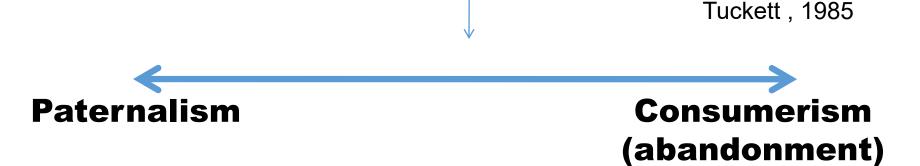
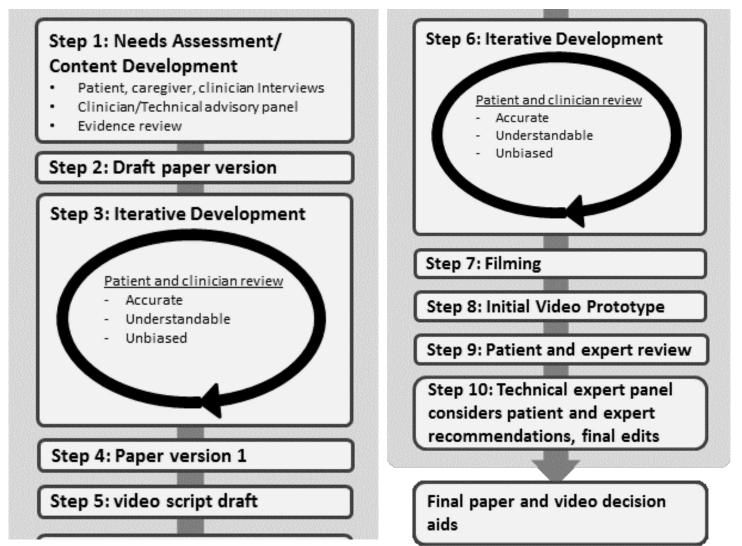

DECIDE-LVAD Trial – Stepped Wedge Design

Dan Matlock, MD, MPH Associate Professor of Medicine University of Colorado School of Medicine Implementation Scientist - GRECC


Shared Decision Making

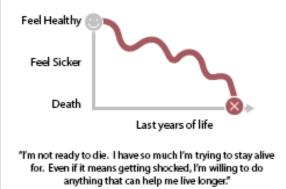
informed consent

Shared Decision Making


"A meeting between experts"

Shared Decision Making

Design and Testing of Tools for Shared Decision Making


Daniel D. Matlock, MD, MPH; Erica S. Spatz, MD, MHS

Decision Aid: Paper Tools

Path 1

You may choose to get an ICD. You may be feeling like you usually do, then a dangerous heart rhythm could happen. The ICD may help you live longer by treating a dangerous heart rhythm. You will continue to live with heart failure that may get worse over time.

Path 2

You may choose to NOT get an ICD. You may be feeling like you usually do and then a dangerous heart rhythm could happen. You may die quickly from the dangerous heart rhythm.

"I've lived a good life. The idea of dying quickly sounds like a painless way to go. I've always said I hope to die in my sleep. Going through surgery and getting shocked is not the kind of thing I want."

www.patientdecisionaid.org

With an ICD 29 die, 71 live	Without an ICD 36 die, 64 live
29 die, 71 live	36 die, 64 live
88888	88888
Or Number of people with the second s	ho live because of the ICD

Number of people who die

Number of people not affected


Decision Aid Tools: Video

www.patientdecisionaid.org

Decision Aids – Do They Work?

- Cochrane Review of 115 trials of Decision aids
 - Improved knowledge
 - Improved value/treatment concordance
 - Improved patient/doctor communication
 - Improved patient involvement
 - Improved Satisfaction
 - Lowered decision conflict
 - Lowered decision regret
 - Lowered the proportion undecided

Implementation is hard!

- Who will deliver the Decision aid?
 - Provider?
 - Staff member
 - empowered to provide DA on behalf of provider
- How will the DA be delivered?
 - Electronically
 - With EHR? Patient portal? Email?
 - In person or mailed
 - Print, DVD?

Implementation is hard!

- Medical decisions require different depths of deliberation
 - Daily, reversible vs. single, irreversible decisions
- When will the DA be delivered?
 - Timing important for shared decision making
 - Before visit may set up SDM
 - In visit can directly support SDM interactions

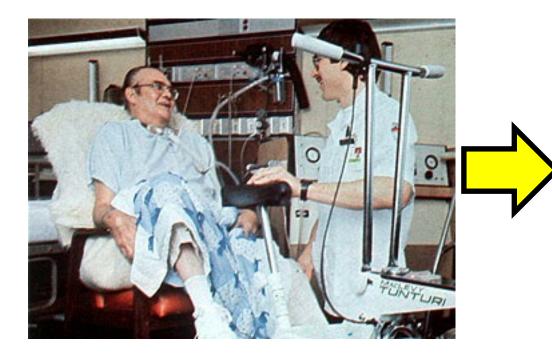
Elwyn et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 2):S14 http://www.biomedcentral.com/1472-6947/13/S2/S14

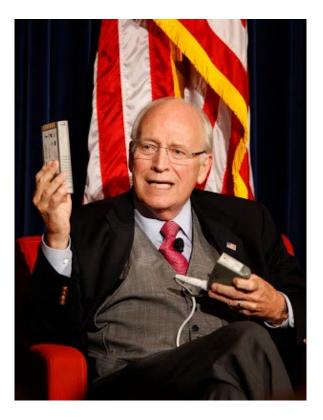
BMC Medical Informatics & Decision Making

REVIEW

Open Access

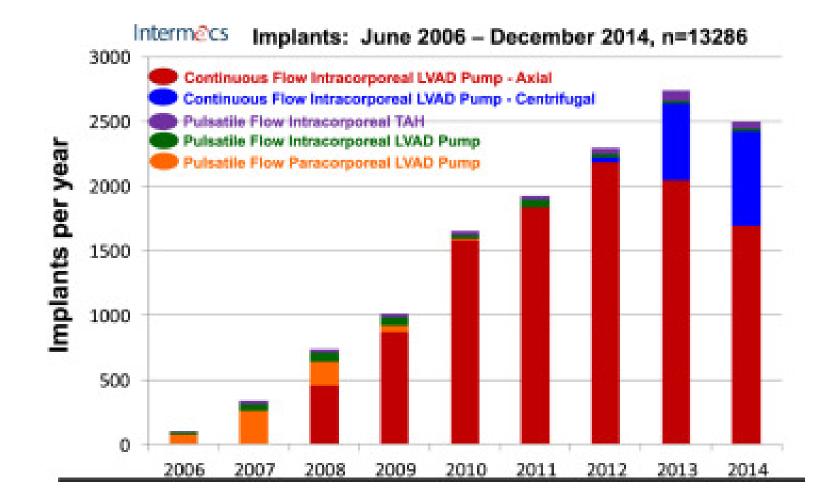
"Many miles to go ...": a systematic review of the implementation of patient decision support interventions into routine clinical practice


- Clinicians lacked confidence in the content of the DAs
- Many concerns about DAs disrupting established workflows
- Lack of incentives a major barrier


Left Ventricular Assist Device (LVAD) for Destination Therapy

A device for patients with advanced heart failure

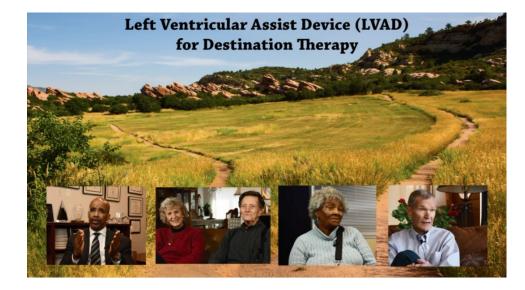
The Artificial Heart is For Real



Barney Clark 1982

Dick Cheney 2010

LVAD Growth


DECIDE – LVAD trial

DECIDE-LVAD Trial

<u>Objective</u>: Understand the effectiveness and implementation of a shared decision support intervention for advanced heart failure patients considering DT LVAD.

Study Designs for DECIDE-LVAD Trial

- <u>Classic patient-level</u> randomization
 - Intervention is patient AND program-based; not at individual-level
 - Diffusion among participants at each site is probable
- <u>Cluster</u> randomization
 - Concerns about statistical power with only 6 total sites
 - 3 sites intervention, 3 sites control
 - Homogeneity of intervention participants and control participants
- <u>Stepped wedge cluster randomization</u> . . .

DECIDE-LVAD Trial

Figure 5. Stepped wedge randomization scheme.

Site	Pre 4 months	Phase 1 4 months	Phase 2 4 months	Phase 3 4 months	Phase 4 4 months	Post 4 months
Coordinating Site						
2 Random Sites						
2 Random Sites						
1 Random Site						
Control	Period		Roll-Out		Interventi	on Period

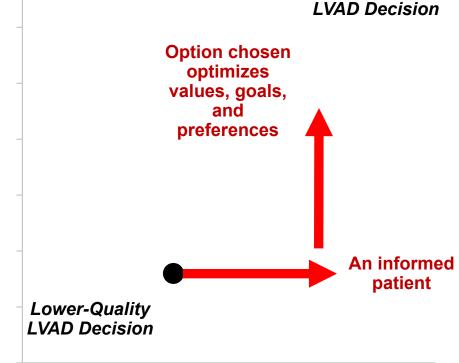
Evaluation Framework

• <u>R</u>each:

% eligible patients and caregivers

• <u>E</u>ffectiveness

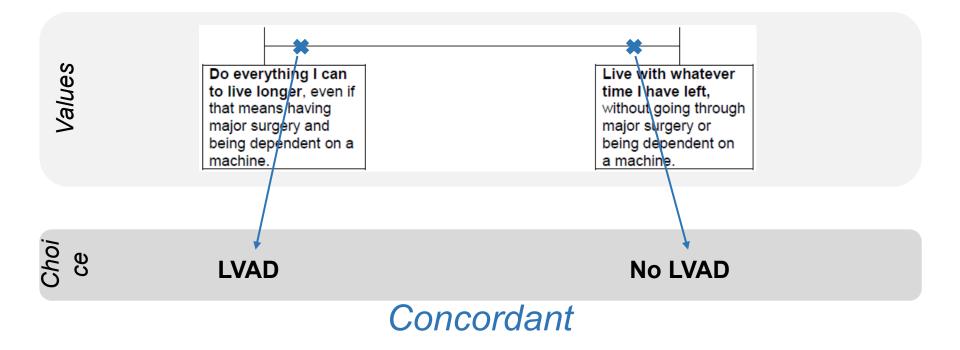
- Increased knowledge
- Value-treatment concordance
- <u>A</u>doption
 - Taken up by key personnel
- <u>Implementation</u>
 - Consistently used
- <u>Maintenance</u>
 - Continued use after trial completion

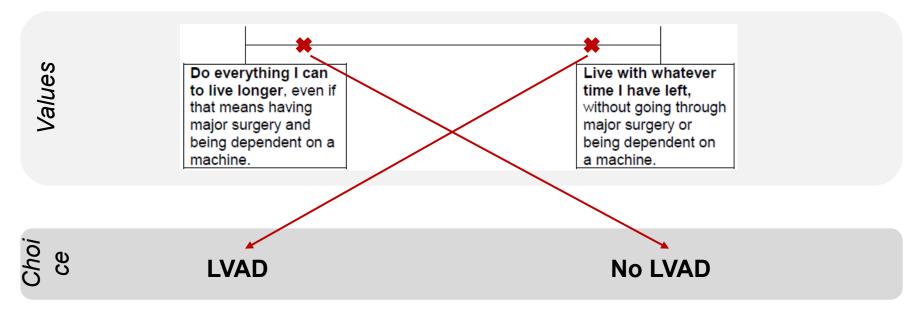

Implementation Intervention

- <u>Pre-implementation</u>:
 - Planning, identifying key people
- Implementation visit
 - 1 hour: Grand rounds presentation (large audience)
 - 1 hour: Communication Training (heart failure team)
 - 1 hour: Discuss new process
 - Already a delivery process "plug and play"
- <u>Post-implementation</u>
 - Ongoing site support
 - Follow-up visit

Primary Outcome: DECISION QUALITY

"The extent to which medical decision making reflects the considered preferences of a well-informed patient."




Higher-Quality

Knowledge

Values-Choice Concordance

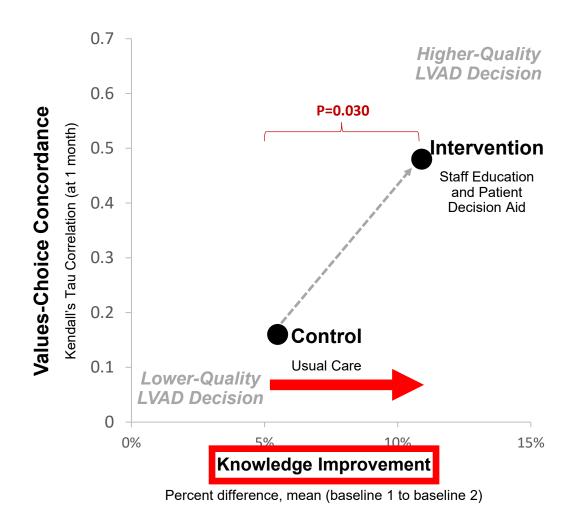
Values-Choice Concordance

Discordant

Participants

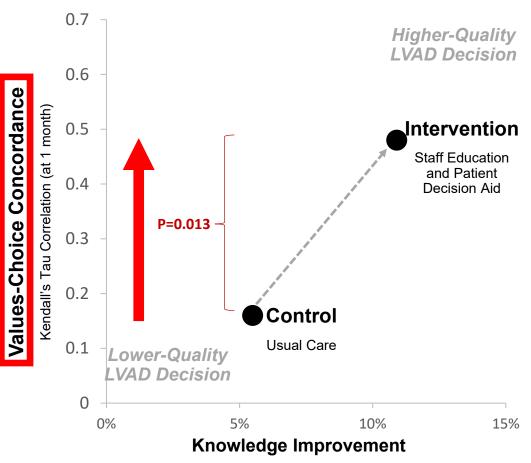
248 patients enrolled (from n=385 eligible; power/planned n=168)

• Enrolled patients more likely to be white non-Hispanic than non-enrolled (75% vs. 64%)

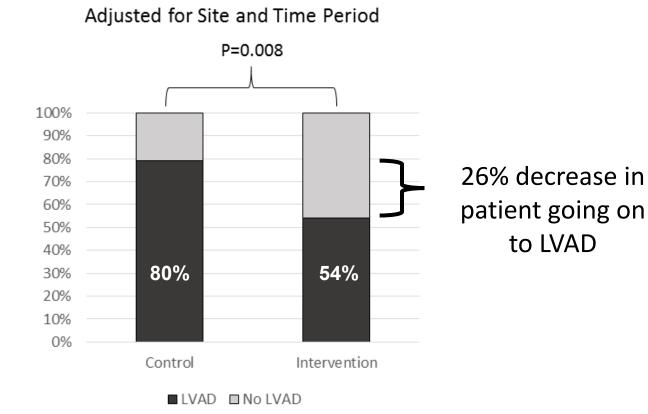

	Control (n=135)	Intervention (n=113)
Age, mean years (SD)	63.5 (9.7)	63.2 (10.2)
Male	82.2%	86.7%
White, non-Hispanic	79.1%	82.7%
Some college or more	56.4%	69.2%
On Disability	27.6%	32.0%
Married	72.5%	65.4%
Diagnosed < 2 years	11.9%	12.4%
Enrolled in ICU	21.5%	26.5%
INTERMACS 4-7 (<i>p<0.01</i>)	18.3%	44.6%

Intervention Delivery

- Training
 - All sites participated: 31-72 staff per site
- Patient decision aid exposure
 - 88% received pamphlet decision aid
 - 92% received video decision aid
- "Educational materials" felt to be biased in favor of LVAD
 - 54% of control patients
 - 43% of intervention patients (p=0.13)


Knowledge

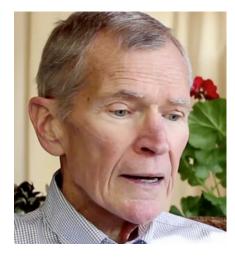
- Control: 59.5%→64.9%
- Intervention: $59.1\% \rightarrow 70.0\%$
- Adjusted difference of difference: 5.5%

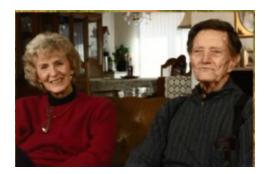

Values-Choice Concordance

- Control: 0.17 correlation coefficient
- Intervention: 0.48 correlation coefficient
- Adjusted difference of difference: 0.28

Percent difference, mean (baseline 1 to baseline 2)

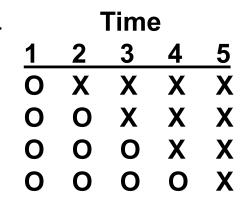
Secondary Outcomes: 6-month implant


Thank You



- Core Team:
 - Bryan Wallace
 - Jocelyn Thompson
 - Channing Tate
 - Colleen Mcllvennan
 - Carmen Lewis
 - Jean Kutner
 - Russ Glasgow
 - Amy Jenkins
 - Pilar Ingle
 - Gracie Finnigan-Fox
 - Diane Fairclough
 - Erin Chaussee
 - Larry Allen

daniel.matlock@ucdenver.edu www.patientdecisionaid.org


Stepped Wedge Cluster Randomized Trials

Diane L Fairclough, DrPH Erin Leister Chaussee, MS

Pragmatic Research Conference June 5, 2019

The stepped wedge design

- Quasi-experimental design
 - Hybrid of cluster randomized and cross-over
 - Crossover is unidirectional (O => X)
 - Time of crossover is randomized

- Two versions
 - Cross sectional enrollment of individuals is continuous, time of enrollment determines treatment
 - Cohort individuals enrolled at beginning; crossover from O to X occurs within individual

Reasons for choosing the SW Design

- Evaluate the "effectiveness" or the implementation of an intervention previously shown to be efficacious in an individually randomized trial or in a different setting; systematically evaluate new program
 - Effectiveness all sites participate in the intervention, can continue past end of study
 - Implementation able to study the implementation more carefully as that is spread out over time

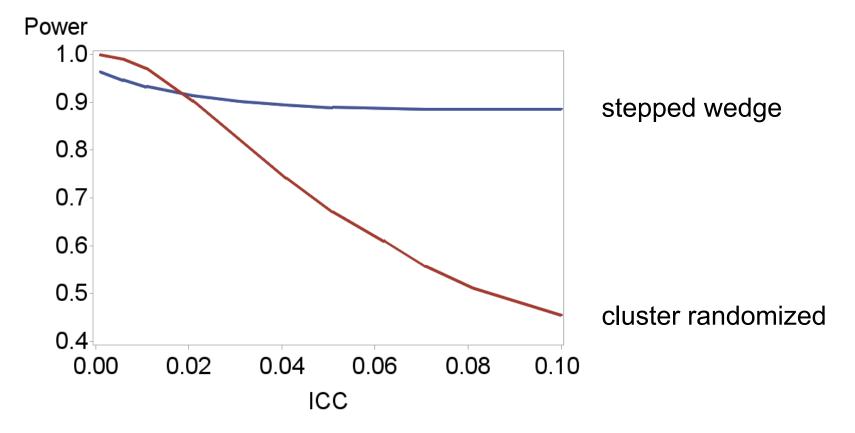
Reasons for choosing the SW Design

- Efficiency: Units act as their own control, so fewer units needed (same as cross-over design) => Smaller sample size than cluster randomized design when ICC is large (will define later)
- Logistical or financial cannot introduce the intervention in all units at once; need to study implementation
- Recruitment of sites (more willing to participate)

Statistical Model

Model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + X_{ij}\theta + e_{ijk}$$


Hussey & Hughes, *Contemp Clin Trials* 2007

 $\begin{array}{ll} \theta & \text{treatment effect} \\ \beta_j & \text{time effects (constant across cluster)} \\ \alpha_i \sim N(0, \tau^2) & \text{between cluster variation} \\ e_{ijk} \sim N(0, \sigma^2) & \text{within cluster variation} \end{array}$

Key issue determining the power/sample size in a CRT: ICC: Corr($Y_{ijk}, Y_{ij'k'}$) = $\tau^2/(\tau^2 + \sigma^2) \neq 0$

Power – SW vs CRT

6 sites, 6 STEPS, 70 subjects per site, ES=0.5 SD, alpha=0.05

Key Considerations

- What is the primary aim of the study?
 - Demonstration of efficacy
 - Demonstration of effectiveness in practice
 - Assessment of implementation
- What is the unit of randomization?
 - Individual
 - Practice, Clinic, Region
- How/to whom is the intervention delivered?
- How/on whom is the outcome measured?

Example: DECIDE

- Primary aim of the study?
 - Effectiveness and Implementation
- Unit of randomization?
 - Clinic/Site
- How/to whom is the intervention delivered?
 - Patient/single encounter
- How/on whom is the outcome measured?
 - Patient/Caregiver
 - Interview/Questionnaire: Pre and Post (1 week, 1 month, 6 months)
 - Contamination of Control unlikely after transition to Intervention

Challenges - Administrative

- Starting and Ending Accrual and Follow-up at the same time in all sites
 - Coordinating IRBs and subcontracts
 - Commitment of all sites to complete the study
- Steady recruitment that is consistent with respect to patient characteristics (no selection bias)
 - Very large or renewing pool of participants
 - Avoid selection based on visits (sicker patients have more visits)
 - Change in eligible subjects due to intervention
- Limiting to settings where site specific temporal changes are unlikely

Example: DECIDE

	Enrollment/Time Period					<u>Total</u>	
Site	1	2	3	4	5	Cntrl	Invtn
1	13	8	12	7	1	13	28
2	5	6	4	3	4	11	11
3	4	9	16	15	11	13	42
4	10	7	8	7	4	25	11
5	8	8	12	5	2	28	7
6	18	11	6	10	14	45	14
Total	58	49	58	47	36	135 (54%)	113 (46%)
Outpatient	16%	14%	29%	30%	31%	17%	31%
Dx > 4 yrs (%)	82%	84%	65%	75%	68%	77%	64%

Challenges

- Avoiding contamination between the control and intervention phases: extended interventions, extended follow-up
- Training to achieve full effect of intervention

	Time Period									
Treatment sequence	Site	1	2	3	4	5	6			
1	1 Site	С	WR	I.	I.	I.	I.		Кеу	
2	2 Sites	С	С	WR	I.	I.	I.	С	Control	
3	2 Sites	С	С	С	WR	I.	I.	WR	Washout/Rollout	
4	1 Site	С	С	С	С	WR	I	I	Intervention	

N.B. Incomplete designs will dramatically impact the power

Analysis Models

- GLMM
 - Unit of obs = Individual
 - Distributions Normal, Binomial, Poisson, Cox
 - Hussey and Hughes
 - $f(Yijk) = \mu + \alpha_i + \beta_j + X_{ij}\theta + \varepsilon_{ijk}$
 - Variations (Hemming (2017) Trials:
 - Add covariates
 - Repeated measures within individual
 - Treatment effect varies with time since intervention started
 - Cluster x Time, Cluster x Treatment, Treatment x Time
 - Fixed effects for clusters => GLM

Analysis Models

- Linear Mixed Model
 - Unit of obs=Summary Data for each cluster at each time period

- GEE models
 - Outcome generally binomial
 - Specify the working covariance structure (e.g. exchangeable)

Summary – To SW or Not?

- Recent discussions
 - deHoop (2015) BMC Med Res Method
 - Hargreaves (2015) Trials
 - Hemming (2015) BMJ
 - Taljaard (2016) Clinical Trials
 - Fairclough (????)

Checklist: Feasibility of SW Design (1)

- □ Is it feasible to start enrollment at all the sites at the same time?
- Are all the sites likely to complete the study (e.g. site dropout is unlikely)?
- □Are all sites committed to similar levels of accrual during both control and intervention phases of the trial?
- □ Is the pool of potential participants large enough (or continually renewing) to avoid biased selection over time?

Checklist: Feasibility of SW Design (2)

- □ Is the duration of the intervention short enough to avoid contamination during the cross-over phase of the trial or is it feasible to insert a wash-out periods between the control and the intervention phases?
- □ Is the duration of follow-up of participants short enough to avoid contamination or is contamination unlikely during follow-up?
- Are there events or changes in policy that might result in time trends that are likely to occur in some sites but not all sites?

Stepped Wedge Power and Sample Size

- Depends on ...
 - strength of treatment effect
 - number of clusters (more better, balanced by logistics)
 - number of steps, <u>number of clusters per step</u>
 - number participants per cluster per step
 - variance components: σ^2 (easy to know), τ^2 (hard to know)
 - design variations, ex: incomplete designs
 - variability of cluster sizes and enrollment numbers over time

- SW vs CRT
 - SW more efficient (fewer clusters, fewer total participants) than CRT at larger ICCs
- Risks for studies with small number of clusters
 - Taljaard (2016) Clinical trials
 - Limited generalizability, limited options for analysis
 - Increased sensitivity of power calculations to the assumptions
 - Increased risk of Type I and Type II error
 - Barker (2017) Trials
 - Recommendations for minimum number of SW clusters for fixed number of time periods Type I errors, model fit and convergence
 - Other thoughts
 - Increased sensitivity to performance of an individual site
 - Increased sensitivity to unmeasured confounders (vs indiv rand)

Optimal SW power: each cluster rolls over at its own time period (HH)

			Т	ime			
#	1	2	3	4	5	6	7
1	0	Χ	Χ	Χ	Χ	Χ	Χ
1	0	0	Χ	Χ	Χ	Χ	Χ
1	0	0	0	Χ	Χ	Χ	Χ
1	0	0	0	0	Χ	Χ	Χ
1	0	0	0	0	0	Χ	Χ
1	0	0	0	0	0	0	Χ

4
Χ
Χ
Χ

For a fixed number of time periods, optimal power when max number of clusters are first and last to transition (Lawrie et al)

		Ti	me					Ti	ime		
#	1	2	3	4	5	<u>#</u>	1	2	3	4	5
3	0	Χ	Χ	Χ	Χ	2	0	Χ	Χ	Χ	Χ
1	0	0	Χ	Χ	Χ	2	Ο	0	Χ	Χ	Χ
1	0	0	0	Χ	Χ	2	0	0	0	Χ	Χ
3	0	0	0	0	Χ	2	0	0	0	0	Χ

Designs with a transition/washout period: depending on number of unique treatment sequences, can have substantially less power than a standard "complete" SW design

		Time	ļ	
#	1	2	3	4
1	0	Χ	Χ	Χ
1	0	0	Χ	Χ
1	0	0	0	Χ

Time									
#	1	2	3	4	5				
1	0		Χ	Χ	Χ				
1	Ο	0		Χ	Χ				
1	0	0	Ο		Χ				

Hybrid designs – could get additional power if able to "nest" a SW within a CRT (Thompson et al)

Time								
#	1	2	3	4				
1	Χ	Χ	Χ	Χ				
1	Χ	Χ	Χ	Χ				
1	Ο	Χ	Χ	Χ				
1	0	0	Χ	Χ				
1	0	0	0	Χ				
1	0	0	0	0				
1	0	0	0	0				

SW Power: Incomplete Designs

		Time					Tin	ne		
#	1	2	3	4	<u>#</u>	1	2	3	4	5
1	0	Χ	Χ	X	1	0	WR	Χ	Χ	Χ
1	0	Ο	Χ	Χ	1	0	Ο	WR	Χ	Χ
1	0	0	0	Χ	1	0	0	0	WR	Χ

Scenario	Total N	O or X N/cell	WR N/cell	*Power		
Complete	840	20	NA	0.80		
Incomplete	840	20	0	0.66		
Partial	840	18	14	0.77		
Incomplete	1176	28	0	0.79		
*6 sites, 6 steps, alpha=0.05, ICC=0.1						

SW Power/Sample Size Tools

Application	Notes	
R:swCRTdesign	 Hughes J <u>http://faculty.washington.edu/jphughes/pubs.html</u> SW design, including variants such as fractional treatment indicator and incomplete designs 	
R:SWSamp	 Baio et al. Trials 2015 Both HH and simulation based power methods Flexible in terms of outcome distribution 	
R-Shiny: https://clusterrcts.shi nyapps.io/rshinyapp/	 Hemming K, Kasza J, with input from Hughes J CRT, SW, SW design variants, inflation factor for variable cluster sizes 	
Stata: steppedwedge	 Hemming & Girling. Stata J 2014 CRT, SW, some of the SW design variants 	
PASS (version 15+)	Tests of two proportions, means, or Poisson rates	

References

- 1) Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemporary Clinical Trials 2007
- 2) Hemming et al. The stepped wedge cluster randomized trial: rationale, design, analysis, and reporting. BMJ 2015
- 3) Taljaard et al. Substantial risks associated with few clusters in cluster randomized and stepped wedge designs. Clinical Trials 2016
- 4) Hemming K, Taljaard M. Sample size calculations for stepped wedge and cluster randomized trials: a unified approach. J Clin Epi 2016
- 5) Barker et al. Minimum number of clusters and comparison of analysis methods for cross sectional stepped wedge cluster randomized trials with binary outcomes: a simulation study. Trials 2017
- 6) De Hoop et al. The need to balance merits and limitations from different disciplines when considering the stepped wedge cluster randomized trial design. BMC Med Res Method 2015.
- 7) Hargreaves et al. Five questions to consider before conducting a stepped wedge trial. Trials 2015.
- 8) Hemming et al. Analysis of cluster randomized stepped wedge trials with repeated cross-sectional samples. Trials 2017.
- 9) Lawrie et al. Optimal stepped wedge designs. Stat and Prob Letters 2015.
- 10)Thompson et al. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs. Clinical Trials 2016.