Bleeding Is Not The Only Complication
What Other Minefields are Out There?

DANIEL JANIK, MD
ASSOCIATE PROFESSOR
UNIVERSITY OF COLORADO
SCHOOL OF MEDICINE

Degenerative Disease of the Spine May Place Patients at Risk in Absence of Instability

Positioning is Important!
Where Are The Potential Risks?

DISCLOSURE
I HAVE NO COMMERCIAL OR OTHER CONFLICTS OF INTEREST

Degenerative Disease of the Spine May Place Patients at Risk in Absence of Instability

A Closed Claims Search
- All general anesthesia claims from 1970-2007
- Cervical injury claims = 48 (1%)
- 69% were permanent and disabling compared to 19% for other general anesthesia claims
- 73% were male
- Cord injuries (n=37) were most severe and resulted in quadriplegia
- Cord injuries often occurred in absence of trauma (61%) or instability (76%)

Anesthesiology 114:782-795, 2011

Janik, Daniel, MD

Cervical Spinal Cord, Root, and Bony Spine Injuries
A Closed Claims Analysis

- Braden S. Hildenbrand, MD; John P. Pasciak, MD; Karen L. Parrot, MD, F.A.C.A.
- William C. Trostle, MD; John T. Heuer, MD; B.T.; John B. Sports, MD; John Truex, MD; Michael W. Todd, M.D.; Karen G. Gomes, M.D.; and Michael J. Harter, M.D.;
Contributors to Cord Injury

- Anatomic abnormalities – 81%
- Direct surgical complications – 24%
 - Preprocedure cord injury – 19%
 - Intraoperative head/neck position – 19%
 - Airway management – 11%
- Another interesting finding – 24% occurred in patients in the sitting position!

Cervical Spondylosis

- 20-30% of patients age 40 have disc dessication, disc herniation, narrow intervertebral spaces
- 10-30% of patients age 60 have evidence of root or cord compression
 - Advanced cervical spondylosis can lead to canal stenosis and cord compression with myelopathy
 - Severe cervical stenosis can be asymptomatic with no clinical signs
- A chronically compressed cord has limited physiologic reserves and may be more prone to ischemia

What About Head Position?

- Of those claims where head position was judged to be contributory to injury, records showed the patient was:
 - In marked extension
 - Extension was possible
 - Or in extreme hyperextension

Spondylotic Compression Can Increase With Neck Flexion or Especially Extension

- Shedd D and Benzel EC, Neurosurgery 60:S7-13, 2007

Can Neurophysiologic Monitoring Help?

- 75 patients with severe cervical myelopathy
 - 10 had TcMEPs, 2 lost SSEPs as well
 - 4 were repositioned with return of responses and no sequelae
 - 1 did not and suffered tetraparesia post-op which did recover after 2 weeks of rehab

Clinical Neurophysiology 126 (2015)
A Wee Bit of Trouble?

Take-away Message From This Study
- Degenerative changes which may put cervical spinal cord at risk for injury are common and may be clinically silent
- These changes limit the physiologic reserve of the cervical spinal cord
- Events under our control (positioning of the head, blood pressure, airway management) can have significant impact on patient outcome
- Beach chair position merits close attention (both head position and blood pressure)

Another Take-Home Message

“We can take some comfort (though how much comfort is unclear) that contemporary anesthesiologists’ efforts to avoid injury during laryngoscopy and endotracheal tube placement are paying off. However, we should be disturbed that there are other groups of hitherto unrecognized patients who are becoming injured, and for reasons that are not readily apparent.”

C3-T4 Scoliosis Correction
Median Nerve SSEP Stacks Left & Right

C3-T4 Scoliosis Correction
Left Transcranial Electric MEPs

C3-T4 Scoliosis Correction
Right Transcranial Electric MEPs

C3-T4 Scoliosis Correction

What has happened?
Is this an anatomic, physiologic, or technical problem?
Where do you think the problem is?
What would you do to investigate?
Would you make any change in your management?

Arm wraps with Arms Tucked at Side

Most common: Brachial, radial, median, ulnar
Radial nerve palsy of the upper arm
Axillary Roll
Supports the thorax, protects brachial plexus from compression
Should be placed caudal to the axilla, on the rib cage
Arm holder, or pillow placed between the two arms
Prone

- Most common: ulnar, radial and median
- Brachial plexus can be compressed against the second rib secondary to force on the clavicle
- Upper limb should maintain a small degree of anterior flexion, and then abucted and externally rotated to less than 90 degrees
- Ensure chest support does not impinge the axilla
- Forearm pronated and supports/pads should be placed to prevent the indirect compression of the ulnar nerve or axial pressure from the humerus.
- Head and neck neutral

Recurrent Laryngeal Nerve Injury Following Anterior Cervical Spine Surgery

- Occurs in 0.2 – 24.2% of cases; may be subclinical
 - Fountas; Spine 2007
- Permanent hoarseness 2-4%
 - Jung; J Neurosurg Spine 2005
- Symptoms include:
 - Hoarseness
 - Dysphonia
 - Dysphagia
 - Vocal fatigue
 - Persistent cough
 - Aspiration
 - If injury bilateral will cause airway obstruction requiring tracheostomy
 - Fountas; Spine 2007

Recurrent Laryngeal Nerve Injury Following Anterior Cervical Spine Surgery

- Surgical approach side has no impact on incidence
 - Kilburg; J Neurosurg Spine 2006
- 80% or more will recover in 12 months
 - Morpeth; Laryngoscope 2000
- Proposed mechanisms:
 - Surgical trauma
 - Nerve division or ligature
 - Pressure or stretch-induced neuropraxia
- Postoperative edema
 - Kriskovich; The Laryngoscope 2000
- Most common cause reported to be retractor displacement of the larynx against shaft of ETT with pressure on intralaryngeal segment of RLN
 - Kriskovich; The Laryngoscope 2000
- Conflicting studies whether deflation/reinflation of ETT cuff lowers incidence
 - Apfelbaum; Spine 2000
 - Audu; Anesthesiology 2006
- Found increased pharyngeal EMG activity on retractor insertion; correlated intubation time and ETT cuff pressure with post-op dysphonia and odynophagia
 - Jellish; J Neurosurg 1999

Do Your Surgeons Monitor Recurrent Laryngeal Nerve EMG?

RLN risk during anterior cervical spine procedures

Recurrent Laryngeal Nerve Injury Following Anterior Cervical Spine Surgery

Bleeding is Not the Only Complication

Janik, Daniel, MD
537 lumbar decompression surgeries with or without fusion
- 317 (60%) nonsmokers
- 220 (41%) smokers
- Smoking history rounded to nearest 0.5 packs per day
- Smoking 1 PPD associated with 328 mL more operative blood loss ($p<0.001$)
- Relationship is linear
- Smoking associated with increased use of transfusion after surgery each PPD ($OR 13.8$)
Post-operative Visual Loss
Shen Y and Roth S, Anesthesiology 2008; 109: A1013
- Retrospective study using National Inpatient Sample from 1996 to 2005
- Rates of visual loss:
 - Spinal fusion – 1:3364 (0.029%)
 - Laminectomy – 1:11,453 (0.0087%)
 - Appendectomy – 1:78705 (0.0012%)
- Spinal fusion with visual loss:
 - 57% lumbar/lumbosacral
 - 35% thoracic/thoracolumbar
 - 8% cervical

Most Common Causes
- Ischemic Optic Neuropathy (ION)
- Central Retinal Artery Occlusion (CRAO)
- Cortical Blindness
- Central Retinal Vein Occlusion

Central Retinal Artery Occlusion
- Usually caused by compression of the eye leading to increased intraocular pressure with resultant decrease or cessation of flow in the central retinal artery
- End result is retinal ischemia due to lack of oxygen delivery

Cortical Blindness
- Caused by damage to the optic radiation or occipital cortex (resulting in infarction) from:
 - Embolism (particulate or air)
 - Sustained hypotension
 - Cardiac arrest
- Presentation:
 - Painless loss of vision, pattern depends on area affected

Ischemic Optic Neuropathy
- Anterior ischemic optic neuropathy (AION)
 - Non-arteritic (more common perioperative type)
 - Arteritic
- Posterior ischemic optic neuropathy (PION)
Anterior Ischemic Optic Neuropathy

- Caused by transient decrease in perfusion pressure of the nutrient vessels of the anterior optic nerve below autoregulatory range
- Decreased mean arterial pressure
- Increased intraocular pressure
- Both
- Injury depends on severity and duration of transient ischemia

Posterior Ischemic Optic Neuropathy

- Caused by decreased oxygen delivery to posterior portion of optic nerve (between optic foramen and where central retinal artery enters nerve)
- Nerve only fed by pial vessels which are sensitive to compression
- Not usually associated with occlusive vascular disease
- More likely to be associated with emboli than AION

Post-operative Visual Loss

- Anatomic Considerations
 - Blood supply to optic nerve is vulnerable
 - Known variability in blood supply
 - Atypical anatomic patterns
 - Poor watershed perfusion zones
 - Abnormal autoregulation
 - Optimal range of hematocrit and blood pressure for adequate O₂ delivery to optic nerve unknown (particularly in presence of venous congestion in prone position)

Interesting Points:

- Most patients with CRAO had evidence of ocular trauma and unilateral vision loss which suggests positioning may be at fault
- Most patients with ION had bilateral visual loss indicating systemic or patient-specific factors may play role

Summary of Suggested Risk Factors

- Hypertension
- Diabetes
- Smoking
- Atherosclerosis
- Male gender
- Middle age
- Spine surgery
- Head and neck surgery
- Cardiac surgery
- Hyperlipidemia
- Intraoperative hypotension
- Intraoperative anemia
- Large blood loss
- Large fluid resuscitation
- Facial edema
- Prone position – head down
- Prolonged surgical time
- Eye trauma
- Vasopressors

Post-operative Visual Loss

But
Proposed Theories of Origin of Ischemic Optic Neuropathy

- Etiology of ION may be influenced more by intraoperative physiologic perturbations than pre-existing disease states.
- Higher proportion of men to women (69%) suggests protective effect of estrogen.
- Acute venous congestion of optic canal suggested by risk factors: Obesity, Wilson frame, long duration, EBL, % colloid (and cases of ION occurring in neck dissections and robotic prostatectomies).
- Role of systemic inflammatory response?
Post-operative Visual Loss: Strategies for Prevention

- Properly pad and protect the eyes from compression

Is Staging Safer Than A Single Surgery?

- Occlusive dressing over eyes to prevent entry of surgical prep solutions
- Stage long procedures into two or more short procedures

BUT

Updated ASA Practice Advisory on POVL

- Effective hypotension not been shown to be associated with ION
- Colloids should be used along with crystalloids
- No documented hemoglobin level associated with development of ION
- Insufficient evidence to provide guidance on use of α-adrenergic agents
- High-risk patients should be positioned so head is level with or above heart and head in neutral forward position
- Consider staging procedures in high risk patients

Continous Strategies

- Avoid the use of N₂O:
 - N₂O will ↑ plasma homocysteine by disrupting folate/B6/B12 metabolism; high homocysteine correlated with enhanced inflammation, diabetic neuropathy, and CRAO/CRVO
- Kempen PM Anesthesiology 2012; 117: 431-2
- Restrict crystalloid to 40 ml/kg total for spine case:
 - Based on findings that total volume of resuscitation, total non-blood replacement, and lower use of colloid were risk factors
- Larson CP Anesthesiology 2012; 117: 433-4

Proper positioning of ProneView™ Pillow
Can we prevent post-operative vision loss?

MAYBE,

But there is still a lot we do not know!

Would you lower a patient’s blood pressure to help control bleeding? And, if so, how low would you be willing to go?

Potential Complications
- Delayed awakening
- Blurred vision
- Delayed hemorrhage
- Increased lung dead space
- Increased shunt fraction
- Decreased renal blood flow with oliguria or anuria
- Cerebral thrombosis
- Cerebral or cerebellar infarction
- Spinal cord infarction
- Retinal thrombosis
- Ischemic optic neuropathy

Potential Uses
- Prostate surgery
- Orthognathic surgery
- Spine surgery
- Total hip arthroplasty
- Shoulder surgery
- Head and neck surgery
- Intracranial procedures (aneurysm clipping)

Deliberate Hypotension
- Classic definition:
 - A reduction in systolic blood pressure to 80-90 mmHg, or a decrease in MABP to 50 to 65 mmHg in normotensive patients.
 - Almost all guidelines were developed for healthy, young patients.

Efficacy in Orthopedic Procedures
- Subgroup analysis showed reduction in blood loss for:
 - Total hip arthroplasty – 503 mL
 - Spine fusion – 318 mL
 - Orthognathic surgery – 147 mL
- Clinical significance depends on patient co-morbidities and surgical procedure.
Review Article – Recommendations in Spine Surgery

- Contraindication: altered baseline autoregulatory mechanisms or vulnerability to ischemic complications
- Maintain SBP 20-30% below baseline values (80-90 mmHg) in normal patients
- Close monitoring of end-organ function
- Hypotension should be abandoned in presence of changes in nerve conduction studies (SSEP, MEP), EKG changes, decreased urine output, severe anemia (Hct < 20%), or tissue acidosis

Dutton RP. Eur Spine J (Supp) 13:S66-S71, 2004

Use of Deliberate Hypotension

- Selective use still advocated by some
- Proper patient selection
- Paired with procedures with proven efficacy
- Intense monitoring of end-organ perfusion
- Balance risks with benefits
- Maintain decreased MABP only as long as necessary
- Remember – the lower limit of cerebral autoregulation is higher than previously taught

In Conclusion

- Deliberate hypotension is considered an acceptable strategy to use to manage operative blood loss
- Careful patient selection is necessary to minimize risk
- It has been shown to significantly reduce blood loss and transfusion requirements in certain cases
- The lowest acceptable MABP must be individualized for each patient based on presence/absence of comorbidities and surgical position
- Close monitoring of end-organ perfusion is essential
- Maintain hypotension for as brief as necessary

Does the ASA Provide Any Guidance?

"When appropriate, intraoperative or postoperative blood recovery and other means to decrease blood loss (e.g. deliberate hypotension) may be beneficial."
Post-operative Visual Loss
Roth S et al, Anesthesiology 1996; 85:1020-7

- Independent Risk Factors:
 - Length of surgery
 - Lateral positioning
 - Operations on head or neck
 - General anesthesia
 - Surgery on Monday

Post-operative Visual Loss
Warner ME, Anesthesia & Analgesia 2001; 93: 1417-21

- Possible factors:
 - Anemia
 - Hypotension
 - Surgical Duration
 - Combination

Post-operative Visual Loss
Nuttall GA et al, Anesthesia and Analgesia 2001; 93: 1410-6

- Study of 27,915 patients undergoing CPB
- 17 had ION; 0.06% (12 AION, 5 PION)
- Bivariate risk factors:
 - Low Hgb conc (<8.5 G/DL)
 - Atherosclerotic vascular disease
 - Pre-operative angiogram
- Univariate risk factors:
 - RBC transfusions (OR 1.3)
 - Any non-RBC product (OR 4.4)

Post-operative Visual Loss

- Highest incidence:
 - Surgery for scoliosis – 0.28%
 - Posterior-only approach – 0.29%
 - Anterior-only approach – 0.17%
- Risk factors for non-ION, non-CRAO loss:
 - Age<18 years: OR 5.8
 - Age>84 years: OR 3.2
 - Peripheral vascular disease: OR 2.0
 - Pre-existing hypertension: OR 1.3
 - Blood transfusion: OR 2.2

Post-operative Visual Loss

- Risk factors for ION:
 - Hypotension: OR 10.1
 - Peripheral vascular disease: OR 6.3
 - Anemia: OR 5.9

- Note – this study did not define hypotension or anemia

Post-operative Visual Loss
Shen Y and Roth S, Anesthesiology 2008; 109: A1013

- Spinal fusion with visual loss:
 - 83% posterior approach
 - Male vs. female similar
 - Younger
 - Similar co-morbidities to patients without loss

Total Patients=139

- Number of Factors
 - Posterior Approach
 - Anterior Approach

- Bleeding is Not the Only Complication
Anterior Ischemic Optic Neuropathy – Etiology
Williams EL. Anesthesiology Clin N Am 2002; 20:367-384

Predisposing Factors
- Variable blood supply (posterior ciliary arteries)
- Small optic disk size
- Aging
- Hypertension
- Smoking
- Diabetes mellitus
- Vascular disease

Precipitating Factors
- Acute systemic hypotension*
- Venous obstruction*
- Raised intraocular pressure
- Lowered hematocrit*
- Increased blood viscosity* (sickle cell; polycythemia)

Posterior Ischemic Optic Neuropathy – Etiology
Williams EL. Anesthesiology Clin N Am 2002; 20:367-384

Etiology

- Hypotension*
- Low Hemoglobin*
- Increased intraorbital venous pressure
- Infection
- Venous obstruction*
- Congenital absence of central retinal artery
- Internal carotid artery dissection