Breandan Sullivan MD Assistant Professor University of Colorado Department of Anesthesiology and Critical <u>Care Medicine</u>

Left Ventricular Systolic Function

Disclosures

■ I have no financial disclosures

Goals

- Clinical case
- LV systolic Function
- Cardiac Output monitoring

Confusing Case

- 36 y/o female
- CC: Severe lactic acidosis
- Transferred from Wyoming community hospital
- PMH:
 - open gastric bypass 6 years ago
 - Initially lost weight
 - Then subsequent complications
 - Chronic pain (abdominal/headaches)

Confusing Case

- Referring Hospital course
- Admitted for severe abdominal pain with weight loss
- Severe Headaches
- CT scan of abdomen on admission unremarkable
- Abdominal pain progressed after two days of PCA analgesia
- Lactic acid 8

Confusing Case

- General Surgeon suspects dead bowel
- Emergent Ex-lap:
- Bowel Pink and viable
- Aggressive Goal directed therapy
- Fascia Left open
 - Difficult to close the belly
 - Surgeon concerned for abdominal hypertension
 - Transferred to SICU at CU Denver

Confusing case

- Intubated, Awake
- On Norepinephrine o.6mcg/kg/min
- Vasopressin o.o4 units/min
- MAP 45
- CVP 18 (femoral venous line)
- Open Abdomen
 - PEEP 10
- WBC o.8
- Anuric

Looks like sepsis

- Start the fluids...
- Or could we get more information first
- Echo tech wont get to the ICU for another two hours, cardiology fellow can get there...
- Anybody want to put a TEE in this patient?
 - Gastric Bypass with unknown anatomy?

Bedside Echo

- Immediate information
- Repeated study
- What is the risk of study to patient
- Misinterpreting data

Diagnosis?

- Stress induced (Takotsubo) cardiomyopathy
- Treatment for this patient
 - Supportive care
 - Beta blockers
 - Not inotropic medications
 - Mechanical Support
 - IABP vs Percutaneous VAD (Impella, Tandem Heart)

Difficult/Impossible to diagnose

- Without echocardiography
 - Systolic anterior motion
 - Stress induced cardiomyopathy
 - Acute Right heart dysfunction
 - Depressed LV systolic function

Old and new devices...

- PA catheters?
- Non-invasive cardiac output
 - LIDCO
 - PICO
 - FLOTRAC
 - ESOPHAGEAL DOPPLER

Filling Pressures

- Can be misleading
- Do not tell you:
 - Blood volume
 - Cardiac Function
 - Valve dysfunction
 - Fluid responsiveness

Qualitative assessment of LV function

- Quick exam with high yield material
- If you have good windows you should be able to:
 - Quickly assess:
 - Fluids vs. Inotropes
- If you cannot see anything there was no harm done

Who do I echo in the ICU?

- Everyone and anyone I can
- What do I look at:
 - Left Ventricular systolic function
 - Right Ventricular systolic function
 - Assess Valves for major pathology
 - Aortic
 - Mitral
 - Tricuspid
 - Pulmonic

Melamed R et al "Assessment of Left Ventricular Function by Intensivists Usind Hand-Held Echocardiography" Chest 2009 Feb 18

- 2hrs of lectures
- 4 hours hands on
- Global assessment
 - Normal
 - Mild to moderately decreased
 - Severely decreased
- 82% of the time intensivist assessment matched board formal TTE

Left Ventricular function

- Preload
 - Volume status
 - Restrictive valves (tricuspid/mitral)
 - Large pericardial effusion
- Afterload
 - Restrictive valves (pulmonic/aortic/aortic dissection)
 - Systolic Anterior motion of mitral valve
- Contractility
 - Qualitative assessment
 - Would this patient benefit from inotropes

Add Clinical meaning...

- Figure out what normal looks like...
- Point of care Echo
 - Needs a clinical context

Left Ventricular Systolic function

- First View
 - Parasternal Long Axis
 - Patient Laying flat or tilted on their left side
 - Probe is placed to the left of the sternum
 - Start at the 2nd interspace and then slide to 4thor fifth intercostal space
 - Indicator is pointed to the right shoulder at 9 or 10 o'clock

Left Ventricular Systolic function

- Global function
- Focused valve pathology
 - Calcifications
 - Obvious regurgitant jets

Parasternal Long Axis w.w.fate-protocol.com Focus Ssessed Trans Scanning through position 1-4 in Basic FAT Point right (patient's left)

Parasternal Long axis

- Aortic valve pathology
 - Calcifications
 - Opening and closing
 - Color flow
 - Aortic regurgitation
 - Aortic stenosis
- Left ventricular outflow tract diameter
 - Save this number and use it later

Parasternal Long Axis

- Mitral Valve
 - Opening, closing
 - Degree of opening in early diastole
 - Regurgitation
 - Outflow tract obstruction in systole
 - Systolic Anterior Motion (SAM)
 - With mitral regurgitation and septal hypertrophy

Parasternal Long Axis

- Pericardial effusion
- Remember Tamponade in some situations
 - Clinical diagnosis
 - Not always an echo diagnosis
 - Trauma
 - Post Cardiac surgery

Parasternal Short Axis

- Patient supine
- Probe is rotated the indicator is pointed towards the left shoulder
- By tilting the probe cephalad or caudad you will image the base or apex of the LV

regionmidtjylland midt thoracic Echo (FATE) the most favourable sequence E views Point right of (patient's left back) RV

Parasternal Short Axis

- Contractility of the LV
- Regional wall motion abnormalities
- Movement of the septum
 - D shaped septum
 - In systole= pressure overload
 - In diastole= volume overload

Parasternal Long Axis

- Volume status
- At the midpapillary level
 - Kissing Papillary muscles
 - Low Blood pressure
 - Volume challenge

Apical four chamber

- Best view patient should be propped up on their left side
- Feel for the patients PMI
- Place the probe indicator pointed to the right shoulder

Apical four chamber

- Contractility
- Movement of the septum
- Volume status
- Mitral and Aortic valve
- Pulse wave Doppler with the gate in the LVOT

Apical four chamber

- Cardiac output= Stroke volume x heart rate
- Stroke Volume= cross sectional area LVOT x velocity time integral
- CSA= π {(LVOT diameter)/2}²

Apical Four Chamber

- Easy to repeat in response to fluid challenges
- Want to make sure you are increasing cardiac output
- Cardiac Index increase by 15% = volume responsive

Summary

- Rapid bedside TTE in the ICU
- Assess LV systolic function
- Assess
 - Preload
 - Afterload
 - Contractility

Summary

- Simple repeated Cardiac output measurement
- LVOT diameter in Parasternal LAX
 - PW doppler LVOT
 - VTI

Thanks		