

A PROPOSED SOLUTION TO THE ISSUE OF

PROPRIETARY DCCTV VIDEO FILE PLAYBACK

by

Brian Timothy Prendergast

B.S., University of Colorado Denver, 2009

A thesis submitted to the

University of Colorado Denver

in partial fulfillment

of the requirements for the degree of

Master of Science

Media Forensics

2012

 ii

This thesis for the Master’s of Science

degree by

Brian Timothy Prendergast

has been approved

by

Catalin Girgoras

Jeff M. Smith

Sam McGuire

Date: 4/29/2012

 iii

Prendergast, Brian Timothy (M.S. Media Forensics)

A Proposed Solution to the Issue of Proprietary DCCTV Video File
Playback

Thesis directed by Associate Professor Catalin Grigoras

ABSTRACT

The use of Digital Closed-Circuit Television (“DCCTV”) is becoming so
widespread in our society that most criminal investigations are likely to
involve video surveillance as evidence. Maintaining the integrity and
quality of video evidence is crucial to its purpose. The greatest challenge
with DCCTV video files is that most manufacturers implement their own
proprietary video file formats. Finding the resources and support for the
playback of these proprietary video file formats can be a time-intensive
task and sometimes ultimately futile. Transcoding the native file format to
a different file format results in quality degradation, so working with the
native file format is of paramount importance to the forensic video analyst
to ensure the highest quality image for examination. This thesis explores
different DCCTV proprietary video formats and describes the groundwork
and initial implementation of a script designed to identify proprietary video
file formats based on file header information in order to provide information
for the playback of video.

This abstract accurately represents the content of the candidate’s thesis. I
recommend its publication.

Approved: Catalin Grigoras

 iv

DEDICATION

I would like to dedicate this thesis to my wonderful wife, Julia, and to her
Noni. She will be missed but never forgotten.

 v

ACKNOWLEDGEMENT

I would like to express my gratitude to Mike Bush of the Denver Police
Department for offering me his time and experience. His cooperation and
assistance was invaluable to the creation of this thesis. I would also like
to thank Catalin Grigoras for imparting his extensive knowledge to me and
also providing me with the guidance to put it to use. I could not have done
this without him. Also, thank you to Jeffrey Smith for providing me with the
instruction necessary to pursue a career in this field and for his dedication
to his students at the NCMF. And finally, I’d like to take this opportunity to
thank Sam McGuire for giving me the privilege of learning from while I was
an undergraduate student and for his participation on my thesis
committee.

 vi

TABLE OF CONTENTS

List of Figures…………………………………………………………………..viii

Chapter

1. Introduction…………………………………………………………….……..1

1.2 An Overview of DCCTV……………………………………………………1

2. DCCTV Retrieval Best Practices Concerning Native Files……………...3

3. Video Compression and Codecs ………………………………………….8

4. Compression Standards…………..………………………………………..9

5. MPEG Compression………………………….……………………………11

6. Image Compression…………..…………………………………………...16

6.1 YCbCr and Subsampling………….……………..………………………17

6.2 Discrete Cosine Transform……………………………..……………….19

6.3 Quantization…………………………..…………………………………..21

6.4 Entropy Encoding…………………………..…………………………….23

7. Container vs. Codec………………………………………………………..24

7.1 FourCC…………………………………………………………………….24

8. File Headers and File Signatures……………..………………………….26

9. Video Container…………………………………….………………………27

10. Issues with DCCTV Evidence………………………………..………….30

 vii

11. Forensic Video Analyst Resources……………………………………..32

12. DCCTV Video Format Database Research……………………………34

13. DCCTV Proprietary Video Playback Proposal………………………...46

13.1. Script Implementation………………………………………………….50

14. Future Research………………………………………………………….56

15. Conclusion…………………………………………………………………57

References……………………………………………………………………..59

 viii

LIST OF FIGURES

Figure 1 Best Practices for the Retrieval of Video Evidence………………4

Figure 2 Video Stream Data Hierarchy……………………………………..12

Figure 3 Group of Pictures (“GOP”)………….…………..…………………14

Figure 4 Video Motion Estimation …………………………………………...15

Figure 5 Image Compression Process……………………………………...15

Figure 6 Bayer Color Filter Array……………………………………………17

Figure 7 Chroma Subsampling Ratios………………………………………18

Figure 8 The Discrete Cosine Transform…………………………………..19

Figure 9 Inverse Discrete Cosine Transform………………………………20

Figure 10 DCT Basis Patterns……………………………………………….20

Figure 11 Quantization Tables………………………………………………22

Figure 12 Entropy Encoding…………………………………………………23

Figure 13 AVI File Hex Data…………………………………………………25

Figure 14 AVI Header Format……………………………………………….26

Figure 15 AVI File Format……………………………………………………29

Figure 16 Hex Data for a .cx3 File (1).……………………………………...36

Figure 17 Hex Data for a .cx3 File (2)…………….…………...……………37

Figure 18 EYEMAX DVR File Output……………………………………….38

 ix

Figure 19 Hex Data for .mu File……………………………………………..39

Figure 20 Hex Data for .mp4 File (Not Actual MPEG-4 File).….…………40

Figure 21 Hex Data for .264 File…………………………………………….41

Figure 22 Hex Data for .AJP File……………………………………………42

Figure 23 Hex Data for .AJP File (Start Section) ……………….…………43

Figure 24 Hex Data of .AJP File (End Section) ……………………………44

Figure 25 Scripting for Intraframe Compression Detection……………….45

Figure 26 Script Procedure Block Diagram………………………………...48

Figure 27 File Signature for .WMV File……………………………………..50

Figure 28 Hex Data for .WMV File…………………………………………..51

Figure 29 Scripting for Identifying .WMV File………………………………52

Figure 30 Onscreen Script Output for .WMV File………………………….52

Figure 31 Text File Script Output for WMV File……………………………53

Figure 32 Scripting for Identifying .264 File………………………………...54

Figure 33 Onscreen Script Output for .264 File……………………………54

Figure 34 Scripting to Identify .da File………………………………………55

Figure 35 Onscreen Script Output for .da File……………………………..55

 1

1. Introduction

 The emergence and subsequent success of Digital Closed Circuit
Television (“DCCTV”) over analog CCTV as a means for security
surveillance has provided key evidence for numerous criminal
investigations. The effectiveness of video evidence relies on its quality
and accessibility. The challenge facing forensic video analysts is that
most manufacturers of DCCTV systems implement proprietary video file
formats in their digital video recorders (“DVR”). Proprietary video file
formats refers to the methodologies used by a DCCTV manufacturer to
maintain the exclusivity of the video file format they have developed.
Support and resources for the playback of these video formats can be
difficult to find or even nonexistent since it relies wholly on the
manufacturer of the technology. The acquisition of digital video in its
proprietary, or native, file format is important to the perseveration of its
quality and integrity, and therefore less desirable methods of acquisition
should not be employed when not completely necessary. Most DVRs offer
the option of transcoding the video to a more “open” file format for output,
but this results in the degradation of video quality. The ability to properly
interpret events and identify people, places, and things within a video are
critical during analysis, so the highest quality video available is required.

 Currently, there is no standardization for proprietary video file
formats used with DCCTV systems. This has resulted in a plethora of
video file formats being used in security surveillance. This creates many
issues with finding the proprietary software required for video playback
software as well as finding proprietary codecs. This thesis examines
some of the proprietary video formats associated with DCCTV DVR units
in an effort to reach a practical solution of providing the information
needed for the playback of proprietary video formats. A script capable of
accurately identifying proprietary video files based on the file header data
is proposed as a way to connect a proprietary video evidence file to the
proper video player or codec required for playback. The framework and
initial implementation of this script are described in this thesis.

1.2 An Overview of DCCTV

 When DCCTV systems first appeared on the market in the mid-
1990s, they were much cheaper than analog CCTV systems. They also

 2

didn’t require as much maintenance, such as having to change tapes or
the upkeep of moving mechanical parts. Digital storage meant that
greater amounts of recorded video could be stored for a much cheaper
price. Digital video also meant consistent recording quality, the ability to
use high-resolution cameras, and the elimination of the multiplexer.
However, the use of DCCTV does present some downsides and a new set
of problems unique to its format. Although DCCTV DVR units can hold
much more video data, it is usually at the cost of image quality. More
detail means more digital data. Compression is a necessity of DCCTV
since video information consumes so much bandwidth and results in large
data files. Video compression is the use of algorithms to reduce data
redundancy when encoding the video data, but the tradeoff is between
video quality and storage. Image detail and storage amount conversely
affect each other. Almost all video compressions are lossy, meaning that
some detail in the video will be lost. The option to adjust the level of
compression usually results in compression levels being maxed out by the
operator in an effort to retain even more recorded video on a hard drive.
Slower frame rates are also utilized to achieve higher detail in video
images, so often times crucial moments are not documented on video. [1]

 The rise of DCCTV sales in recent decades has created a large
diversity of manufacturers in the industry. In some ways this diversity has
helped to bring about improvements and innovations in the industry, but
with it has also resulted in a variety of different proprietary video
containers and codec algorithms. The standardization of video
compression algorithms was occurring at the same time DCCTV was
becoming popular. As a result of this timing, there has been a persistence
of the proprietary video formats that were developed by manufacturers in
their early DCCTV units. Even since the creation of standards, DCCTV
manufacturers have been using proprietary video formats with their
software to implement “tamper proof” video files. This is to ensure that
surveillance video evidence will maintain its integrity through the
investigative process and will be admissible in court as evidence. It is also
done to keep customers from integrating their systems with their
competitors surveillance systems. These proprietary video containers and
codecs require proprietary video players to properly interpret the recorded
video file for playback. Finding the correct proprietary codecs and/or
playback software can be the most challenging part in an investigation
involving DCCTV and, often, the most time consuming. Video surveillance

 3

can be vital evidence or, sometimes, the only evidence in an investigation,
so finding resources to playback the video is essential.

 Although more DCCTV system manufacturers are moving toward
using more “open” video file formats, there are many older DCCTV units
still in use. As these older DCCTV manufacturing companies go out of
business, it only gets more difficult to find important information regarding
their recording technology. Currently, there is no central database that
contains all the information necessary to understand the video formats and
software needed to playback proprietary DCCTV video files. [1]

2. DCCTV Retrieval Best Practices Concerning Native Files

 To date, there are few resources that outline the best practices for
the acquisition and retrieval of DCCTV evidence. One of the most recent
is an instructional video entitled “FBI: Caught on Camera” that was
released in March of 2010 [4]. The video is 20 minutes long and available
free of charge in DVD format to members of the law enforcement
community, business owners, CCTV vendors, suppliers, contractors, and
educators. It can also easily be found online for free viewing. The video
does little to elaborate on the issues surrounding proprietary video
formats. It focuses primarily on the installation and implementation of an
effective CCTV system by describing how cameras function with respect
to lighting conditions, focal length, location, etc. During the portion of the
video that discusses retrieval of video evidence, there is only a brief
mention of native file format and video compression, and only insofar that
it mentions that compression results in less detail and that the native file is
ideal because it is least compressed. The video also demonstrates how
open format videos recovered from a DVR, such as Audio Video
Interleaved (“AVI”) files, are much more compressed than the native file
format. Although the importance of retrieving the native file is greatly
stressed in this informational video, no explanation of how to overcome
the issues associated with codecs and proprietary players.

 The is also a written guide entitled “Best Practices for the Retrieval
of Video Evidence from Digital CCTV Systems.” [2] It was created by the
Technical Support Working Group (TSWG), FBI Forensic Audio, Video,
and Image Analysis Unit (FAVIAU), with the assistance of numerous
International, Federal, State and local Law Enforcement agencies. The

 4

only version of the guide was released in October, 2006. The purpose of
the guide is to provide responding Law Enforcement personnel guidance
in securing and collecting video data from DCCTV systems in a manner
that will maintain the integrity of the evidence at the highest quality for
forensic analysis. The publication is also meant to assist in the
development of Standard Operating Procedures for an agency or
company.

Figure 1 Best Practices for the Retrieval of Video Evidence
Written publication for best practices concerning DCCTV evidence.

 The written guide begins by outlining different types of DVRs and a
very brief explanation of the video data contained therein. This section
notes that all DVRs use compression and that most DVR systems utilize a
native or proprietary file format, which would require proprietary playback
software or codecs from the manufacturer in order to play back the files or
to view any metadata. This metadata could include time, date, camera
number, etc., which may prove to be critical evidence. The written guide
recommends that the native/proprietary video files be exported in addition
to any available open file formats, which should only be used for quick
reference. The guide also recommends the retrieval of any native or

 5

proprietary files “whenever possible” to maintain the integrity and image
quality of the evidence.

 The written guide sets forth a number of different output types that
can be encountered including the following:

• Compact Disc Rewritable/Digital Versatile Disc Rewritable
• Compact flash
• USB
• IEEE 1394 Firewire/iLink
• Network port
• RCA
• S-Video
• Composite
• VGA
• DVI
• SCSI port (60 pin and 50 pin)
• Removable hard drive
• Magnetic digital data storage tape (DAT, DLT, DDS, AIT)
• DV cassette drive (e.g., Sony HSR-1P)
• Jaz
• Zip
• Magneto Optical

 The next section of the guide describes steps to take upon arrival at
the scene. This includes a checklist for aspects such as documentation of
the video recorder make, model and serial number, whether the system is
networked, system time and date displayed, retrieving the system
password, etc. All of this information is important to understanding what
will need to be done with the evidence and for properly documenting the
data for evidentiary purposes. It can also be the key to tracking down the
proprietary video player or codec that is needed for video playback.

 The next section describes the different types of output
encountered in the field. The options for exporting video data are listed in
their respective order of suggestion from advisable to least advisable:

1. CD/DVD Writer
2. Compact Flash Drives

 6

3. USB/Firewire/SCSI Devices
4. Network Connection
5. Replacing Hard Drives
6. Drive Duplication
7. Legacy Output
8. Removal of DVR Unit

 All of these methods of export would still result native file formats
that would require finding a proper player, unless the DVR has one
available for export.

 Following this section are last resort options for data retrieval that
result in non-native and non-proprietary video files. Although it is rare,
some DVR systems only allow for analog output. The guide recommends
that analog output be recorded onto digital magnetic tape through the use
of video tape recorder. It is noted that a video capture card can be used to
digitize the video signal but attention must be paid to maintaining the
frame size. When a DVR has both an s-video and composite output, the
s-video output is the preferred method. This is because s-video carries
the video signal on two channels: one for luminance (intensity, or “Y”) and
one for chrominance (color, or “C”), while composite video encodes all this
information into one channel. Neither of these types of output carries
audio information. When a VGA or DVI output is available, the video
signal must be processed using a scan converter, which degrades the
resolution of the video. This method is the last resort for analog output.
Analog video retrieval of evidence should not be used in lieu of exporting
the native DVR file format simply because the proper software player
could not be found.

 The Federal Bureau of Investigation formed the Scientific Working
Group on Imaging Technology (“SWGIT”) in 1997 to establish the best
practices for video and image forensics. [3] Of their documents relating to
photography, videography, and video and image analysis, the document
titled “Section 7” has the most relevance to the issue of proprietary
DCCTV video file playback. The document states the following:

“For Digital CCTV (DCCTV), if possible obtain the pertinent video
information in the native file format with the appropriate player. The
analyst should be aware that different methods of playback and

 7

extraction (including universal players) may yield different results.
When viewing digital video using the proprietary software, the
player or on-screen display (OSD) may affect the representation of
the video. An incorrect display aspect ration will not accurately
depict the dimensions of the actual recorded video. For example,
objects that should have been recorded as circles may be depicted
as oval instead.

In some instances, the original recording hardware, or equipment of
the same make and model, may be necessary for playback.” [3]

 This demonstrates another hazard of not playing a proprietary video
file with the intended playback software – it is difficult to predict how
different video players will visually distort the video evidence , which can
lead to the misrepresentation of the events caught on camera. One of the
primary goals of the video forensic analyst is to avoid introducing any
alterations to the evidence in the effort to preserve its integrity for analysis
and its admissibility into a court of law.

 Despite the helpful information contained within these resources,
they fail to provide solutions to the problems associated with native or
proprietary file formats and codecs, the same way that “FBI: Caught on
Camera” omits that information. Given that video evidence is ideally
retrieved in its native or proprietary format, every effort must be made to
retrieve the data in that format rather than resorting to less desirable
methods of acquisition. Retrieving video in its native format results in the
best quality evidence to be used for forensic analysis, which is the highest
priority of the video forensic analyst. The reason that native file format
retrieval is paramount is because of video compression levels. The first
stage compression performed by a DVR unit provides the highest quality
image that can be obtained. The conversion of this first stage video
compression to another video format only leads to more compression and
other possible complications. An understanding of how video
compression works helps to demonstrate how this process affects video
quality and how this has led to the need to create a set of standards for
encoding video.

 8

3. Video Compression and Codecs

 A large amount of digital data is required to represent analog video
information. Digitized analog video can consume as much as 165 Mbps of
bandwidth [1] and it would be expensive to store the large amounts of
data. Therefore, the only practical way of storing and transmitting video
information is to use compression. This reduces the consumption of
storage and bandwidth, which greatly reduces costs. Compression is the
reduction of data needed to reconstruct the original information that was
captured. To achieve this, compression removes redundant or
unnecessary information. Compression algorithms rely on the fact that the
information exhibits order and patterning. Because of this, redundant
information can be eliminated or reduced by removing extraneous
information. For example, a video containing frequency information that a
display is not capable of producing can easily be eliminated from the
transmitted information.

 Codec refers to a device or program capable of encoding and
decoding digital data. Codecs encode one or more data streams for
transmission, storage, or encryption. There are thousands of different
codecs. The same codec used to encode a video must be used to decode
the video for viewing. For the purpose of DCCTV, codecs are often
proprietary. The manufacturers of the proprietary software are known to
create their own algorithms for encoding video or slightly change widely
used video compression algorithms. Therefore, in most cases it is
necessary to have the specific codec that is only available from the DVR
manufacturer to decode the video data, which can be very problematic.

 The basis for video compression techniques are an extension of
image compression techniques, but the introduction of the temporal
domain in video offers more effective ways to achieve higher levels of
redundant data reduction. Video compression has the ability to use image
prediction between frames, meaning that instead of only looking at
redundant data within the one image, it can look at redundant data across
the many images that make up the video sequence. The codec defines
the how the video will compressed and decompressed.

 9

4. Compression Standards

 The need to standardize digital video compression began with the
advent of high-definition television (“HDTV”) and the growing use of
teleconferencing. A number of standard video compressions (as well as
audio compression formats) have been established by both the
International Telecommunication Union (“ITU”) and the International
Organization for Standardization (“ISO”). Since the ITU is not a formal
standardization organization, their documents relating to digital video are
released as recommendations rather than standards. ISO works with the
International Electrotechnical Commission (“IEC”) to create standards
within the information technology world. Their joint works are recognized
as the “ISO/IEC.” The two basic compressions standardized by the
ISO/IEC are JPEG (named for the Joint Photographic Experts Group) and
MPEG (named for the Moving Picture Experts Group). JPEG and MPEG
have established the following image and video compression formats that
also come recommended by the ITU:

• JPEG
• Motion JPEG
• JPEG 2000
• Motion JPEG 2000
• H.261
• H.263
• MPEG-1
• MPEG-2
• MPEG-4
• H.264

 A new group was formed at in the late 1990s known as the Joint
Video Team (“JVT”), which is comprised of MPEG and the Video Coding
Experts Group (“VCEG”). VCEG is responsible for the line of “H.26x”
video coding standards that have embodied many of the innovations used
in all modern compression standards. VCEG is currently responsible for
many of the image and video compression standards. Their partnership
with MPEG began in the mid-1990s with the development of H.262 video
coding, which was developed to be the MPEG-2 standard. [1] In May of
2003, VCEG joined with MPEG to create the standardization known as
MPEG-4 AVC/H.264. The ISO/IEC standard is technically known as

 10

MPEG-4 Part 10 where “Part 10” refers to the family of Advanced Video
Coding (“AVC”) standards. In the ISO/IEC standards, a “Part” refers to a
certain aspect of the whole specification. Some Parts of video
compression standards are added years after the initial creation of the
standard, as is the case with Part 10 of the MPEG-4 standard. This
means that it is possible to have two DCCTV units that both compress
video that meet the MPEG-4 standard, but that are not exactly the same.
An older unit may meet the MPEG-4 Part 2 standard, also known as
MPEG-4 Visual and commonly referred to simply as MPEG-4. This video
compression standard is distinctly different from the newer MPEG-4 Part
10, which is commonly referred to as AVC or simply H.264. The MPEG-4
AVC and H.264 standards are technically identical and are jointly
recognized as MPEG-4 AVC/H.264. The different types of MPEG-4 are
still compatible, but it is important to be aware of the differences between
seemingly identical video files. MPEG-4 Part 2 is also compatible with
H.263 in that it can be decoded by a MPEG-4 Video decoder. The MPEG-
4 Part 2 video compression includes popular codecs such as DivX and
Xvid. [1][6][7]

 Motion JPEG compression, or M-JPEG, treats each frame in the
video as an independently compressed image and it is therefore the least
complex of the video compression types. It is an example of intraframe
compression since it only deals with the spatial domain information within
a single frame. With intraframe compression, each frame is treated as an
individual digital image to which JPEG compression is applied. As a
result, the amount of data reduction is not as efficient as with the video
compressions that use interframe compression, where redundant
information is reduced from one frame to another within the temporal
domain. M-JPEG relies on frame rates no higher than 5fps in order to
process the video fast enough, which may result in crucial moments not
being captured on video. [5] Another major downside is that compression
artifacts do not remain in one place from frame to frame and they appear
to “float” around during playback. The only real advantage of M-JPEG is
that if one frame of video is corrupt or dropped during transmission, the
rest of the video remains unaffected. Motion JPEG 2000, or M-JPEG
2000, is the only other ISO/IEC standard besides M-JPEG that uses
intraframe compression. The only major difference between the two is
that M-JPEG 2000 takes advantage of improvements made to image
compression from the original JPEG algorithm to the new JPEG 2000

 11

algorithm. The video compression types that take advantage of interframe
compression include MPEG1, MPEG2, and M-PEG4 AVC/ H.264. [1]

 Although many of the old video compression standards established
by the ISO/IEC are becoming obsolete, there are still many older DCCTV
systems that use them. Fortunately, the superior MPEG-4 and H.264
video compressions are quickly becoming the most standard DCCTV
video compressions on the market. For a company to manufacture a
product that uses the compression standards established by ISO/IEC, they
are required to pay licensing fees. A Denver-based firm that is not
affiliated with MPEG called MPEG LA licenses patent pools covering
essential patents required for the use of MPEG-2, MPEG-4 Part 2, IEEE
1394, VC-1, ATSC, and MPEG-4 AVC/H.264 standards. It is likely that
many manufacturers of DCCTV systems choose to make their own
proprietary containers/codecs based on the standardized formats rather
than pay to be completely compliant with the standards. This results in
video files that are similar to the standard formats, but not 100%
compatible.

5. MPEG Compression

 There are many different types of video compression, but MPEG
compression is the most widely used. It is a type of interframe
compression that takes advantage of both the spatial and temporal
domain. The compression techniques described in this section serve as
an overview for all interframe video compression types since most have
been based on this system in one way or another. With interframe video
compression, the hierarchy of the video data stream is as follows:

 12

Figure 2 Video Data Stream Hierarchy

1) Video Sequence 2) Group of Pictures 3) Picture 4) Slice
5) Macroblock 6) Block

 The video sequence is simply the video clip. These are the
recorded events in a video of any length of time. The term refers to the
video file clip as a whole. A Group of Pictures (“GOP”) is comprised of
specific types of frames, or pictures. A frame can be predicted based on
the surrounding frames that precede and/or follow it. These frames take
advantage of both the spatial and temporal domain types of compression.
Interframe compression is a method of predicting frames based on other
key frames. This technique relies on a sequence of three types of frames:

• I-frames: Intraframe
• P-frames: Predicted frames
• B-frames: Bidirectional frames

 This type of video compression relies on image-to-image prediction
and each of these frames plays a role in the prediction. The I-frame is
self-contained and is independent of the other frames and therefore its
encoding for spatial compression is similar to that of a JPEG image. In
this sense, it is also the only frame that can always be retrieved on its own
as a complete image. The P-frame is created based on the preceding I-
frame. Since frames are so close together in time and movement is so
slight, this technique, known as “motion compensation,” is quite effective.

 13

The difference between the P-frame and the I-frame is known as the
prediction error. The P-frame records only the data that is different from
the preceding I-frame, generally this is only the movement between the
two frames. It may retain about 40% to 50% of the information from the I-
frame it is referencing. In between the I- and P-frames are B-frames. B-
frames reference both the I- and P-frames that both precede and follow it.
This uses the same technique of motion compensation used by the P-
frames but it uses the least amount of data since it looks at the differences
between the current frame and the frame that precedes and follows it.
Since the different frame types in a GOP are created out of sequence in
the temporal domain, all of the frames are numbered and can therefore be
reassembled in the correct order during the decoding. [5][6][8]

 14

Figure 3 Group of Pictures (“GOP”) [5]
This is a typical pattern configuration seen in interframe compression. The

typical amount of data usage is graphed below each frame type.

 The figure above demonstrates how a GOP can be described by
the depth of compressed predicted frames (“m”) as compared to the total
number of frames (“n”). In a typical MPEG GOP, m equals 3 and n equals
12. Some network DCCTV surveillance systems allow the user to control
the GOP pattern based on their needs. B-frames contain predictions of
how objects have moved between I-frames and P-frames. B-frames look
at marcroblocks, usually 16 x 16 squares of pixels that are comprised of
the 8 x 8 blocks of pixels used by the DCT during frame compression.
Macroblocks are described in more detail in the following paragraph.
Motion vectors are determined in this way to predict how objects in I-

 15

frames moved to their new position in the P-frame. Determining which
blocks of pixels have changed from frame to frame can be the most CPU
intensive in the video compression process, but it is the part of the
process that allows for the greatest data compression. By determining
which macroblocks contain similar groupings of pixels, the computer
identifies what is considered to be an object and it maps its motion through
the picture. This is known as the motion vector. [5][6]

Figure 4 Video Motion Estimation [5]
This system looks for blocks that approximate other blocks in previous

pictures to determine motion estimations.

 The macroblock is the building block of an MPEG frame. The
blocks are arranged into a slice, which is a contiguous sequence of
macroblocks that are arranged in scan order from top left to bottom right.
The biggest innovation in MPEG 4 AVC/H.264 compression is that the
techniques that were carried out on entire frames are performed on the
Raster scanning is used on the fields to rebuild the entire image, or frame.
A slice is encoded without reference to any other slice, therefore if a slice
is lost or corrupt, decoding can commence with the next slice. The header
data of the slice describes the address or position of the macroblock within
the picture. When the macroblocks are reassembled, they comprise one
entire frame. The macroblocks and blocks are handled in the same way
as a digital image using JPEG for compression. This process is described
in the following section. [5][6]

 16

6. Image Compression

 Although many of the basic JPEG digital image compression
concepts are relevant to video compression, the introduction of the
temporal domain in video creates new challenges as well as new
opportunities for data reduction. Most of the techniques used to compress
video stem from JPEG image compression. Many of the techniques used
in image compression take advantage of how the human eye perceives
images. A basic understanding of JPEG compression concepts is
essential to understanding how video compression works. The key
elements to JPEG compression are the conversion of RGB to the YCbCr
color space, Discrete Cosine Transform (“DCT”), quantization, and finally
Huffman entropy encoding. [9]

Figure 5 Image Compression Process
1) Sampling of each macroblock 2) DCT 3) Quantization

4) Entropy Encoding 5) Run-length encoding 6) Huffman encoding

 17

6.1 YCbCr and Subsampling

 The digital image processing and compression begins with the
native spectral red, green, and blue (“RGB”) light that has been separated
via the Color Filter Array (“CFA”) on the image sensor inside of the
camera.

Figure 6 Bayer Color Filter Array

 The image sensor can be either a Charge-Coupled Device (“CCD”)
or Complementary Metal-Oxide Semiconductor (“CMOS”) that records the
analog signals of R, G, and B as voltages. The RGB component signal is
converted to luminance (“Y”) and chrominance values of chrominance-
blue (“Cb”) and chrominance-red (“Cr”). In analog video and image
encoding this concept was referred to as YUV, but in digital video and
image encoding it is known as YCbCr, though the two terms are
sometimes used interchangeably. Today, YUV is commonly used to
describe file formats using the YCbCr encoding. [7]

 YCbCr takes advantage of the fact that the human eye is more
sensitive to black and white (the luminance component) than color (the
chrominance component). There is a lot of redundancy in RGB signals, so
eliminating the redundancy during conversion is the first step in the digital
process where compression occurs. Since the Y component and the Cb
and Cr components are separated, they can be processed differently. The
Y component is sampled at the full resolution since the human eye is very
sensitive to this component. The Cb and Cr values are subsampled and

Color Filter Array Image Sensor

 18

compressed to eliminate the high rate of redundancy. This can be done
with virtually no visual difference perceived by the viewer. Some digital
systems use a luminance range of 0 to 255, where 0 is black and 255 is
white. The scale of 0 to 255 is used because this is the range of values
that can be stored in one 8-bit byte. If a one byte is used for each value of
Y, Cb, and Cr per pixel, there are 256 x 256 x 256 = 16.7 million different
colors that can be produced. The human eye can distinguish only about
two million different colors, so the 8-bit system proves to be more than
sufficient. The widely used ITU-R 601 digital coding standard sets black at
value 16 and white at 235, allowing room for error on either side without
leading to undesirable clipping. This standard is applied to MPEG-2.
Subsampling is then applied to the chrominance values to reduce data.
The subsampling scheme is commonly expressed in a three part ratio as
J:a:b where “J” is the number of Y samples are taken per line, “a” is the
number of Cb and Cr samples that are taken on the first line, and “b” is the
number of Cb and Cr samples that are taken on the second line. “J” is
almost always 4. [5][7]

Figure 7 Chroma Subsampling Ratios

These are the most commonly used subsampling schemes. The
diagrams are theoretical illustrations to demonstrate the chroma

subsampling ratio concept.

 In a 4:1:1 sampling, the Cb and Cr signals are sampled at one-
quarter of the luminance sampling rate. In a 4:2:0 sampling, the 0 means
that Cb and Cr are sampled for every other luminance pixel on one line,
and then for none of the luminance pixels on the next line, and so on. In a
4:2:2 sampling, color is sampled at half the rate of the luminance. MPEG-
4 Part 2 and H.264/MPEG-4 AVC are capable of a 4:4:4 sampling scheme
which results in no subsampling. [5]

 19

6.2 Discrete Cosine Transform

 The Fourier Transform is used to transform signals from the space
or time domain into the frequency domain. However, the Discrete Cosine
Transform (“DCT”) is used in digital image processing since it can perform
the same transformation using fewer lines than the Fourier Transform.
Although there are several versions of the DCT, the two-dimensional DCT
formula is most applicable to image compression.

 k=0,...,N-1

Figure 8 The Discrete Cosine Transform

The two-dimensional DCT formula is commonly used in JPEG
compression.

 The DCT is the process of transforming the information, which is in
the spatial domain, into the frequency domain. Spatial domain signals are
multidimensional, meaning they relate to width and height of an image.
Frequency domain values represent the rate of change of the pixels. This
is achieved by breaking an image into a square in multiples of four, which
is known as a block. In older video compression, this has typically been 8
x 8 pixel blocks. This makes for a total of 64 values per matrix per block.
More modern video compressions such as H.264 are fixed at 16 x 16
blocks. The matrix consists of values that are derived from the sampling
process. Both the luminance and the chrominance data from the original
image samples are broken into their own blocks. The luminance block is
always either equal or larger than the chrominance block. For black and
white images, only one matrix is necessary to represent the gray scale.
The top left corner coefficient in the matrix is the “DC” coefficient. This
value represents the average value of the entire block. The rest of the
values in the matrix are the “AC” coefficients. The DCT typically
transforms the 8-bit block values into 11-bit coefficients. Since the DC
coefficient is an unsigned 11-bit integer, this would require different
handling than the AC coefficients that can all be represented by an 11-bit
signed integer. To resolve this, all the pixel values within the matrix have
128 subtracted from them, centering the values around zero. The DCT is
then applied to each matrix to compute the DCT coefficients. The

∑
−

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ +=
1

0 2
1cos

N

n
nk kn

N
xX π

 20

reconstruction of the original image is interpreted from these coefficient
values by using the Inverse Discrete Cosine Transform (“IDCT”’).

 k=0,...,N-1

Figure 9 Inverse Discrete Cosine Transform

The inverse of the two-dimensional DCT formula can be applied to DCT
coefficients to recover the original values.

 The value obtained from the DCT is a measure of how much of a
given frequency is present in the entire block. The coefficient values
represent the horizontal and vertical basis patterns present in each pixel of
the block (Figure 10). The DCT basis patterns correspond with the
frequency of pixel change present in each block.

Figure 10 DCT Basis Patterns
The DCT coefficients are measured by the amount of each frequency in

an 8 x 8 block (A) and a 16 x 16 blocks (B).

∑
−

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++=
1

1
0 2

1cos
2
1 N

n
nk kn

N
xxX π

A B

 21

 A value is given for how much of each basis pattern is present in
each block. The combination of all these weighted patterns will combine
to form a similar representation of the original block.

6.3 Quantization

 The human eye is more sensitive to low frequency in the visual
spectrum. Therefore, reducing high-frequency information is an easy way
to reduce data in a video file without detection from the human eye.
However, if too much high frequency is eliminated, the image becomes
softer in appearance. The human eye is also more sensitive to luminance
than it is to chrominance, therefore more focus is placed on retaining
luminance information and reducing or consolidating chrominance
information. Quantization is a process for reducing the precision of the
DCT coefficients, which in turn reduces the bit rate in the compressed data
stream. This is the step that achieves the highest degree of compression.
Quantization is the process of transforming coefficient values into values
between 0-255 so that the data can fit into a byte. A quantization table is
used to divide the coefficients for both the luminance and chrominance
tables. By looking at the quantization table in Figure? Table 3, it is evident
that the lower numbers concentrated in the upper left corner will preserve
the lower frequency values after quantization, as seen in Table 4 of Figure
11 on the following page. [5][7]

 22

151 147 152 140 138 125 136 160 23 19 24 12 10 -3 8 32

157 148 152 137 124 105 108 144 29 20 24 9 -4 -23 -20 16

152 151 146 128 99 73 75 116 24 23 18 0 -29 -55 -53 -12

154 148 145 111 91 68 62 98 26 20 17 -17 -37 -60 -66 -30

156 144 147 93 97 105 61 82 28 16 19 -35 -31 -23 -67 -46

155 139 149 76 101 140 59 74 27 11 21 -52 -27 12 -69 -54

148 135 147 71 114 158 79 66 20 7 19 -57 -14 30 -49 -62

135 120 133 92 133 176 103 60 7 -8 5 -36 5 48 -25 -68

1) Sampled values from block
 2) Subtract 128 from each value

17 18 24 47 99 99 99 99 -4 14 2 1 -1 -1 1 0

18 21 26 66 99 99 99 99 5 -1 3 -5 2 0 -1 0

24 26 56 99 99 99 99 99 5 -5 -2 2 0 0 0 0

47 66 99 99 99 99 99 99 1 0 0 0 0 0 0 0

99 99 99 99 99 99 99 99 0 -1 0 0 0 0 0 0

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0

99 99 99 99 99 99 99 99 0 0 0 0 0 0 0 0

3) Quantization table
 4) Quantized coefficients using the

DCT
19 31 13 19 18 -9 4 32 147 159 141 147 146 119 132 160

25 35 17 8 -3 -29 -21 9 153 163 145 136 125 99 107 137

23 32 18 -10 -28 -49 -47 -14 151 160 146 118 100 79 81 114

17 23 15 -26 -43 -49 -59 -28 145 151 143 102 85 79 69 100

19 17 16 -34 -41 -32 -63 -43 147 145 144 94 87 96 65 85

27 13 17 -36 -27 -1 -61 -61 155 141 145 92 101 127 67 67

24 0 9 -38 -7 35 -48 -67 152 128 137 90 121 163 80 61

3 -15 -1 -41 7 62 -33 -63 141 113 127 87 135 190 95 65

5) Dequantized coefficients using
the Inverse DCT 6) Add 128 to each value

Figure 11 Quantization Tables
These figures demonstrate the process of quantization.

 23

 Standardized compression types use specific quantization tables.
Encoders such as DivX, Xvid, 3ivx, MPEG-2, and MPEG-4 AVC/H.264
allow the user the option to customize the quantization table. The ability to
set the level of compression is known as the scaling factor. The scaling
factor value is represented by Q. The value of Q can range from 0 to 100
where 100 is the least amount of quantization and resulting in the best
quality image, and of course, the largest file size. [5]

6.4 Entropy Encoding

 After quantization has been applied, many of the high frequency
coefficients have a value of zero. A technique called “run-length” coding is
applied to take advantage of this fact. Consecutive zero value coefficients
can be grouped together to be represented by one value, and then the
coefficients that do not have a zero values are encoded. Using one value
to represent a set of repeated values greatly reduces redundant data.
This accomplished using a zigzag patterning across the matrix. This is the
most efficient method since it starts with the upper left corner, where the
lower frequency values reside. Most of the higher frequency values have
a value of zero after quantization and will not have to be transmitted.

Figure 12 Entropy Encoding

 24

 The DC coefficients are predictively coded, using the previous
block’s quantized DC coefficient as the predictor. Next, Huffman coding
is utilized to assign a code word for each combination of run length. A
Huffman table is included in the data stream so that the code words can
be properly decoded for video playback. [7]

7. Container vs. Codec

 The two most rudimentary elements of a digital video file are the
container and the codec. Most people get the two confused and do not
fully understand the distinction between them. Basically, the video data is
encoded by the codec and that data is then stored in a video container file.
The encoding stage is where the video gets compressed. A video
container could theoretically be used to contain any kind of encoded video,
however, certain codecs are typically associated with certain containers.
This is traditionally due to licensing and incompatibilities that prevented
the use of certain codecs in other containers. Although the container is
separate from the codec, it supplies the format that is recognizable by a
computer allowing it to identify the codec. The computer needs to identify
the codec that was used to encode the video data stream contained in the
file since the same codec is needed to decode the data.

7.1 FourCC

 Apple developed OSType to identify files by a four-byte sequence.
The development of the Interchangeable File Format (“IFF”) in the mid-
1980s was based on OSType and later adapted into the Resource
Interchangeable File Format (“RIFF”) in the early-1990s, which is
commonly used today for a number of different file formats. The four-byte
identifier is now referred to as the Four-Character Code, also known as
the FourCC. The four-byte identifier typically has values that translate into
four-letter text words for easy identification within the American Standard
Code for Information Interchange (“ASCII”) character encoding scheme.
The FourCC can be used as an identifier for many things. For example,
the different chunks in the AVI video container are identified by FourCCs.
The first chunk that contains metadata about the video file is identified by
the “hdrl” FourCC. A program that is used to play an AVI file will look for
this FourCC to locate this information. The AVI file chunk that contains the
data for the video itself is identified by the “movi” FourCC. Although a

 25

FourCC can be used to identify a number of different things, the most well-
known use is to identify a video codec.

Figure 13 AVI File Hex Data
The FourCC within this RIFF container indicates that this AVI file was

encoded using the MJPG codec.

 The container structure also allows the computer to find the parts
necessary to reassemble the contents of the video data and how to do it.

 26

8. File Headers and File Signatures

 In information technology, a file header is a small amount of data
used to indicate the type and format of the data that in is contained within
the file. It tells the computer or program where to start reading the file and
how to interpret it. It can usually be found somewhere before the main
block of data in the file, typically within the first line of the hex data. It can
be thought of as the table of contents for the file since the header
information is a way of describing the file contents, as well as the location
of the contents. The file header may also contain the date the file was
created, the date it was last updated, and the file's size. Subsequently, a
file also contains a file footer, indicating to the computer where the file
ends. The figure below shows the standard file header established for use
with AVI files:

Offset Size Description
0 4 time delay between frames in microseconds
4 4 data rate of AVI data
8 4 padding multiple size, typically 2048
12 4 parameter flags
16 4 number of video frames
20 4 number of preview frames
24 4 number of data streams (1 or 2)
28 4 suggested playback buffer size in bytes
32 4 width of video image in pixels
36 4 height of video image in pixels
40 4 time scale, typically 30
44 4 data rate (frame rate = data rate / time scale)
48 4 starting time, typically 0
52 4 size of AVI data chunk in time scale units

Figure 14 AVI Header Format

AVI files contain a 56-byte header, starting at offset 32 within the file.

 There are many registered file types that have strictly defined
structures, which are then associated with specific file extensions, file
headers, and file signatures. The file signature is a component of the file

 27

header that identifies a file type with just a few characters, sometimes
formatted as a FourCC. This identifier is also sometimes referred to as
the “Magic Number,” referring to the hex data values that make up the
ASCII characters of the FourCC. For example, the Magic Numbers used
to identify an AVI file are “52 49 46 46” and “41 56 49 20 4C 49 53 54,”
which when translated to ASCII characters can be read as the file
signatures “RIFF” and “AVILIST,” respectively. There are many file
formats, file-format classes, bitstream structures and encodings, and
different mechanisms used to compress files or bitstreams. The creators
of proprietary video file formats have no intention of registering their file
formats for wide use, so the structure of their files is not necessarily
available to the public. The identification of file structure and file
signatures while analyzing the various proprietary video file formats is the
main focus for the research in this thesis.

9. Video Container

 A video container is a file that contains some form of video data. It
is a metafile format and a member of the multimedia container formats,
which is a file format that can store multiple types of data. In the case of a
video file, multiple data streams are interleaved and contained in one file.
In addition to the video, this can include data for audio and subtitles, as
well as the information needed to properly synchronize the data for
playback. The container defines the structure of how the data is stored
and how the computer identifies the file. For example, AVI containers are
structured into “chunks.” One of the chunks contains metadata about the
video for details such as the aspect ratio and frame-rate while another
chunk contains the encoded video data. Similarly, Quicktime/MP4 files
are ordered into “atoms,” while MPEG transport stream utilizes “packets,”
and JPEG uses “segments.” Each of these containers has a defined file
structure that a program uses to parse out data for playback. The file
format ensures that the software will know where to find the data it needs.

 Many different video container formats have emerged over time
from a number of different organizations and companies as more
sophisticated ways of structuring video containers have been developed
and as formats have become standardized. Most developers borrow
heavily from one another in an effort to create their own format that will

 28

compete with their rivals. Some of the most popular video containers are
listed below with their associated file extensions:

• QuickTime (.MOV, .QT)
• Video for Windows (.AVI)
• DivX (.DIVX)
• RealVideo (.RM)
• Windows Media (.WMV, .WMA, .ASF, .ASX)
• MPEG-1 (.MPG, .MPEG, .MPE)
• MPEG-2 (.VOB)
• MPEG-4 (.MP4)
• Ogg (.ogg)
• Matroska (.mkv)
• Flash Video (.flv)

 Containers are typically identifiable by their file extensions. People
commonly mistake the container for the codec, usually because certain
containers are synonymous with a particular codec. A container can
technically contain any type of data independently of the codec. Today,
perhaps the most common association between codec and container is
the H.264 codec and the .MP4 container. The .MP4 file is a standard
multimedia container format established by ISO/IEC as Part 14 of the
MPEG-4 standard, however an .MP4 file can technically contain video
encoded by other codecs. The MPEG-4 container was made to have
similar features to that of the Apple Quicktime container. The .MP4
container was built upon MPEG standards combined with Quicktime
features. Apple has even dropped the .MOV Quicktime file format in favor
of the .MP4 format. The once popular AVI container was designed to
compete with Apple’s Quicktime file format and is therefore very similar in
design. Listed below is a diagram of how the AVI container is structured:

 29

Figure 15 AVI File Format
The FourCC identifiers are shown of the left with a description of the

corresponding encoded data content on the right.

 The AVI container was later dropped in favor of the Advanced
Systems Format (“ASF”) container, which was Microsoft's newer
proprietary digital audio/video container format. Windows Media Video
(“WMV”) is technically one of several proprietary compression formats
created by Microsoft to be used with the ASF container, but the extension
of an ASF file using the WMV codec is almost always WMV. In fact, the
.ASF extension is completely interchangeable with the .WMV extension.
Similarly, compression formats developed by DivX have become
synonymous with AVI containers over the years. Historically, this is
because DivX was a hacked version of the Microsoft MPEG-4 Version 3
video codec that became commonly used in pirated AVI versions of
movies. Later on, the DivX compression format was legitimized as two
different compression formats: one that is MPEG-4 Part 2 compliant and a
newer one that is M-PEG4 AVC/ H.264 compliant. DivX has since created
the DivX Media Format (“DMF”) media container, though the DivX
compression format is still commonly found in AVI containers.

 Included in the video container is data that indicates the codec that
was used to encode the video. Even if a software media player can parse
out the video data from the structure of the container, it may not have the

• RIFF 'AVI ' Audio/Video Interleaved file
o LIST 'hdrl' Header LIST

§ 'avih' Main AVI header
§ LIST 'strl' Video stream LIST

• 'strh' Video stream header
• 'strf' Video format

§ LIST 'strl' Audio stream LIST
• 'strh' Audio stream header
• 'strf' Audio format

o LIST 'movi' Main data LIST
§ '01wb' Audio data
§ '00dc' Video frame
§ ...

o 'idx1' Index

 30

proper codec to decode the video data contained therein. This is why the
codec is the essential part for the playback software to interpret a video
file.

10. Issues with DCCTV Evidence

 A primary reason that DCCTV manufacturers develop proprietary
file formats is to maintain commercial control over the DVR format to
prevent third parties from copying their files. The motive for creating these
unique formats is usually done in the name of developing a ‘tamper-proof”
video for their customers. The result of having so many proprietary video
files is that the forensic video analyst frequently has to struggle to find a
means of video playback for the growing variety of video formats on the
market.

 There are many different types of DCCTV video formats currently in
use. Videos can come in the form of executable files that are completely
contained in one file. These do not require the investigator to search for a
means to play the video, but this can be extremely limiting since the
analyst has no choice but to use the playback software that is built into the
video. This format also requires the analyst to convert the video into some
kind of open file format if they intend to use forensic video and image
software for analysis during their investigation. Some DCCTV videos are
in an open format, but require proprietary codecs that are only available
from the manufacturer. Other video formats are made up of multiple files
that must all be present in order for the video player to playback the video.
These are perhaps the most problematic video types to deal with because
it is difficult to understand how the video files work together. Some file
structures rely on two or more separate files for the file containing the
encoded video data stream to be interpreted properly by the player.
These proprietary video types are so unique that it could be a great
challenge to backwards engineer the file format. There is little information
available for these formats and the video software designed to play the
video file is almost completely necessary for their playback.

 Many video formats are known to have “.idx” files, or indexing files,
which contain text to be superimposed on the video and the cue
information needed to synch the information to be displayed. This can
contain information such as date and time stamps, camera number

 31

identification, etc. Some proprietary players will not play a video at all if
this file is not present, even though this information is not vital to the
playback of the video. Playback software like this is hardwired to only play
a video file when its associated .idx file is present, despite the fact that the
video file is otherwise readily playable. The growing list of file extensions
used for proprietary video files is often times of little help in identifying the
correct proprietary software required for video playback. One the most
popular generic file extension used in DVR units is “.dvr”. This does not
mean that there is a particular file format associated with .dvr files. In fact,
numerous different manufacturers use this generic extension for
completely different video types. There are many other file extensions that
are used and reused with video file formats that are completely different
from one another.

 The majority of DCCTV manufacturers are located in Asia. The
manufactures are known to take an operating system (“OS”) that is
already used in one DVR model, and repackage it in a different model. It
is commonplace to find the exact same OS used by completely different
manufacturers. This is because some of the companies that manufacture
the DVR units are using the same software vendors for their products.
Because of this, it is not uncommon to see the exact same graphical user
interface (“GUI”) in multiple DCCTV units from different manufacturers.
Often times, the only difference is the logo present on the GUI. Even so, it
is common practice for the output video file from this seemingly similar
software to be changed slightly as to differentiate it from other DCCTV
units using the same software. This can be frustrating since the expected
video format output from a familiar GUI may prove to be incompatible with
other playback software known to work with videos retrieved from the
similar GUI. This is even true of newer versions of the same DCCTV
model. Everything may appear to be identical on the surface, but the
exported video may have been changed just enough to be incompatible
with previous versions of the playback software.

 Currently, the only way to find information associated with a
particular DCCTV video file is through time-consuming research. This
information can come from a number of different resources including
printed DVR manuals, manufacturer websites, and online forums.
Forensic analysts have even had to resort to calling the manufacturers in
foreign countries in an effort to find support for discontinued models. As

 32

manufacturers merge or go out of business, support for some certain
devices becomes nonexistent, including any availability of unique
proprietary video player software.

11. Forensic Video Analyst Resources

 There are a few resources available online to aid the video forensic
analyst in finding useful information about proprietary DCCTV video files
and the proprietary video playback software and codecs needed to watch
them. The content of these websites is generally made up of information
contributed by the community. The most popular resources for information
about DCCTV proprietary video files are described below.

Media-Geek: The Forensic Multimedia Community
(http://media-geek.com//)

 This website consists of a section that is available to the general
public, and a section that requires membership to view. To qualify for
membership, one must be a government employee, whose current duties
include forensic analysis of multi-media related evidence, including but not
solely limited to sworn Law Enforcement officers. Employees of private
sector companies who regularly provide related forensic analysis services
may also apply to become members. Membership is also available to
vendors of DCCTV hardware and software for their expertise so long as
the website is not used to market their products or solicit customers.

 Among the advantages to becoming a member is the creation of a
profile, private messaging documents and downloads library, private
forums, forensic community events calendar, industry “news flashes,” and
Wikis, including a DVR codecs Wiki, DVR documentation Wiki, and DVR
extensions Wiki. The Wiki pages are perhaps the most useful resources
for the identification of proprietary video files and supporting information
about them. For some of these files, there are even video player
downloads associated with them and documentation. The forums can
also be a good source for the exchange of information within the
community concerning information about DCCTV systems. The forums
are a good place for the video forensic community to exchange knowledge
about video file types and manufacturers. This also provides a place
where a forensic analyst can address specific questions about video file
playback to the community.

 33

FourCC
(http://www.fourcc.org/)

 The FourCC website was first created as a resource to offer
information about FourCCs for raw pixel formats, but 99% of the site’s
traffic was directed at video codecs. At the time of writing this paper, there
are 320 codecs listed on the site. The content of the site is derived from
information sent to the site administrators from the general public
concerning video codecs. The video codecs are listed by their FourCC
and most are accompanied by a short description. Some of the codecs
are even available for download from the site.

CCTV Forum: CCTV Surveillance Discussion
(http://www.cctvforum.com/)

 The CCTV Forum is not specifically designed to deal with the
problems associated with proprietary video playback. The site is intended
for the use of security professionals, including links to the International
Security Conference and Exposition (“ISC”) and the Army Surveillance
Information System (“ASIS”). Even so, many of the forums do discuss
video file formats and their playback. Many of the discussions are about
the implementation and installation of security systems. The site also
allows for vendors to advertise their CCTV products. The involvement of
vendors on the website can also provide a conduit to request information
regarding their legacy products.

Sustainability of Digital Formats: Planning for Library of Congress
Collections
(http://www.digitalpreservation.gov/formats/index.shtml)

 An additional resource used for this thesis was the Library of
Congress Digital Preservation website. The goal of this website is to
ensure the long-term preservation of digital content by maintaining an
inventory of file formats, primarily media file formats. The site contains
detailed documentations about standardized file formats, including
descriptions, a their history, and file signatures.

 34

 Usually the primary resource for the forensic video analyst is their
own record of video files and players they have collected through
experience. A log documenting the different video file types and their
proprietary video players can be the only place to find some of the
information certain file types. It is also not uncommon for a forensic
analyst to keep any video player software that he or she encounters. The
majority of the research conducted for this thesis was done at the Denver
Police Department Crime Lab in the forensic imaging department.
Unfortunately, most forensic video analysts do not have the unique
privilege of having such a great resource allowing for the examination of a
wealth of different proprietary video file types and players. Therefore,
every attempt was made to take advantage of this opportunity for
collecting as much information about as many different file formats as
possible.

12. DCCTV Video Format Database Research

 A sampling of over 50 real case DCCTV surveillance evidence
video files was analyzed to guide the scripting of the program. The
Denver Police Department provided access to their archived video
evidence files to aid in this research. Their 2008 and 2009 archive cases
were used for the research since they were among the oldest video
surveillance archives available. They were chosen in hopes of providing
video files from older DCCTV units and to avoid handling evidence that
may be part of an active investigation. The video files were loaded into X-
Ways Win-Hex v.16.3 software to examine the file content at a hex data
level. Information regarding the origin of the evidence was not always
available with the video file, so these file types were researched later for
any available information.

 To start the process of data collection, files were selected in date
order starting with the 2008 archives. As repeat video file types were
encountered, it was decided to target file types based on either their
obscure nature or their popularity. The reasoning for this was that the
obscure video file types could be examined for new kinds of file structures
and header identifiers. This provided insight into the extent of variety
found among proprietary video files. By examining as many of the popular
video files as possible, it was possible to observe the consistencies and
inconsistencies found among a particular file type. Examination of these

 35

files demonstrated how proprietary video files from a particular DVR unit
change over time as newer models are introduced and newer software are
implemented.

 File header data was typically found within the first string of the hex
data. Some of the header strings were very apparent, and some not at all.
Since there is no standardization for header data among proprietary video
files, general criteria for what would be considered a video file unique
identifier string had to be developed. It was determined that for a string
to be considered as the possible file signature, it had to satisfy a
combination of the following:

• readable ASCII characters
• location within 1,000 offsets of offset “0”
• consistent among similar file types
• string is isolated (often surrounded by white space)

 There were some video files that satisfied all of the criteria, which
were considered to be very strong indications of being a reliable identifying
header string for a specific file type. The video files that did not appear to
satisfy any of these criteria were not added in the script. Some of the
video files that did not appear to contain an obvious identifying string had
to be compared to other video files from the same DVR unit. It was only
by comparison of files with similar file extensions that some type of
identifier could be verified. Some of the evidence archives only had one
video file available for a particular file type so the suspected identifying
strings could not be verified, due to the limitation of availability. The
suspected unique identifiers were documented anyway, along with their
offset location. This was done so that future research could confirm if
these strings could be used to accurately identify the file type.

 The script also includes all known codec FourCCs. This includes
all registered video codec FourCC codes, and all FourCC codes that have
been identified by the video forensics community. This part of the list is
easily expanded as new video codec FourCCs are discovered.

 36

Figure 16 Hex Data for a .cx3 File (1)
The first string in this header could possibly be the identifier for a .cx3 file.

The “DIVX” FourCC indicates the codec and the “XviD0039” below that
indicates the DIVX version.

 The example in Figure 16 is the hex data for a .cx3 file. No other
information was associated with this evidence video file, which is not an
uncommon scenario for the forensic video analyst in the real world. By
using the unique identifier criteria, it is possible to try to identify the string
that makes this video file recognizable as a .cx3 video container. There
are no readable ASCII characters besides the familiar “DIVX” FourCC,
which is followed by another string, “XviD0039,” that indicates the version

 37

of the DIVX codec that was used. It is possible that the first string can be
used as a unique identifier, but it is impossible to tell without verifying this
by comparison with another .cx3 file. The hex data from a second case
involving a .cx3 file is show below.

Figure 17 Hex Data for a .cx3 File (2)
This appears to verify the first string as an identifier for a .cx3 file. The

“DIVX” FourCC indicates the codec and the “XviD0046” below that
indicates the DIVX version.

 The hex information from this second .cx3 file appears to verify the
string from the first .cx3 file as a reliable identifier for this file type. In fact,
the string directly under the first string appears to be consistent between
both files as well. Because the first string is so unique, it is not completely

 38

necessary to use another string for identification. The hex information
shows that the only major difference between these two versions of .cx3 is
their codec. All the information pertaining to this file type and codec would
be entered as part of the script with supporting information for both.

 Some DCCTV systems output a batch of files that are all needed
for native video playback. A popular company called EYEMAX has DVRs
that output multiple files for their video player.

Figure 18 EYEMAX DVR File Output
The native file export from an EYEMAX DVR is a series of files with the

extensions .m4v.gix, .ulaw.gix, db4, and .mu.

 The file containing the video data is easily identifiable by its large
size. In this case, it is the .mu file.

 39

Figure 19 Hex Data for .mu File
The FFmpeg codec is used in this video format.

 Although this video contains a familiar video codec, it is still unclear
how the other three file types associated with the video file work together.
The presence of multiple files associated with a video file is not
uncommon. These files associated with this video type could easily be
documented in the script to be included with the output for such a video
file type.

 40

Figure 20 Hex Data for .mp4 File (Not Actual MPEG-4 File)
This file appears to be in the MPEG-4 container, however the hex data

reveals that is not truly an MPEG-4 file.

 It is also common to see files that appear to be in more open file
formats, but are actually proprietary. This is also used to market DVRs
that claim to use a file container or codec such as MPEG-4 and H.264, but
that are actually still in proprietary formats. The example above shows a
file with the file extension .mp4 used with a MPEG-4 container. It is
obvious from looking at the first string in the hex data that this file is not in
the true MPEG-4 file container as outlined by the ISO/IEC standard. The
manufacturer has simply used the popular extension on for their own
proprietary container since it is recognizable. Furthermore, the absence of
any FourCC designating the codec makes it impossible to determine how
the video is encoded.

 41

 Similarly, this file displayed below uses the extension .264 and the
company advertises the unit as having H.264 capabilities. This could very
well be true, but the software still utilizes a proprietary file format that
would require the use of a proprietary video player only available from the
manufacturer.

Figure 21 Hex Data for .264 File
This manufacturer claims to use H.264 technology. The video format is

still in a proprietary format.

 The .264 file extension is in use by more than one manufacturer,
but the file headers have been observed to be the same within this
research. It was also found that the playback software that comes with
the DVR units from each of the manufacturers is also the same. Any
video file with this unique identifying string in the header is likely to be
playable with the same video playback software. The concept for the
script is based on that fact.

 Another DCCTV video format that was once very popular is the
.AJP file. This file type is a well-known Motion JPEG 2000 video file type,
therefore the files did exhibit the same file structure.

 42

Figure 22 Hex Data for .AJP File
The header of the .AJP file does not appear to contain any obvious

identifying string.

 43

Figure 23 Hex Data for .AJP File (Start Section)
This is the beginning of a new section, or “chunk.” This specific structure

could be used to identify this particular video file type.

 44

Figure 24 Hex Data of .AJP File (End Section)

This is the end of a section, or “chunk.”

 45

 The recognition of a structure for files such as this can be used to
identify different software for playback. To deal with the category of
videos utilizing intraframe compression such as MJPEG and MJPEG
2000, functions were built into the script to identify the components the
unique identifiers to designate the JPEG start, JPEG end, Quantization
table, Huffman table, Application Segment, Baseline DCT, and the Start of
Scan.

Figure 25 Scripting for Intraframe Compression Detection
The elements of a video file using intraframe compression can be parsed

out by the script.

 This can be very useful during analysis since it allows the forensic
analyst to extract individual frames, or pictures, from the video. This can
be done if the proper playback software cannot be found or if the video file

if length(string2)==2
 if string2==char('ˇÿ');
 disp(['Offset: ',dec2hex(k-1),' -> FFD8
= JPEG Start']);
 elseif string2==char('ˇŸ');
 disp(['Offset: ',dec2hex(k-1),' -> FFD9
= JPEG End']);
 else if string2==char('ˇ€')
 disp(['Offset: ',dec2hex(k-1),'
-> FFDB = Quantization Table']);
 end
 if string2==char('ˇƒ')
 disp(['Offset: ',dec2hex(k-1),'
-> FFC4 = Huffman Table']);
 end
 if string2==char('ˇ·')
 disp(['Offset: ',dec2hex(k-1),'
-> FFE1 = APP1']);
 end
 if string2==char('ˇ¿')
 disp(['Offset: ',dec2hex(k-1),'
-> FFC0 = Baseline DCT']);
 end
 if string2==char('ˇ⁄')
 disp(['Offset: ',dec2hex(k-1),'
-> FFDA = Start of Scan (SOS)']);
 end
 end
end

 46

is found to be corrupt. The frames could be reorganized into a useable
format for playback or the individual frames could be examined separately
as pictures without relying on the playback of the entire video.

13. DCCTV Proprietary Video Playback Proposal

 The proposed solution to the issues associated with identifying the
means for the playback of proprietary DCCTV video is the creation of a
program that can provide supplementary information about the video file
by indicating the proprietary codec used or the proprietary playback
software required to view the video based on data stored within the file
itself. The requirements for such a program would be the ability to
properly recognize a video file by some sort of unique identifier. The
identification of a file signature is proposed in this solution. The program
would also require a large database of information about all DCCTV units
that are available on the market. The database would require constant
upkeep in order to stay relevant within the rapidly growing and unregulated
DCCTV industry as newer proprietary file formats are introduced.

 For this thesis, a script was built in MATLAB software to serve as
the preliminary groundwork for such a program. The central function of
the script is to examine the video file at the hex level to search for file
header strings that serve as unique identifiers for the file type. This
method was chosen over using DCCTV video file extensions to identify the
file type since the extensions `have proven to be an unreliable source for
identification. This is mostly due to the fact that the manufacturer of the
proprietary file type can use any file extension it chooses, but does not
have exclusive use of the extension. That is why it is not uncommon to
find two completely different video file types with the same extension. For
example, the generic “.dvr” and “.264” extensions are used for many
different file formats that all require different video playback software.
Because of this, it is only possible to suggest a number of different
proprietary video players that are known to work with that particular
extension, but not possible to say specifically which player will playback
the video.

 It became evident throughout the research process that some file
formats do not appear to contain obvious unique identifier strings
embedded within the file, therefore, a component was added to the script

 47

to identify the file type by extension as a last resort. The output for the
positive identification of a file type by its extension is the suggestion of a
“possible player,” since the extension is not a completely accurate way to
identify a file type, and therefore the proper video player could not be
identified with absolute certainty. The list for the “possible player” could
also include many video players that do not work, which would require
some trial and error on the operator’s part. This is also not a robust
means of finding the correct player for playback since a file format and its
playback software may have numerous versions that are not backwards
compatible. A video file may appear to be a certain file format based on
its extension, but not compatible with certain versions of the playback
software developed by the manufacturer. This is why using the file
signature that the program uses to identify the file is the primary goal of
the script. Computer programs typically look for certain file header
information to quickly identify the file type. This information is typically
stored in the very beginning of the file data, however some file formats are
known to store this information at the end of the file or even embedded in
some other specific location within the file.

 In light of the research, it was decided that the script would look at
three different components of the video file in an attempt to identify the
correct playback software needed to view the video. The primary search
is to identify the file type by its file signature. The secondary searches are
to identify the codec by FourCC, if present, and also to examine the
extension of the video file. The process of the script is listed on the
following page:

 48

Figure 26 Script Procedure Block Diagram
This block diagram demonstrates the process of the script. The primary
and secondary means for video file identification are labeled on the right.

Video	
 Evidence	
 FIle	

• Select	
 video	
 1ile	
 input	
 for	
 processing	

Read	
 Video	
 Evidence	
 File	
 Hex	
 Data	

File	
 Signature	
 Search	

• Search	
 hex	
 data	
 for	
 known	
 identi1ier	
 strings	
 used	
 in	
 the	

video	
 1ile	
 header	

Codec	
 Search	

• Search	
 hex	
 data	
 against	
 FourCC	
 list	
 of	
 known	
 codecs	

File	
 Extension	
 Search	

• Search	
 for	
 known	
 extension	
 match	

Display	
 Results	
 Onscreen	

Create	
 Text	
 File	
 Containing	
 Results	

• Text	
 folder	
 is	
 created	
 in	
 folder	
 containg	
 original	
 evidence	

Primary
Search

Secondary
Search

Secondary
Search

Input

Output

 49

 When the script is run, the user is requested to select a video file by
its path. Once loaded into the software, the hex data is scanned for
specific strings that have been programmed into the script that are unique
identifiers for certain file types. The strings are also searched at their
specific offset locations. If any of the unique identifiers are discovered in
the hex data, the output is information relating to that video format that is
displayed onscreen. The next process is to search the hex data for known
codec FourCCs that are listed in a text file. The FourCC codes were listed
in a text file so that new ones could easily be added. The script displays
any FourCCs that are identified and the offset location. Finally, the script
looks at the extension of the video file to determine possible video players
known to work with files using that extension, which are then displayed
onscreen. All the supporting information that is displayed on screen is
also written to a text file that is created in the folder containing the video
file. The information primarily includes manufacturer information, the
manufacturer website link, and suggested video playback software, as well
as any other relevant information. By including an arsenal of video
playback programs and video codecs with the script, the operator needs
only to navigate to the proper files required to play the video evidence.

 The original concept was to have a running list of unique identifying
strings located in a text file. The intent was for the list to provide a user-
friendly way to copy and paste identifying strings into an expandable list.
As a file signature string was determined by the user to be consistent and
reliable as a unique identifier for a file type, it could be added to the text
file. The text file would then serve as the search list for the script against
the video file hex data. However, many of the strings found within the
headers contained characters below 32 in the ASCII character set, which
are nonprinting control characters such as tab, backspace, and end-of-
line. The characters above 128 make up the extended ASCII characters.
Due to difficulties with processing these types of characters, a different
approach would be needed to handle the header strings that contain these
characters. Also, some header identifier strings were found to be as short
as two characters, resulting in many false positive hits. However, it was
observed that the file signatures were located at the same offset in the
header of the file. Another issue became apparent when the files that
require different playback software that appeared similar were observed to
have slightly different identifiers, often times in slightly different offset

 50

locations. For these reasons, it was decided that specific code must be
built into the script for each unique identifier, taking into account the offset
location. The result is a much more robust method for identifying exact
strings in their specific hex offset locations. The outcome has been a
higher accuracy of positive identifications.

 The scripting used to identify video codecs utilized the expandable
list concept that was initially intended to be used for identification of file
signature strings. This logic was much more suited to the identification of
codecs because they are always formatted as four-character codes, by
definition, and using human-readable ASCII characters. This avoids the
issues associated with non-printable ASCII characters and extended
ASCII characters within the script.

13.1. Script Implementation

 The framework for the script was built upon observations made
concerning different file formats. Many of the identifying header stings
were found in specific locations using non-alphabetical and non-numeric
characters. This led to the development of a very robust technique for
string identification by focusing on the specific location of the string. By
doing this, any combination of characters for the string could be used as
the identifiers. This reduces the chances of the script making a false
match.

 For example, the Windows Media Video (“WMV”) file signature is
“0&²u.fÏ.¦Ù.ª.bÎl”. The file signature is standard and always found in true
.WMV files. The file signature always begins at hex offset “0”. The table
below shows the characters of the file signature with their corresponding
hex data and offset locations:

Offset
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ASCII
character 0 & ² u . f Ï . ¦ Ù . ª . b Î l

Hex Value
 30 26 B2 75 8E 66 CF 11 A6 D9 00 AA 00 62 CE 6C

Figure 27 File Signature for .WMV File

The offset, ASCII character, and hex value assigned to the .WMV file
signature string.

 51

Figure 28 Hex Data for .WMV File
The file signature used for all .WMV files is displayed above.

 To create the most effective means of identifying this string,
particular characters and their specific offset locations were added to the
scripting as the identifiers for that file type. In the case of this file format,
the “0”, “u”, and “f” were used to represent the entire string at their specific
offset locations.

 52

Figure 29 Scripting for Identifying .WMV File
This portion of the script is an example of how unique characters are

handled in the identifying header string.

Figure 30 Onscreen Script Output for .WMV File
This is the information that is displayed on screen for the selected .WMV

file.

 The examples above show how the script can be used to identify a
WMV file based on its file signature. The supporting information can
easily be expanded to anything else that could aid the forensic analyst to
better understand the file format. The proprietary player is listed as the
Windows Media Player and the codec as been identified by the FourCC
“WMV3.” This information is also listed in a text file that is created in the
location of the video file.

if h(1)==char('0') && h(4)==char('u') && h(6)==char('f')
 disp(['File Signature: "0&≤u.fœ.¶Ÿ.™.bŒl"']);
 disp(['Player: Windows Media Player']);
 disp(['Information: File format based in ASF (Advanced
Systems Format) that wraps a video bitstream.']);
 fid=fopen(name12,'at');
 fprintf(fid,(['File Signature: "0&≤u.fœ.¶Ÿ.™.bŒl"']));
 fprintf(fid,'\n');
 fprintf(fid,(['Player: Windows Media Player']));
 fprintf(fid,'\n');
 fprintf(fid,(['Information: File format based in ASF
(Advanced Systems Format) that wraps a video bitstream.']));
 fprintf(fid,'\n');
end

 53

Figure 31 Text File Script Output for WMV File
This text file is created in the video file location and it contains the

information about the WMV that is displayed onscreen.

 The following example shows a file type with the extension .264
that was retrieved from a popular commercially available video
surveillance DVR.

DCCTV Report
-------------------Evidence-------------------
Date & Time: 22-Apr-2012, 19:32:39
Evidence file: My Movie.wmv

File Signature: "0&²u.fÏ.¦Ù.ª.bÎl"
Player: Windows Media Player
Information: File format based in ASF (Advanced Systems Format) that
wraps a video bitstream.

Offset -> 1005A Codec = WMV3

Offset -> 10139 Codec = WMV3

 54

Figure 32 Scripting for Identifying .264 File
This scripting identifies this particular video file with the .264 extension.

Figure 33 Onscreen Script Output for .264 File
The script shows that this particular video file type is known to be used by

two different manufacturers.

 The script is used to identify the proprietary video player that can
playback this kind of proprietary video file that uses the .264 file extension.
The “H264” FourCC has also been identified as the codec that was used

if h(81:84)==char('MDVR')
 disp(['File Signature: "MDVR96NT_2_R"']);
 disp(['Video Player: Playback v.2.3.0.5']);
 disp(['Used With: Night Owl Security Products:
http://www.nightowlsp.com/']);
 disp(['Used With: SVAT Electronics:
http://www.svat.com/']);
 fid=fopen(name12,'at');
 fprintf(fid,('File Signature: "MDVR96NT_2_R"'));
 fprintf(fid,'\n');
 fprintf(fid,('Possible Player: Playback v.2.3.0.5'));
 fprintf(fid,'\n');
 fprintf(fid,('Used With: Night Owl Security Products -
http://www.nightowlsp.com/'));
 fprintf(fid,'\n');
 fprintf(fid,('Used With: SVAT Electronics -
http://www.svat.com/'));
end

 55

to encode the video. As shown in Figure ?, this type of video file is known
to be used in both Night Owl, LLC and SVAT Electronics video
surveillance DVRs. The video player that can be used to play this video is
the software called “Playback v.2.3.0.5.” A text file was also created in the
video file folder that contains this same information.

 The next example of scripting shows how the script can use the
extension to help identify the proper video player.

Figure 34 Scripting to Identify .da File
This scripting demonstrates how the file extension can be used to suggest

a file player as a last resort.

Figure 35 Onscreen Script Output for .da File
The script identifies a “possible” video player based on the file extension.

if length(ext)==3
 if ext==char('.da')
 disp(['Extension: ',ext]);
 disp(['Possible Player: F4Viewer.exe']);
 fid=fopen(name12,'at');
 fprintf(fid,'\n');
 fprintf(fid,(['Extension: ',ext]));
 fprintf(fid,'\n');
 fprintf(fid,(['Possible Player: F4Viewer.exe']));
 fprintf(fid,'\n');
 end
end

 56

 The script is designed to recommend a “possible” video player or
multiple video players since the extension has proven itself to be
unreliable as a means for determining exactly what video player can be
used with the video file. This is considered the last resort for directing a
forensic analyst towards finding the correct playback software.

14. Future Research

 The highest priority for improving the script is to devise a better way
of better identifying possible file signatures so that the database can be
expanded. Upon realizing the difficulties in the task of properly identifying
file signatures, it became apparent that the methods initially used to
research the hex were not sufficient for all file types. Although many file
formats had readily identifiable file signatures within their headers, others
did not appear to have any kind of traditional header information at all.
Furthermore, it is possible that these types of files do not contain any kind
of identifier within the beginning for the file, but rather in some other fixed
location in the body of the hex data. For this reason, it would be beneficial
to create a script that automatically compares alike video file hex data for
similar strings. This would eliminate human error and allow for faster
identification of similar file strings. It is also more practical than manually
scanning large amounts of hex data for similarities. The main function of
this script would be to find identical strings in identical offset locations.

 The concept to use the ASCII character file signatures to identify
the file types was initially considered as the basis for determining unique
identifiers because it was believed that many of the files would have
human-readable strings. It was soon discovered that this is not always the
case. The possibility that some identifier strings could be human-readable
in a different character-encoding scheme was also considered.
Considering that some of the non-printing ASCII characters also presented
issues in processing, the script may be changed to rely on the raw hex
data strings as a means of identification, rather then their translated ASCII
characters. Using the “magic numbers” for identification would eliminate
any issues related to decoding the hex information to characters.

 Once a better way for comparing video files for their file signatures
is created, many more files have to be examined. The reliability of the
program depends on the verification of the file signatures built into the

 57

script that are determined by research and file comparison. The only way
to verify the suspected file signatures is by examining as many different
file types or a particular extension as possible. Once a file signature is
identified by automated file comparison, the file signature must be proven
to be consistent among a certain file type. Along with this, the
performance of the script has to be tested for accuracy. After the scripting
for more specific file types is incorporated into the script, the script must
be tested on as many files as possible to demonstrate its usefulness.

15. Conclusion

 The research conducted for this thesis has demonstrated how the
issues relating to the playback of proprietary DCCTV video files can be
remedied in part by the implementation of a computer program that
provides a centralized database for information concerning video format
types as well as supporting information for their playback. It is hoped that
the script can be developed to the point where many of the older formats
in use are incorporated into the script and that newer proprietary formats
can be examined for file signatures and easily added into the script. The
initial research done for this thesis has exposed many of the underlying
challenges associated with proprietary video file identification. As these
challenges were encountered, new solutions were also developed to
overcome them.

 Most DCCTV manufacturers were found to be somewhat consistent
in using their own proprietary formats in most of their DVRs, though some
did exhibit slight changes between older versions of their software and
more current versions. Since so many diverse file structures were
discovered, the script was approached by creating specific scripting
language for individual file types in order to ensure accurate identification
of the file formats. This method has proven itself very effective in the
preliminary tests. However, it is evident that an automated means of
identifying these file signatures would be much more beneficial and
practical.

 The new approaches that have been derived as a result of this
research could vastly improve the original concept for the proposed script
that was outlined in this thesis. Based on the accomplishments achieved
through the work for this thesis, the pursuit of developing a program that

 58

can accurately identify the majority of proprietary DCCTV video file types
to produce relevant supporting information, including the identification of
the correct video playback software and codecs, will be continued.

 59

References

[1] Nilsson, F., & Axis Communications. (2009). Intelligent
 network video: Understanding modern video surveillance
 systems. Boca Raton: CRC Press.

[2] Best Practices for the Retrieval of Video Evidence from Digital
 CCTV Systems. October 2006.

[3] Scientific Working Group on Imaging Technology (2009). Section 7:
 Best Practices for Forensic Video Analysis v.1.0. Retrieved
 January 5, 2012 from the International Association for Identification
 website: http://www.theiai.org/guidelines/swgit/index.php

[4] United States. (2010). Caught on camera. Quantico, VA: Federal
 Bureau of Investigation.

[5] Symes, P. D. (2004). Digital video compression: [featuring: JVT
 / H.264 / MPEG-4 part 10, the new compression standard]. New
 York: McGraw-Hill.

[6] Harte, L. (2006). Introduction to MPEG: MPEG-1, MPEG-2 and
 MPEG-4. Fuquay-Varina, NC: Althos Pub.

[7] Mitchell, J. L. (1996). MPEG video compression standard. New
 York: Chapman & Hall.

[8] Sullivan, G. J., & Wiegand, T. (2005). Video Compression - From
 Concepts to the H.264/AVC Standard. Proceedings of the IEEE,
 93(1), 18-31. IEEE.

[9] How Video Compression Works (2007). Electrical Engineering
 Times. Retrieved February 3, 2012 from the Electrical Engineering
 Times website: http://www.eetimes.com/design/signal-processing-
 dsp/4017518/How-video-compression-works

[10] FourCC (2011). FourCC.org. Retrieved January 25, 2012 from the
 FourCC website: http://www.fourcc.org/

