{Rank}(B) = \dim \text{Null} \left(A_{\text{Range}(B)} \right) + \text{Rank} (AB). \quad (1)$$

We now consider $A_{\text{Range}(BC)}$, the restriction of A to the subspace $\text{Range}(BC)$. We apply the rank theorem and follow the same process as above and get:

$$\text{Rank}(BC) = \dim \text{Null} \left(A_{\text{Range}(BC)} \right) + \text{Rank} (ABC). \quad (2)$$

Note that

$$\text{Range}(BC) \subset \text{Range}(B),$$

therefore

$$\dim \text{Null} \left(A_{\text{Range}(BC)} \right) \leq \dim \text{Null} \left(A_{\text{Range}(B)} \right). \quad (3)$$

Combining Equations 1, 2, and 3 gives the Frobenius inequality.

(b) Let A be m-by-n, B be n-by-p. We set C to be the zero p-by-p matrix. Then the Frobenius inequality applied to the product ABC gives

$$\text{rank}(AB) \leq \text{rank}(B).$$

Now we set C to be the zero m-by-m matrix. Then the Frobenius inequality applied to the product CAB gives

$$\text{rank}(AB) \leq \text{rank}(A).$$

In summary,

$$\text{rank}(AB) \leq \min \{\text{rank}(A), \text{rank}(B)\}.$$