Analysis Prelim—July 2014

Name:

- All seven answers will be graded, the problem with the lowest point score will be dropped.
- Be sure to show all your work.
- Only write on one side of each sheet.
- Start a new sheet of paper for every problem, and write your name and the problem number on every sheet.
- If you use a statement from Rudin or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask your friendly proctor.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>∑</th>
</tr>
</thead>
</table>
1. Let \((x_n) \) and \((y_n) \) be Cauchy sequences in a metric space \((X, d) \). Prove that the sequence \((d(x_n, y_n)) \) converges regardless of whether or not \((x_n) \) or \((y_n) \) converges.

2. Let \(f : [0, 1] \to \mathbb{R} \) satisfy

 (a) \(f(0) = f(1) = 0 \)

 (b) \(f(x) > 0, x \in (0, 1) \), and

 (c) \(f \) is continuous.

 Prove that there exists \(x \in (0, 1) \) satisfying

 \[\int_0^x f(u) \, du = xf(x). \]

 [Hint: use Intermediate Value Theorem]

3. Consider the following proposition:

 Every bounded continuous real-valued function on \(\mathbb{R} \) attains its maximum.

 The following argument has an error. Find the error and provide a counterexample that the argument indeed fails at that point:

 Let \(f(x) \leq M \), where \(M \) is some constant, and let \(f^* = \sup \{ f(x) : x \in \mathbb{R} \} \). Clearly, \(f^* \leq M \). Now let \(x_n \to x^* \) such that \(f(x_n) \to f^* \). Then, since \(f \) is continuous, \(f(x_n) \to f(x^*) \), so \(f(x^*) = f^* \). Hence, \(x^* \) is where \(f \) attains its maximum.

4. Let \(f \) and \(g \) be continuous maps of a metric space \((X, d_X) \) into a metric space \((Y, d_Y) \) and let \(E \) be a dense subset of \(X \). If \(g(x) = f(x) \) for all \(x \in E \), prove that \(g(x) = f(x) \) for all \(x \in X \).

5. Prove the following theorem from Rudin:

 Suppose \(f \) maps a convex open set \(E \subset \mathbb{R}^n \) into \(\mathbb{R}^m \), \(f \) is differentiable in \(E \), and there is a real number \(M \) such that

 \[\|f'(x)\| \leq M \]

 for every \(x \in E \). Then

 \[|f(b) - f(a)| \leq M|b - a| \]

 for all \(a \in E \), \(b \in E \).

6. Let \(F \) be an equicontinuous set of functions from a metric space \((X, d_X) \) to metric space \((Y, d_Y) \). Let \(\bar{F} \) be the set of functions defined as pointwise limits of sequences of functions in \(F \). Show that \(\bar{F} \) is equicontinuous.

7. Let \(\ell^1 \) be the metric space of all real sequences, \(x = (\xi_j) \), such that \(\sum_{j=1}^{\infty} \xi_j \) converges absolutely and where the distance between two sequences, \(x = (\xi_j) \) and \(y = (\eta_j) \), is given by

 \[d(x, y) = \sum_{j=1}^{\infty} |\xi_j - \eta_j|. \]

 Let \(\ell^\infty \) be the metric space of all bounded sequences and where the distance between two sequences \(x \) and \(y \) is given by \(d(x, y) = \sup_j |\xi_j - \eta_j| \).

 We know that \(\ell^1 \) and \(\ell^\infty \) are metric spaces and that \(\ell^1 \subset \ell^\infty \).

 Is \(\ell^1 \) closed in \(\ell^\infty \)? If yes, prove it. If not, provide a counterexample.