Skip to main content
Sign In

University of Colorado Denver

University of Colorado Denver School of Medicine
 

Kristin Artinger

Associate Professor


Kristin Artinger
Kristin Artinger

Craniofacial Biology
Mail Stop 8120
12801 E. 17th Ave
Aurora, CO 80045

Phone: 303-724-4562
Fax: 303-724-4580
Email: Kristin.Artinger@ucdenver.edu

Education

  • PhD, Developmental and Cell Biology, University of California, Irvine
  • BS, Biological Sciences, University of California, Irvine

Departmental Affiliations

  • Craniofacial Biology
  • Department of Cell and Developmental Biology, joint appointment, UCD
  • Department of Pediatrics, joint appointment, UCD
  • Department of Biology, affiliate member, CSU
  • Department of Ecology, Evolution and Population Biology, member graduate faculty, UCB
  • Member, University of Colorado Cancer Center, UCD

 Honors, Awards and Other Experiences

2010 - Associate Editor, Cell Adhesion and Migration, Neural Crest Migration special issue

2011 - Editorial Board member, Developmental Biology

2011 - Editorial Board member, Scientific World Journal

2011 -Editorial Board member, Frontiers in Physiology, Craniofacial Biology Section

2013 -Associate Director, Biomedical Sciences Graduate Program, UCD-AMC

 Society for Neuroscience, Rocky Mountain Regional Neuroscience Group, President, 2007-2010 

 Keck Foundation Distinguished Young Scholar, UCD nominee, 2005 

 Society for Developmental Biology Junior Faculty Representative, 2004-2007

Basil O’Conner Starter Award, March of Dimes, 2004- 2006 

 Pew Biomedical Scholars Award, UCD nominee, 2004 

 Scholar Development and Faculty Transition Award (K22), NIDCR/NIH, 2001-2006

The Medical Foundation Postdoctoral Fellowship, 2000-2001

National Research Service Award, National Institutes of Health, 1997-2000

Schneiderman Graduate Research Award, University of California, Irvine, 1995

Regents Dissertation Fellowship, University of California, Irvine, 1995

Edward Steinhaus Memorial Award for Teaching, University of California, Irvine 1994-1995

2

 Research

Research in my laboratory is directed towards an understanding of the molecular and genetic mechanisms involved in the development of the neural crest. Neural crest cells are born at the neural plate border, and have the extraordinary ability to retain stem cell-like characteristics. Once specified, they migrate through the embryo and give rise to a diverse array of derivatives, including peripheral neurons and glia, pigment cells and craniofacial cartilage, which form most of the vertebrate face. Thus, the neural crest is an attractive model system to study the gene regulatory networks involved in cell fate determination. Our work has focused on these specific questions:
1. What are the genetic hierarchies involved in the specification and differentiation of neural crest cells? Here, we are focusing on the transcriptional regulation of these processes, focusing on the zinc finger transcription factor Prdm1. When prdm1a is mutated in zebrafish, neural crest and Rohon-Beard sensory neurons are reduced, and the neural plate domain is expanded. Thus, Prdm1 controls the cell fate decision between neural crest cells and other cells at the neural plate border by both transcriptionally repressing and activating transcriptional targets. In the craniofacial region, prdm1a and other Prdm proteins play important roles in cell proliferation and aspects of craniofacial development respectively. Currently, we are determining how Prdm1 interacts with other transcriptional regulators and signals to pattern the vertebrate face.
2. How do neural crest cells migrate along the correct migratory pathway? Transcriptional profiling suggests that many of the genes regulated by neural plate border transcription factors are involved in cell migration. We are testing the hypothesis that neural plate border transcription factors regulate the processes of neural crest cell migration including genes such as chemokine signaling, cell-cell adhesion and cell-matrix adhesion genes. One such factor, cxcr4a, is expressed on cranial neural crest cells and sdf1b is expressed in the target tissue. Loss of cxcr4a causes neural crest migration and craniofacial cartilage and ganglia condensation defects. Current work is focused on understanding the molecular mechanisms as well as identifying several other downstream targets involved in this process.
In addition to these two main questions, we are preforming various types of screens (ENU mutagenesis, Morpholino, RNA-seq and miR-seq, ChIP-Seq) to identify novel factors controlling neural crest cells specification, migration and differentiation. These have identified several factors important for these processes. We currently use two main vertebrate species: The zebrafish and the mouse. The zebrafish offer a unique model to study early vertebrate development since the embryos are transparent and allow us to follow cells in real time. In taking advantage of multiple developmental systems, we hope to utilize each model for its strengths to gain insight into the conserved molecular mechanisms required for neural crest cell development. Ultimately, we hope to generate an understanding of the process of neural crest development that will inform the repair and treatment of neural crest associated birth defects, such as cleft-lip and palate and other craniofacial syndromes, as well as cancer cell migration.

Unique Techniques:

  • Mutagenesis screens in zebrafish
  • Molecular and genomic analysis
  • Embryological techniques such as microinjection and transplantation
  • In situ hybridization and immunohistochemistry
  • Live cell imaging
4

 Graduate Program Affiliation

 Latest Publications

Killian, E. O., Birkholz, D.A. and Artinger, K.B. (2009) A novel role for chemokine signaling in neural crest migration and craniofacial development. Developmental Biology 333 (1), 161-172 PMID: 19576198.
Genesis. 2010 48(11):656-66 PMID: 20836130
Johnson, C, Hernandez-Lagunas, L, Feng, W, Senkus Melvin, V, Williams, T, Artinger, K.B. (2011) Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Developmental Biology 357, 269-281. PMID: 21741961
Hernandez-Lagunas*,, L, Powell*, D, Law, , J, Grant, K, and Artinger, K.B. (2011) prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border. Developmental Biology, 356(2): 496-505. PMID: 21689645
Ding, H-L, Clouthier, D.E., Artinger, K.B. (2013) Redundant Roles of PRDM Family Members in Zebrafish Craniofacial Development. Developmental Dynamics 242, 67-79. PMID: 23109401
Melvin, V.S., Feng, W., Hernandez-Lagunas, L., Artinger, K.B., Williams, T. (2013) A Morpholino based screen to identify novel genes involved in craniofacial morphogenesis. Developmental Dynamics, 242, 817-31 PMID: 23559552
Powell, D., Hernandez-Lagunas, L, LaMonica, K., and Artinger, K.B. (2013) Prdm1a directly activates foxd3 and ap2a in zebrafish neural crest specification. Development 140, 3445-3455. PMID: 23900542
5