Video Assisted Thoracoscopic Surgery (VATS) and One Lung Anesthesia Management

Javier H. Campos, M.D.
Professor
Vice Chair for Clinical Affairs
Director of Cardiothoracic Anesthesia
Executive Medical Director of Operating Rooms
Department of Anesthesia

Disclosure

• Advisory board member of the ET View Medical, Ltd.
• Paid consultant ET View Medical, Ltd.

General Facts

• Each year in the US, 173,000 Americans are diagnosed with lung cancer
• 78,000 lobectomies and pneumonectomies are performed each year in the U.S.
• Approximately 5% are performed with video-assisted thoracoscopic surgery (VATS)
• Morbidity VATS (2-22%)
• Mortality VATS (0.5-2.0%)

Objectives

• Advantages
• Robotic assisted VATS
• Lung separation
• Ventilatory strategies
• Paravertebral blocks
• Outcomes
• Recommendations

Advantages of VATS

• Less pulmonary complications in pts with FEV₁ <60%
• Preserved postoperative pulmonary function
• Decreased blood loss
• Decreased pain
• Decreased inflammatory response
• Shorter length of stay

Thoracoscopic Lobectomy is Associated with Lower Morbidity Compared with Thoracotomy

<table>
<thead>
<tr>
<th>Complication</th>
<th>THOR (n=582)</th>
<th>VATS (n=697)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation (%)</td>
<td>85 (22)</td>
<td>111 (16) SS</td>
</tr>
<tr>
<td>Transfusion n (%)</td>
<td>46 (12)</td>
<td>34 (5) SS</td>
</tr>
<tr>
<td>Atelectasis n (%)</td>
<td>47 (12)</td>
<td>25 (4) SS</td>
</tr>
<tr>
<td>Pneumonia n (%)</td>
<td>55 (9)</td>
<td>29 (4) SS</td>
</tr>
<tr>
<td>Prolonged air leak n (%)</td>
<td>73 (19)</td>
<td>77 (11) SS</td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>5 (4-7)</td>
<td>4 (3-5) SS</td>
</tr>
<tr>
<td>Deaths</td>
<td>22 (6)</td>
<td>14 (2) SS</td>
</tr>
</tbody>
</table>

VATS and Morbidity and Mortality

<table>
<thead>
<tr>
<th>Author</th>
<th>n End Points</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>McKenna RJ, et al: Ann Thorac Surg 2006; 81:421-6</td>
<td>n=1100 cases Retrospective observation study</td>
<td>Morbidity and mortality Safety Mortality 15% Mortality 0.8%</td>
</tr>
<tr>
<td>Onaitis MW, et al: Ann Surg 2006; 244: 420-5</td>
<td>n=500 cases Prospective consecutive patients</td>
<td>Morbidity and mortality Safety efficacy Mortbility 20% Mortality 1.2%</td>
</tr>
</tbody>
</table>

Campos JH: Curr Opin Anaesthesiol 2010; 23:1–6

VATS: Robotic Surgery

<table>
<thead>
<tr>
<th>Author</th>
<th>n End Points</th>
<th>Outcome</th>
</tr>
</thead>
</table>

Campos, Javier, MD Video Assisted Thoracoscopic Surgery (VATS)
Limitations with Robotic Surgery

- Lengthy operations (surgical times > 8 hrs)
- Conversion to an open procedure
- Failure of the equipment
- Cost/effectiveness
- Minimal net revenue

Campos JH: Anaesthesia International 2011; 19-22

Points to Consider While Robotic Surgical System is in Use

- No changes in patients position on OR table once the robot has been docked
 Campos JH: Curr Opin Anaesthesiol 2010; 23:1-6
- Protection of pressure points (arms and legs)
- Avoidance of stretching the arms
- Attention to crushing injuries by robotic arms
 Campos JH: Minerva Anestesiol 2013; 79:1-6

Surgical Access for VATS or Robotic Surgery

VATS with a Single-Lumen Tube

- n= 376 pts. VATS
- n=208 pts. underwent biopsy of parietal pleura and talc pleurodesis
- All received single-lumen endotracheal tube
- Apneic period (prior opening chest)
- Tidal volume 150-250 ml

Lung Separation

- Double Lumen Tube
 - L-DLT
 - R-DLT
- Bronchial Blocker
 - Arndt, Cohen, Fuji, EZ Blocker
- Video thoracoscopic surgery (VATS)
- Difficult airways (oral or nasal intubation)
- Unique situations (tracheostomy pts)
- Selective lobar blockade

Campos JH: Cadaver Study with MDCT

Right-Sided Spherical Shaped Bronchial Blocker

Campos JH: Curr Opin Anaesthesiol 2009; 22: 4-10

The Use of Air in the Inspired Gas Mixture During Two-Lung Ventilation Delays Lung Collapse During One-Lung Ventilation

Performance Bronchial Blockers vs Double-Lumen Tubes

- Administer FiO₂ 1.0%
- Prior to balloon inflation stop ventilation
- Under direct FOB insufflate balloon
- Start intermittent suction
- Reassume ventilation dependent lung
A Comparison of the EZ-Blocker with a Cohen Flex-Tip Blocker for OLV

<table>
<thead>
<tr>
<th>PRCT</th>
<th>Cohen Group n=20 Right/Left</th>
<th>EZ Group n=20 Right/Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Blocker balloon herniation into trachea</td>
<td>1/1</td>
<td>0</td>
</tr>
<tr>
<td>• Blocker balloon not visible below carina</td>
<td>3/0</td>
<td>0</td>
</tr>
<tr>
<td>• Both balloons of EZ-blocker going into same main bronchus</td>
<td>NA</td>
<td>2/1</td>
</tr>
<tr>
<td>Surgeon Satisfaction (Lung Collapse)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Good</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>• Fair</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Predictors of Hypoxia During OLV

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>End Points</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slinger P, et al</td>
<td>50 (retrospective) 30 (prospective)</td>
<td>• Potential predictors of PaO2 during OLV</td>
<td>• Side right of operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preoperative FEV1/FVC</td>
<td>• Interoperative PaO2, 20 min</td>
</tr>
<tr>
<td>Suemitsu R, et al</td>
<td>822 (retrospective)</td>
<td>• Effect BMI and complications in thoracic surgery</td>
<td>• BMI >30 kg/m²</td>
</tr>
</tbody>
</table>

Alveolar Recruitment Strategies

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>End Points</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unzueta C, et al</td>
<td>40</td>
<td>PCT</td>
<td>• Effects on oxygenation</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>n=20 control (6 ml kg V̇)</td>
<td>• Alveolar Recruitment</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>n=20 ARS study group</td>
<td>• PIP 40cmH2O PEEP 5-20 cmH2O for 10 breaths before and after OLV (1 min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PaO2 during OLV 20 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Control group 182±79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ARS study group 251±69 (mmHg)</td>
</tr>
</tbody>
</table>

This may cause transient hypotension
Also a transient further decrease in PaO2
Improvement on oxygenation and decrease alveolar dead space

Fiberoptic Bronchoscopy Segmental O2 Insufflation

Campos, Javier, MD

Video Assisted Thoracoscopic Surgery (VATS)

CRASH 2014

• CPAP must be applied to fully inflated recruited lung to be effective (5-10 Cm H2O)
VATS Lobectomy Reduces Cytokine Responses Compared with Conventional Surgery

- \(n = 36 \) pts (clinical stage I non-small cell cancer)
- Group 1, \(n = 18 \) VATS lobectomy
- Group 2, \(n = 18 \) open thoracotomy
- Plasma levels - tumor necrosis factor-\(\alpha \) (TNF-\(\alpha \))
 - Interleukin (IL) 1\(\beta \), IL-6, IL-8
 - anti-inflammatory cytokine IL-10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>IL-8 pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>End</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4h</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8h</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24h</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48h</td>
<td>0</td>
</tr>
</tbody>
</table>

VATS with Local Anesthesia-Sedation

- \(n = 115 \) VATS, ages (21-88)
- Sedation (midazolam, fentanyl, propofol)
- Propofol infusion 120ug/kg/min
- \(\text{O}_2 \) face mask, ETCO\(_2\) monitor
- Local infiltration (lidocaine)

Points to Consider During an Awake VATS

- Intraoperative pneumothorax
- Patient coughing or moving (upon touching cartilaginous bronchioles)
- Potential for conversion: general anesthesia/open thoracotomy

Feasibility and Results of Awake Thoracoscopic Resection of Solitary Pulmonary Nodules

- \(n = 60 \) pts randomized into two groups
 - Group 1 \(n = 30 \) VATS-OLV-general anesthesia
 - Group 2 \(n = 30 \) VATS-Thoracic epidural anesthesia (T\(_4\))
- Surgical technique – lateral decubitus position
 - 3-flexible-thoracoscopic-trocar access
- VATS was easily and safely performed TEA 26/28 pts.

VATS at 20 years: a Consensus Statement

- Summary of responses regarding perioperative management of VATS lobectomy (international panel 50 experts)
- Preferred postoperative pain management

<table>
<thead>
<tr>
<th>Technique</th>
<th>(n =) Respondents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA (only)</td>
<td>6 (12)</td>
</tr>
<tr>
<td>Epidural</td>
<td>17 (34)</td>
</tr>
<tr>
<td>Paravertebral</td>
<td>10 (34)</td>
</tr>
<tr>
<td>Intercostal nerve block</td>
<td>17 (34)</td>
</tr>
</tbody>
</table>

Thoracic Paravertebral Block for VATS

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>End Points</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nishida et al</td>
<td>10</td>
<td>Single injection PVB vs multiple injection PVB</td>
<td>Pain scores lower in single injection group up to 48 hours</td>
</tr>
<tr>
<td>Hill et al</td>
<td>30</td>
<td>Single injection PVB vs multiple injection PVB</td>
<td>Pain scores lower in single injection group up to 48 hours</td>
</tr>
</tbody>
</table>

Summary

- Thoracoscopic surgery has many advantages over open thoracotomies
- Mortality (-), however morbidity (+)
- Anesthesia techniques that best suit your practice
- DLT for the vast majority of cases or BB
- Paravertebral blocks for analgesia
- Robotic assisted surgery needs further research

Reference List

Reference List

Reference List