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Welcome! 

 

We are delighted that you have joined us for this conference on Modern Study Designs for Pragmatic 

Translational Research. Pragmatic trials refer to the broad range of studies that involve testing 

interventions in real-world settings. These trials have become increasingly popular due to potentially 

greater generalizability and external validity. 

You may be considering a pragmatic trial for your next proposal if it includes one or more of the 

following:  

 Diverse populations or multiple heterogeneous settings  

 Participants can only be randomized at the group level (e.g., by hospital or practice)  

 Interest in studying the implementation of an intervention 

 The comparison is between two interventions that are real-world alternatives, rather than with 

a placebo or no treatment group 

 Interest in studying multiple outcomes  

 The outcomes may be measured as part of routine clinical care 

Learning Objectives: The purpose of the conference is to allow you to:  

 Gain an understanding about the defining characteristics and advantages/limitations of common 

and developing pragmatic trial designs 

 Identify an appropriate pragmatic trial framework for a particular research question  

 Obtain information about what resources are available on the University of Colorado Anschutz 

Medical Campus for developing, implementing, and analyzing a pragmatic trial  

This workbook is aimed to support investigators interested in learning and applying the principles and 

methods for designing pragmatic translational research studies. The workbook provides a guide to 

researchers for applying the components of designing pragmatic research studies to their own work.                                                       

Sponsors: The Adult and Child Consortium for Health Outcomes Research and Delivery Science 

(ACCORDS), Center of Innovative Design & Analysis (CIDA)  

Workshop planning committee:  

Krithika Suresh, PhD 
Research Assistant Professor, Department of 
Biostatistics and Informatics (B&I) 
Biostatistician, ACCORDS Biostatistics Program 

Bethany Kwan, PhD 
Assistant Professor, Department of Family Medicine 
Director, ACCORDS Education Program 

Elizabeth Juarez-Colunga, PhD 
Assistant Professor, Department of B&I 
Director, ACCORDS Biostatistics Program  

Bryan Ford 
Program Coordinator, ACCORDS Education Program 
Program Coordinator, ACCORDS D&I Program 

Alex Kaizer, PhD 
Assistant Professor, Department of B&I  
Biostatistician, CIDA 
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Agenda here (Will need to be added in the PDF version, Lisa at campus printing 

will do this. Bryan confirmed with her 5/17/19.) 
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Keynote and Plenary Speakers 
 

 

Scott Evans, PhD 

Professor & Director, Biostatistics Center, George 

Washington University 

 
Dr. Scott Evans is a tenured Professor of Epidemiology 
and Biostatistics and the Director of the Biostatistics 
Center at George Washington University, and the 
Director of the Statistical and Data Management Center 
(SDMC) for the Antibacterial Resistance Leadership 
Group (ARLG). Dr. Evans is a recipient of the Mosteller 
Statistician of the Year Award, the Robert Zackin 
Distinguished Collaborative Statistician Award, and is a 
Fellow of the American Statistical Association (ASA), the 
Society for Clinical Trials (SCT), and the Infectious 
Disease Society of America (IDSA).  
 
Professor Evans interests include the design, 
monitoring, analyses, and reporting of and education in 
clinical trials and diagnostic studies. He is the author of 
more than 100 peer-reviewed publications and three 
books on clinical trials including Fundamentals for New 
Clinical Trialists. He is the Director of the Statistical and 
Data Management Center (SDMC) for the Antibacterial 
Resistance Leadership Group (ARLG), a collaborative 
clinical research network that prioritizes, designs, and 
executes clinical research to reduce the public health 
threat of antibacterial resistance. 

 

 

David Vock, PhD 

Assistant Professor, Division of Biostatistics, 

University of Minnesota 

Dr. Vock’s research focuses on two major areas. The 

first is statistical methods development for electronic 

health data with a particular focus on development of 

machine learning techniques to handle censored data. 

Second, he works on novel methods for causal 

inference and estimation of dynamic treatment 

regimens (DTRs). This includes methods for novel 

clinical trials (e.g., SMART designs) used to test DTRs.  

Dr. Vock also collaborates on projects related to 

transplantation, smoking cessation, cardiovascular 

disease, and infectious disease. He has expertise in 

chronic diseases, methods, causal inference, clinical 

trials, adaptive interventions, dynamic treatment 

regimes, semiparametric theory, machine learning, 

electronic health data, and transplantation. 
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Alex Kaizer, PhD 

Assistant Professor, Division of Biostatistics, 

University of Colorado Denver - Anschutz 

 

Dr. Kaizer is an Assistant Professor of Biostatistics 

and Informatics at the University of Colorado-

Anschutz Medical Campus and a faculty member 

at the Center for Innovative Design and Analysis 

(CIDA). His research focuses on adaptive clinical 

trial design and methods to facilitate information 

sharing across multiple sources, with a focus on 

Bayesian methods for both.  

Conference Presenters, Panel Members and Facilitators 
 

 

Allison Kempe, MD, MPH 

Director, ACCORDS 

Professor of Pediatrics, Investigator, University of 

Colorado School of Medicine   

Dr. Kempe is the Director for ACCORDS.  She is a 

graduate of Oberlin College and the University of 

Colorado School of Medicine and did her residency 

at the Strong Memorial Hospital at University of 

Rochester.  She then did a Robert Wood Johnson 

General Pediatrics Academic Development 

Fellowship at the University of Rochester, where 

she received a Master of Public Health degree. She 

has been a faculty member at the University of 

Colorado Denver since 1992 where she is now a 

tenured Professor of Pediatrics.  Dr. Kempe has 

been involved in fellowship training and 

mentorship of junior faculty for twenty years and 

currently directs the SCORE Fellowship which 

trains surgeons and subspecialists to conduct 

outcomes research. 
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Miriam Dickinson, PhD 

Professor, Senior Biostatistician, Department of 

Family Medicine 

Dr. Dickinson is currently a biostatistician and 

Professor in the Department of Family Medicine, 

ACCORDS, Colorado Depression Center, and 

adjunct professor in the Department of Preventive 

Medicine and Biometrics at University of Colorado 

Denver. Her clinical research interests include 

mental health, chronic disease (diabetes, 

cardiovascular disease, hypertension), and 

immunization and she has numerous 

collaborations with investigators in these areas. As 

a biostatistician, she has focused on methodologic 

areas that are important to practice-based and 

community-based research.  These efforts 

represent the important translational link from 

limited generalizability but critically important 

efficacy trials to real-world effectiveness trials in 

community and practice settings. However, many 

of these studies present difficult methodological 

challenges, such as practice-level randomization 

and longitudinal data with dropout. 

 

 

 

 

Daniel Matlock, MD, MPH 

Associate Professor, Department of Medicine 

Director, Colorado Program for Patient Centered 

Decisions 

 

 

Dr. Dan Matlock is an Associate Professor of 

Medicine in the Division of Geriatrics at the 

University of Colorado School Of Medicine.  He is 

board certified in Internal Medicine, Geriatrics, 

and Palliative care. His research is aimed at 

fundamentally changing and improving how 

patients make decisions around invasive 

technologies. He is currently funded under an NIH 

career development award and three PCORI 

projects studying decision making among older 

adults making decisions around implantable 

cardioverter–defibrillators (ICD) and left 

ventricular assist devices.  
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Diane Fairclough, DrPH 

Senior Biostatistician, ACCORDS Biostatistics & 

Analytics Core 

 

Dr. Fairclough Received her doctoral degree in 

Biostatistics from the University of North Carolina 

and has held appointments at St. Jude Children’s 

Research Hospital, Harvard School of Public 

Health, AMC Cancer Research Center and the 

University of Colorado Denver. She is a past 

President of the International Society for Quality 

of Life Research and has over 200 peer-reviewed 

publications. Dr. Fairclough's primary research 

interest is Quality of Life, outcomes in 

palliative/hospice care, and psychosocial sequelae 

of cancer and its therapy in pediatric and adult 

patients. 

 

 

 

 

 

 

Erin Leister Chaussee, MS 

Biostatistician, ACCORDS Biostatistics & Analytics 

Core 

 

 

Ms. Chaussee is a PhD Candidate in Biostatistics 

here in the Department of Biostatistics & 

Informatics in the Colorado School of Public 

Health. Her dissertation research focusses on 

issues in stepped wedge design and analysis. She 

received an MS in Biostatistics from the University 

of Michigan in 2008 and has over 10 years of 

experience as a biostatistician. Prior to joining 

ACCORDS, Ms. Chaussee conducted statistical 

analyses of cohort studies on HIV-infected and 

affected populations in the United States, with a 

focus on treatment and outcomes in mothers and 

children. Since 2014, she has worked as a 

biostatistician on various research studies at 

ACCORDS, gaining experience in design and 

analysis of pragmatic trials. Ms. Chaussee is the 

primary statistical analyst of the DECIDE-LVAD trial 

(Dr. Daniel Matlock) that will be highlighted in this 

conference. 
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Elizabeth Juarez-Colunga, PhD 

Director, ACCORDS Biostatistics and Analytics Core 

Assistant Professor of Biostatistics, University of 

Colorado School of Public Health 

Dr. Juarez-Colunga is an assistant professor in the 

Colorado School of Public Health. She received her 

BS in Applied Mathematics and MSc in Statistics in 

Mexico, and her doctoral degree in Statistics from 

Simon Fraser University in Canada. Elizabeth’s 

areas of expertise and interest include: (i) analysis 

of data with dependencies at different levels 

including longitudinal and clustered data, (ii) 

analysis of repeated events data such as 

pulmonary exacerbations, (iii) joint modeling of 

multiple outcomes, and (iv) analysis of 

observational data. Through the ACCORDS 

program, she has been the lead biostatistician in 

several health outcomes research studies, 

including a smoking cessation trial, a tailored 

intervention to increase HPV vaccination in Latina 

women, and a pragmatic trial to assist weight loss 

in a low-income population. She has also served in 

PCORI grant review study sections including the 

Pragmatic Clinical Studies Study section and the 

Study Section of the Assessment of Prevention, 

Diagnosis, and Treatment Options. 

 

 

Bethany Kwan, PhD, MSPH 

Director, ACCORDS Education Program 

Assistant Professor, Department of Family Medicine, 

University of Colorado School of Medicine 

Dr. Kwan is an Assistant Professor in the 

Department of Family Medicine. She holds a PhD 

in social psychology from the University of 

Colorado Boulder (2010), a MS in Public Health 

from the University of Colorado Health Sciences 

Center (2005), and a BS in Chemistry and 

Psychology from Carnegie Mellon University 

(2001). She is a social health psychologist and 

dissemination and implementation scientist with 

research interests in chronic disease management 

and prevention and personalized behavioral 

healthcare in primary care settings. She is the 

principal investigator of a cluster randomized 

pragmatic trial funded by PCORI, comparing two 

models of diabetes shared medical appointments. 
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What are Pragmatic Trials? 
 

Traditional randomized controlled trials are designed to answer questions under ideal conditions with 

strict controls to reduce heterogeneity (i.e., explanatory or efficacy trials), while pragmatic trials 

evaluate interventions under typical, real-world care conditions (i.e., effectiveness and implementation 

trials).  

Key design elements of a pragmatic trial are:   

1. Real-world population. The trial should enroll a largely unrestricted, generalizable population of 

patients that would receive the treatment in practice. This helps assess feasibility for delivering 

the intervention and provides generalizability to the target population.  

2. Real-world setting. The trial should be conducted in regular care settings, and interventions are 

delivered by existing clinical personnel rather than the study team. 

3. Intervention and comparison arm. The interventions should be adapted for delivery in real-

world care and have the potential to be widely scaled and sustained. The comparison arm is 

often an active-control arm (e.g., usual care, another evidence-based intervention) rather than a 

placebo arm. 

4. Relevant outcome. Pragmatic outcomes should be relevant to patients and inform healthcare 

treatment decisions. Outcomes are often measured using clinically-actionable instruments or 

obtained from existing data sources, such as electronic health records or medical claims.  

5. Non-standard randomization. The trial may involve non-standard randomization (e.g., cluster 

randomization, uneven randomization ratios, randomization at different time points) to 

accommodate practical constraints, such as limited resources or contamination.  

Key statistical considerations of a pragmatic trial are:   

1. Power. Pragmatic trials often require more participants to achieve adequate statistical power to 

detect clinically meaningful effect sizes.  

2. Analysis. Standard methods for analysis of individually randomized trials may not appropriate. 

Statistical analysis must incorporate the design features, such as clustering and temporal trends.   

This workshop focuses on study design and statistical considerations in planning a pragmatic trial. For 

more information on pragmatic trials, including important topics such as stakeholder engagement and 

design features related to eligibility and recruitment, please visit:  

http://www.crispebooks.org/PragmaticTrials/workbook-1627-1845R.html 

 

  

http://www.crispebooks.org/PragmaticTrials/workbook-1627-1845R.html
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PRECIS-2  
Pragmatic-Explanatory Continuum Indicator Summary – Version 2 

 

The PRECIS-2 can be used a) as a study planning tool, b) to report on studies, and c) to systematically 

review interventions in the literature to select potential evidence-based practices to use. PRECIS-2 has 

nine domains reflecting key design features of clinical trials. Each element of a study design is given a 

rating between 1 and 5 on each domain relative to usual care, with 1 representing a very explanatory 

trial and 5 representing a very pragmatic trial. For interactive tools on the PRECIS-2 see: 

https://www.precis-2.org/ 

 

 

  

https://www.precis-2.org/
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Keynote Address  

Pragmatic Benefit:Risk Evaluation: Healthy Disruption for Clinical Trials 

Scott Evans, PhD 

 

Abstract: 

Randomized clinical trials are the gold standard for evaluating the benefits and risks of interventions. 

However these studies often fail to provide the necessary evidence to inform practical medical decision-

making. The important implications of these deficiencies are largely absent from discourse in medical 

research communities. 

 

Typical analyses of clinical trials involve intervention comparisons for each efficacy and safety outcome. 

Outcome-specific effects are tabulated and potentially systematically or unsystematically combined in 

benefit:risk analyses with the belief that such analyses inform the totality of effects on patients. 

However such approaches do not incorporate associations between outcomes of interest, suffer from 

competing risk challenges, and since efficacy and safety analyses are conducted on different analysis 

populations, the population to which these benefit:risk analyses apply, is unclear.  

 

This deficit can be remedied with more thoughtful benefit:risk evaluation with a pragmatic focus in 

future clinical trials. Critical components of this vision include: (i) using outcomes to analyze patients 

rather than patients to analyze outcomes, (ii) incorporating patient values, and (iii) evaluating 

personalized effects. Crucial to this approach entails improved understanding of how to analyze one 

patient before analyzing many. Newly developed approaches to the design and analyses of trials such as 

partial credit and the desirability of outcome ranking (DOOR), are being implemented to more optimally 

inform patient treatment. 
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Notes:   
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Application to Your Work 

Learning happens best when applying new content to your own work. As the conference begins, please 

take a moment to identify at least one project you are working on that may be relevant to Pragmatic 

Trial Design. Label the project(s) with a brief name so that you can refer to them in the workbook 

throughout the workshop. For each project, brainstorm answers to each of the questions posed. You 

may come up with new ideas or refine existing ideas —feel free to come back and add to the list 

throughout the day.  

My Project List 

Project Name Thought Questions 

  What intervention(s) do you want to test or compare?  
 
 

 What is the level of evidence for these intervention(s)?  
 
 

 To what extent are the evidence gaps primarily related to efficacy, 
effectiveness, and/or dissemination and implementation?  

 
 

 What is the relevant setting and population?  
 
 

 What outcomes matter to patients, health care providers, and systems?  
 

 
  What intervention(s) do you want to test or compare?  

 
 

 What is the level of evidence for these intervention(s)?  
 
 

 To what extent are the evidence gaps primarily related to efficacy, 
effectiveness, and/or dissemination and implementation?  

 
 

 What is the relevant setting and population?  
 
 

 What outcomes matter to patients, health care providers, and systems? 
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Cluster Randomized Trial 

A Cluster Randomized Trial (CRT) is a trial in which clusters (e.g., hospitals, regions) rather than 

individuals are randomized to different intervention groups. A key implication of cluster randomization 

is that the responses of multiple individuals in the same cluster are usually positively correlated. Due to 

this positive intracluster correlation, advanced statistical methods (such as mixed models) must be 

considered for analysis.  

 

Parallel Cluster Randomized Trial. Clusters are randomized to either the intervention or control arm at the start of 

the trial and remain in that arm for the remainder of the study. 

 
 

The advantages of a CRT are that it is a simple design that is easy to implement. It is often considered 

when randomization at the individual level is not possible. Cluster randomization protects against 

contamination across intervention groups when patients are managed within the same setting or by the 

same provider. The challenges of a CRT are that it requires a large number of clusters to detect small 

effect sizes with adequate power. In a trial with a true control group, not all clusters will receive the 

intervention during the study.  

Correlation in CRTs. An important implication in CRTs is that patients within a single cluster are often 

more likely to respond similarly due to physical, geographic, and social commonalities, and thus cannot 

be considered to contribute independent observations. This lack of independence results in a loss of 

statistical power compared to trials randomized at the individual level. To quantify how strongly patients 

in the same cluster resemble each other, the statistical measure intracluster correlation coefficient 

(ICC) is used. To achieve equivalent power to a patient randomized trial, standard sample size 

calculations must be inflated by a factor of  

𝟏 + (𝒎− 𝟏)𝝆 

where 𝒎 is the average cluster size, and 𝝆 is an estimate of the ICC. This is referred to as a design effect.  

Estimating ICC. ICC takes a value between 0 and 1, where an ICC closer to 1 indicates that there is high 

similarity between responses from individuals in the same cluster. ICCs for disease outcomes are 

generally less than 0.05. ICC can be estimated from other trials with similar populations and endpoints.  

The analysis of data collected from a CRT must also account for clustering. Analyses at the cluster-level 

(i.e., using summary measures for each cluster) are generally not statistically efficient. Patient-level 

analysis can account for clustering using generalized linear mixed models (GLMM) and generalized 

estimating equations (GEE). These modeling techniques also allow for the adjustment of both cluster-

level and patient-level covariates.    
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Notes: 
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Stepped Wedge Design 

A Stepped Wedge (SW) design is a type of crossover CRT, in which the different clusters cross over 

(switch treatments) at different time points. A SW study extends the traditional CRT so that every cluster 

provides both control and intervention observations, and thus somewhat acts as its own control.  

The design includes a baseline time period where none of the clusters receive the intervention of 
interest. Then, at regular time periods (or “steps”) one cluster (which can include multiple sites) is 
randomized to cross from the control to the intervention of interest. This process continues until all 
clusters have crossed over to receive the intervention, and the study ends with a time period in which all 
the studies receive the intervention.   
 

 
 
Design considerations. When designing a SW study, the number of sites, number and length of time 

periods, and number of sites randomized at each time period must be determined. These are often 

chosen based on logistical considerations. The participants expected to meet eligibility criteria 

determine the number of patients per cluster per time period. There are possible variations to the 

traditional SW design, such as transition periods during which training is implemented and the cluster 

cannot be considered as exposed or unexposed. Power calculations for SW trials depend on these design 

considerations as well as on the intracluster correlation coefficient (ICC).  

Advantages  Challenges 

 Eventually all the clusters receive the 
intervention  

 Allows for control of external temporal trends  

 Allows for within-cluster comparisons and 
can have smaller sample size requirements 
than a cluster randomized trial 

 Implementation is staggered across sites, 
thus training can also be staggered and 
implementation can be more carefully 
observed 

 Contamination can bias results  

 Requires all sites start and stop at the same 
time. Site dropout is a serious threat 

 Requires steady recruitment over time that is 
consistent with respect to patient 
characteristics 

 Potential for contamination during the cross-
over between control and intervention 
phases with extended interventions and 
follow-up 

 

Statistical analysis. Since the proportion of exposed clusters increases gradually over the study period, 

the unexposed observations will on average be from an earlier calendar time than the exposed 

observations. Thus, the analysis of SW studies must not only account for clustering, as with CRTs, but 

also needs to control for temporal trends. This can be achieved using a generalized linear mixed model 

(GLMM) with a random effect for cluster and a fixed effect for each time period. Extensions to these 

models can be considered to address issues such as varying temporal trends across clusters.  
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Notes:  
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Plenary Address 

Adaptive Clinical Trials: From Basics to Bayesian 

Alex Kaizer, PhD 

 

Abstract:  

Adaptive clinical trials come in a variety of designs, adaptable elements, and statistical frameworks. In 

this presentation we will start by defining what adaptive designs are and some of the basic elements 

that are "adaptable" according to the Food and Drug Administration. We will then transition into an 

exploration of how Bayesian methods are being used to empower adaptive clinical trials with some 

examples of existing designs and methods.  
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Notes:  
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Adaptive Trial Designs 
An Adaptive Trial (AT) design is a clinical trial design that incorporates prospectively planned 

modifications to aspects of the design based upon accumulating data in the trial. The AT study design 

extends the “standard” design of trials to provide greater flexibility through a variety of mechanisms.  

The Food and Drug Administration has released an updated draft guidance document in September 

2018. It outlines the components incorporated in existing AT designs and provides high-level discussion 

of a variety of important considerations, many of which are highlighted on this worksheet. 

Adaptive Design Element Brief Description 

Group Sequential Designs 
Designs which allow for one or more prospectively planned interim 
analyses of trial data with prespecified criteria for stopping the trial, 
generally based upon evidence of efficacy or futility 

Adapting the Sample Size 

When uncertainty exists around the estimates used to power a study, an 
interim analysis can use accumulating data to re-estimate the sample 
size to ensure a trial has high power if the true magnitude was less than 
hypothesized but is still clinically meaningful 

Adaptive Enrichment  

A design which may adapt the patient population to a targeted 
subpopulation (usually through demographic characteristics or by 
genetic/pathophysiologic markers believed to be related to the 
mechanism of action) or continue to enroll the participants from the 
originally specified trial population 

Adaptations to Treatment 
Arm Selection 

Modification to the trial design that could add or terminate study arms, 
present in both early phase studies (e.g., dose-finding) and later phase 
studies (e.g., seamless designs and platform trials) 

Adapting Patient 
Allocation 

Also known as adaptive randomization (AR), the incorporation of 
methods to modify the randomization process that may be based on 
baseline covariates (i.e., the achieve “balance” in select covariates across 
study arms), response/outcome AR (i.e., attempting to randomize more 
participants to “effective” arms), or maintaining equal amounts of 
information when incorporating historic/supplemental data sources 

Adapting Endpoint 
Selection 

The ability to select one endpoint from a collection of potential primary 
endpoints when there is uncertainty about effect sizes across outcomes 
at an interim analysis, when done in FDA trials it involves extensive 
discussion and the review with the FDA Review Division 

Adapting Multiple 
Features 

The above elements can be utilized individually or may be combined 
within a single adaptive trial design (at the expense of increasing 
complexity that needs to be carefully and thoroughly evaluated) 

 

Statistical analysis.  The analyses used for adaptive trials are generally the same used in non-adaptive 

trials, but they incorporate the added complexity and potential statistical issues (e.g., multiplicity of 

tests) into the analysis plan. Both frequentist (e.g., p-values) and Bayesian (e.g., posterior or predictive 

probabilities) approaches are used, however some adaptive elements or designs may be infeasible 

under standard frequentist approaches. If Bayesian approaches are used, prior specification must be 

carefully considered and is generally done collaboratively based a combination of clinical, scientific, and 

statistical expertise and discussion. One of the most important considerations for AT designs is that any 

potential modification is specified a priori so that trial integrity can be maintained.  
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Adaptive trial planning and sample size.  Many of the AT elements discussed on the previous page have 

complex underlying mathematical and statistical relationships that are not easily summarized or 

available in closed form formulas. To evaluate the needed sample size to maintain a specified type I 

error rate and desired power, extensive simulation studies are generally used. These simulation studies 

should evaluate a wide variety of scenarios and present the results for relevant operating 

characteristics, such as power, the type I error rate, expected sample size, expected calendar time, and 

bias in treatment effect estimates. Even when Bayesian approaches are used, the FDA specifies that 

potential designs be summarized using power and type I error rates, with type I error rates controlled at 

a prespecified target rate (e.g., α=0.05 for a two-sided test). 

 

Additional Approaches and Considerations for Adaptive Trial Designs 

Secondary Endpoints 

Oftentimes a study will have secondary endpoints in addition to the primary endpoint(s). The AT 
element(s) chosen for the study can also have consequences for the analysis of secondary endpoints 
and these should be considered when evaluating different design options. 

Safety Considerations 

Adaptive design elements may affect the availability of safety information for the study arms (e.g., 
terminating early for efficacy may not provide sufficient information to evaluate risk vs. benefit) or 
the adaptive element may place participants at excessive risk (e.g., early phase dose-escalation 
studies that permit rapid escalation). 

Design Changes Based on Information External to the Trial 

Sometimes, other concurrently occurring research may identify important safety or outcome 
considerations that are important to your study. These changes are unplanned but should be 
critically evaluated in considering how to best move forward, where is may still be possible to 
modify the trial (e.g., excluding a subgroup at higher risk of severe adverse events instead of 
terminating the study to start over). 

Incorporating Supplemental or Historic Information 

Information or data external to a study or current analysis may be useful to incorporate to the 
analyses during an ongoing trial. Some designs may attempt to incorporate this information to 
increase the sample size of arms in the study, generally based on evaluating the exchangeability 
(i.e., equivalence) of the supplemental data with the current study data. Many approaches, that are 
primarily Bayesian, exist and include multi-source exchangeability modeling (MEMs), commensurate 
priors (CPs), power priors (PPs), and general Bayesian hierarchical models. 

Master Protocols 

Traditionally, researchers interested in evaluating multiple diseases, interventions, or both had to 
conduct a series of standalone trials comparing an intervention within the context of a single 
disease. The advent of master protocols, initially adapted in oncology trials, permits a single 
“master” protocol to facilitate inclusion of multiple diseases and/or interventions under a single trial 
structure and are known as basket, umbrella, or platform trials. 

Seamless Designs 

Similar to Master Protocols, these studies address a potential limitation in the traditional phases of 
research wherein each phase of a clinical trial were distinct and separate (e.g., Phase I, then Phase 
II, then Phase III, etc.). However, AT designs now exist which facilitate “seamless” transition 
between phases, and are often categorized as Phase I-II (e.g., dose finding, safety, and initial 
efficacy) or Phase II-III (e.g., identifying the optimal dose or outcomes and moving into confirmatory, 
large-scale trials for efficacy). 
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Summary.  There are many exciting new trial designs based on adaptive elements. Some of the broad, 

general advantages and challenges of AT designs are summarized below to keep in mind when 

evaluating if an AT may be appropriate for your next study: 

Advantages  Challenges 

 Improved flexibility 

 More efficient use or allocation of available 
resources (e.g., financial or administrative) 

 Improved statistical efficiency that can 
provide greater statistical power to detect a 
true drug effect 

 Ethical considerations may be more readily 
addressed 

 Ability to answer broader questions, that may 
be refined as the trial progresses, relative to 
non-adaptive designs 

 Stakeholders may be more willing to support 
studies with adaptive elements because of 
the added flexibility 

 Advanced and specific analytical methods 
needs to be used to avoid type I errors (i.e., 
identifying an ineffective intervention as 
effective) and control bias in estimates 

 Gains in efficiency generally represent a 
trade-off with other trial components (e.g., 
interim analyses may decrease expected 
sample size at the expense of an increase to 
the maximum sample size) 

 Logistics to ensure appropriate trial conduct 
and integrity 

 Adaptation may be limited by scientific or 
clinical constraints or make interpretation 
more challenging 

 

  



 

26 | P a g e  
 

Notes:  



 

27 | P a g e  
 

Plenary Address 

Developing Adaptive Intervention Strategies Using SMART Designs 

David Vock, PhD 

 

Abstract:  

A sequential multiple-assignment randomized trial (SMART) is an experimental design that scientists can 

use to develop high-quality adaptive intervention strategies (AIS, also known as dynamic treatment 

regimes), a pre-specified treatment plan in which the type(s) or dosage/intensity of an intervention, the 

delivery of the intervention, or the monitoring schedule is repeatedly adjusted in response to new 

information collected about the individual. Specifically, a SMART design is a multi-stage trial design in 

which each stage corresponds to a critical decision where there is a scientific question about how best 

to intervene at that stage. Each participant progresses through the stages and can be randomly assigned 

to one of several intervention options at each stage. SMART designs allow one to answer a variety of 

questions concerning the development of an AIS. We highlight some of the common research questions 

and hypotheses and briefly discuss the appropriate analytical approaches to test these hypotheses. We 

contrast a SMART design with other experimental designs that could be used for developing or for 

evaluating different AISs. We conclude by dispelling common misconceptions concerning AISs and 

SMART designs and reviewing future research directions. 
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Notes:  
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Sequential Multiple Assignment Randomized Trial (SMART) 

SMART is an innovative design for pragmatic trials comparing adaptive interventions. Adaptive 

interventions can allow clinical settings or patients who do not respond to an initial treatment strategy 

to receive an augmented or new intervention. A SMART is not an adaptive intervention itself, but 

instead is a trial with multiple embedded adaptive interventions that can be compared. It is an adaptive 

multi-stage randomized trial design, where each participant is randomized to an initial treatment and 

then may move through multiple stages of treatment depending on their response, characteristics or 

behaviors observed during previous treatments. Each stage in a SMART corresponds to a critical 

treatment decision and participants are randomly (re)assigned to a treatment option. By randomizing 

participants multiple times, researchers can assess the effectiveness of treatments at each stage.  

The purpose of SMARTs is to build empirically supported adaptive interventions. SMARTs allow for the 

testing of the tailoring variables, which are used to trigger a change in treatment, and interventions in 

the same trial. This allows for the best decision rules to be developed based on research rather than a 

priori decisions. Data from a SMART study can then be used to design an adaptive intervention in which 

patients are not randomized; instead, their treatments change based on the intervention’s decision 

rules. Q-learning methods can also be applied to SMART design data to discover optimal treatments. 
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Is a Pragmatic Trial Right for You? 

 

No study is completely pragmatic/explanatory. Use the following questions to identify where your study 

falls on the explanatory-pragmatic trial continuum. If the majority of your answers lie towards the right-

side of the spectrum, a pragmatic trial may be more appropriate for your research.  

What is the research question of interest? 

Interested in: Can the intervention work 
(efficacy) and in testing hypotheses under 
ideal conditions. 

 Interested in: Does the intervention work 
(effectiveness) and comparing intervention 

strategies in usual care settings. 
 

The outcome is biologically meaningful. 
The outcome is meaningful for decision-making in 

routine clinical practice. 
 

 

Why are you interested in studying this treatment? 

Want to assess cause and effect of the 
intervention.  Want the results to inform decision makers. 

 

Interested in comparing a new intervention to a 
control.  

Interested in comparing an intervention with the 
current standard of care or another evidence-

based intervention.  
 

 

How will the study be conducted? 

The protocol will be rigidly followed to minimize 
variation and the effect of extraneous variables. 

The protocol will reflect usual care settings to 
maximize generalizability 

 

 

Who will participate in the study? 

Selective inclusion criteria will be defined and 
participants will potentially be recruited. 

Broad inclusion criteria will include those that are 
encountered in routine clinical practice.  

 

Adapted from: https://rwe-navigator.eu/use-real-world-evidence/generate-real-world-evidence/study-design-pragmatic-trials/ 

Explanatory  Where does your trial fall on the continuum?         Pragmatic  
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Designing Your Pragmatic Trial 

Use the following questions, to help guide you when writing up a proposal for a pragmatic trial and to 
help determine an appropriate trial design. Contact a biostatistician early to discuss potential study 
designs for your research proposal.

 
The research question of interest is... 
Tests whether the intervention is effective in routine clinical practice.  
E.g., What is the best dose of aspirin to prevent a heart attack in patients with heart disease?  

 
 
 

The setting of interest is… 
Routine care settings. E.g., Primary care, community clinics, hospital units, health systems  

 
 
 

The population of interest is... 
Broad selection criteria. E.g., People living with heart disease or hypertension.  

 
 
 

The interventions that will be compared are... 
Compares two or more real-world treatments. E.g., 81 mg vs. 325 mg dose of aspirin.  
If there are more than two treatments being compared, consider a CRT or a patient randomized trial instead of a SW.  

 
 
 

Has efficacy (and safety) of the intervention been established in other trials?  
Discuss safety and feasibility of implementing the proposed treatment. Note known effect sizes and ICCs where possible. 

 
 
 

The randomization unit is… 
Identify if patients will be randomized at the patient or cluster level, and what level data will be collected.  

 
 
 

Is contamination an issue?  
Contamination occurs when participants assigned to one intervention receive elements of another intervention.  
Can it be resolved by increasing the cluster size/moving up to a higher level (e.g., health system vs. hospital)?   

 
  
 

Is the recruitment rate likely to be constant across time? 
If no, consider a CRT rather than a SW to avoid time periods during which recruitment is low. 

 
 
 

Is it feasible to implement the intervention for all randomized units at the same time? 
If no, consider a SW rather than a CRT to allow for the implementation at more clusters at different time points.  
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What sample size do I need? 

Another study design consideration is what sample size is required to detect a clinically meaningful 

effect. Here we present the sample size calculation for a simple CRT and SW, but extensions to these 

designs, such as variable cluster sizes and transition periods, may also be factored into the power 

calculation. Contact a biostatistician before finalizing your study design to ensure that there is enough 

power to implement such a study to detect the desired effect size.  

 

 

 

 

Considerations when comparing CRT and SW:  

 For large ICCs, a SW study has more power than a CRT with a fixed sample size 

 When the design is constrained by a small number of clusters, the SW provides higher power 

than a parallel CRT design. However, designs with too few clusters have increased risk of type I 

and II errors and decreased generalizability. 

 Relative to CRTs, power for a SW study is less sensitive to differences in ICC  

 For a given number of clusters, a SW design where each cluster crosses over to the intervention 

at its own step has optimal power 

Specify a priori:  

 Desired statistical power (e.g., 80%) and significance (e.g., 5%)  

 Minimally important effect size  

 Continuous outcome: Standard deviation (σ)  

 Binary outcome: Control arm proportion  

Number of required clusters:  

𝑘 =
𝑛𝑖𝑛𝑑 × 𝐷𝑒𝑓𝑓

(𝑡 + 1)𝑚𝑐

 

where 𝑛𝑖𝑛𝑑 is the total sample size required 

under individual randomization using the a priori 

information. 

Additionally required for a CRT: 

 𝜌: Anticipated intraclass correlation 

coefficient (ICC) 

 𝑚: Average cluster size (i.e., # of patients in 

each cluster)  

 

Design Effect for a parallel CRT: 

𝐷𝑒𝑓𝑓 = 1 + (𝑚 − 1)𝜌 

Number of required clusters: 

𝑘 =
𝑛𝑖𝑛𝑑 × 𝐷𝑒𝑓𝑓

𝑚
 

where 𝑛𝑖𝑛𝑑 is the total sample size required 

under individual randomization using the a priori 

information.  

Additionally required for a SW: 

 𝑡: Number of time periods 

 𝜌: Anticipated intraclass correlation 

coefficient (ICC) 

 𝑚𝑐: Average cluster size (i.e., # of patients 

per cluster per time period) 

 

Design Effect for a balanced complete SW: 

𝐷𝑒𝑓𝑓 = (𝑡 + 1)
1 + 𝜌(𝑡𝑚𝑐 +𝑚𝑐 − 1)

1 + 𝜌 (
𝑡𝑚𝑐

2
+ 𝑚𝑐 − 1)

×
3(1 − 𝜌)

2 (𝑡 −
1
𝑡
)
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Resources on University of Colorado Anschutz Medical Campus 
 

ACCORDS 
Elizabeth Juarez-Colunga, PhD  
Director, ACCORDS Biostatistics Program 
Assistant Professor, Department of Biostatistics and Informatics  
elizabeth.juarez-colunga@ucdenver.edu  
 
Russell Glasgow, PhD 
Director, ACCORDS Dissemination and Implementation Science 
Program 
Research Professor, Department of Family Medicine 
russell.glasgow@ucdenver.edu  

 

www.ucdenver.edu/academics/colleges/medicalschool/programs/ 
ACCORDS/Pages/welcome.aspx 

 

Cancer Center Biostatistics Core 
Dexiang Gao, PhD 
Director, CU Cancer Center Biostatistics Core 
Associate Professor, Department of Pediatrics  
Department of Biostatistics and Informatics 
ccbiostatistics@ucdenver.edu   
cu.corefacilities.org/service_center/show_external/4458   

 

 

Center for Innovative Design & Analysis (CIDA) 
Nichole Carlson, PhD  
Director, CIDA 
Professor, Department of Biostatistics and Informatics 
cida@ucdenver.edu   
cida.ucdenver.edu 

 

 

Children’s Hospital Colorado Research Institute Biostatistics Support 

Laura Pyle, PhD  
Director, Child Health Research Biostatistics Core  
Associate Professor, Department of Pediatrics 
Department of Biostatistics and Informatics 
laura.pyle@ucdenver.edu 

 

 

www.ucdenver.edu/academics/colleges/medicalschool/departments/ 
pediatrics/research/programs/ri/research/Pages/research.aspx 
 

Veterans Affairs Outcomes Group 
Gary Grunwald, PhD 
Health Services Research and Development Service 
Professor, Department of Biostatistics and Informatics 
gary.grunwald@ucdenver.edu   
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