A METHOD FOR PERFORMANCE VERIFICATION OF FREEWARE HASH
UTITLIES USING MATLAB

by
SEAN ROBERT JACOBSON
B.S., University of Colorado Denver, 2011

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Science
Recording Arts
2013

UMI Number: 1544273

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 1544273
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

This thesis for the Master of Science degree by

Sean Robert Jacobson

has been approved for the

Recording Arts Program

by

Catalin Grigoras, Chair

Jeff Smith

Leslie M Gaston Bird

il

Date: 7/11/2013

Jacobson, Sean Robert, M.S., Recording Arts

A Method for Performance Verification of Freeware HASH Utilities Using MATLAB

Thesis directed by Associate Professor Catalin Grigoras

ABSTRACT

HASH values are the result of a cryptographic HASH function that can be used for security
or file authentication. Due to the rise of file exchange on the internet this value has become
even more important when working with digital evidence. In recent years freeware
programs have become available online for both commercial and personal use to check for
this value. However, there has not yet been a set way to verify these programs and to check
that the results they are giving is in fact accurate. This thesis proposes a series of tests that

allows for a user or agency to check the program and see if it is indeed accurate.

The form and content of this abstract are approved. I recommend its publication.

Approved: Catalin Grigroas

il

ACKNOWLEDEMENTS

Firstly I want to say thank you to my mom and dad, Teri and David Jacobson. You put me
through school and kept encouraging me. This thesis wouldn’t be possible without your
support. Secondly to my teachers Jeff Smith and Catalin Grigoras. For giving me great
advice on where to find information, putting up with frustrations, and being there when I
needed help, thanks. Leslie Gaston Bird a long time teacher for being on my committee
and reviewing my multiple drafts. And to my co-workers at the Bookworm, for putting up
with me during the final process and my stressful moments. Thanks so much for

everything!

v

TABLE OF CONTENTS

CHAPTER
L INTRODUCTION. ...ttt e e, 1
What are HASH Values. ..o 1
Common HASH Algorithms..........c.cooiiiiiiiii e, 4
Problems with HASH Values..........c.coooii 6
NIST and NIJ work with HASH...... ... 8
IL. PROPOSED FRAMEWORK AND EXPERIMENTAL PROCESS........... 10
1. CONCLUSION. L e 25
BIBLIOGRAPHY ...ttt 26
APPENDIX . 27

LIST OF TABLES

Table

1: Excel Document MDS5 ReSUILS.ouiuiieiiii e, 15
2: Excel Document SHA-1 ReSults........o.oiiiiii e 15
3: JPEG Image File MDS ReSUItS.couviiiiiiiii e e e, 16
4: JPEG Image File SHA-T Results........ccoooiiiiiiiiiii e, 16
5: PDF File MDS ReESUILS. ... cuuintiniitiii et 17
6: PDF File SHA-T ReSUILS. ...ouuineiiii e 17
7: Text File MDS ReSUILS.ot e 18
8: Text File SHA-1 Results.......oooiiii e 18
9: Word Document MDS5 ReSults.........coouiiiiiii e 19
10: Word Document SHA-T ReSults..........ovuiiiiiiiii e 19
11: WAVE File MDS5 ReSUILS.uuetieieii e 20
12: WAVE File SHA-T ReSUILS.ouuiniiiiiii e 20
13: MP3 File MDS5 ReSUILS.ttt 21
14: MP3 File SHA-1 ReSUILS.ontiiii e, 21
15: WMA File MDS ReSUILS.....onuiiii e 22
16: WMA File SHA-T ReSUlts.oouoinii e 22
17: AVI Video File MDS ReSUlts......oouoiiiiii e 23
18: AVI Video File SHA-1 Results.......ooooiiiiiii e 23
19: QuickTime Video File MDS Results.........c.ooviiiiiiiiiiiiei e, 24
20: QuickTime Video File SHA-1 Results........cccoviiiiiiiiiiiii e 24

vi

LIST OF FIGURES

Figure

1-1 The Original File and its HASH..........ooiiiii e 2
1-2 The Copy of the Orignal File and its HASH.............ooiiiiiiiii e, 3
1-3 The Original File and its HASH.........ooiiiii e 3
1-4 The Copied File Altered.c.ooniiiniiii e e 4
1-5 WHIRLPOOL Algorithm Diagram............c.ovuiiiiiiiiiiiiiiiieiiieieeieeeenans 6
1-6 The Letter of Recommendation..............o.oiuiiiiiiiiii e 7
1-7 The Altered DOCUMENL. ..ot 7
2-1 Excel Spreadsheet Example............ooo i 12
2-2 Al HASH Values MatCh..........ooiiii e 12
2-3 All HASH Values Match, COIUMNS........ooiiiitt e, 13
2-4 HASH Value Differences.ovuiuiiniiniiii e 13
2-5 HASH Value Differences, COIUMMN. ...ttt 14

vii

CHAPTER1

INTRODUCTION

In the emerging field of media forensics digital files are an important part of evidence
analysis. When working with a file such as video or an image file it is important for a
forensic examiner to know that the file that they are working with is the file that was
originally collected at the crime scene. In order to verify evidence integrity upon seizure

and throughout processing, HASH values should be calculated and compared.

In today’s society the internet has opened up avenues to free exchange of information. This
has also caused some problems with knowing whether or not the file received is the original
file or if there have been alterations made to it. The HASH value is a tool used to determine
whether or not the file’s contents is the same or if it is different. There are many different
kinds of programs that allow for a person to check the HASH value, some of them have
been authenticated by the forensic community and some are freeware programs. In this
paper eight different freeware programs are compared to two forensically sound programs

to determine whether or not they function the same.

What are HASH Values?

A HASH value is a product of cryptographic HASH function used to authenticate a digital
file [1]. The HASH function will take information from the digital file and run through an
algorithm to generate the value. In digital media each digital file should have a unique

HASH value. No other digital file should have the same HASH value unless it is a clone.

[2]

A HASH value should be unique to the file as it currently is. If a person were to make
alterations to the file the value would also be changed. In digital forensics the HASH value
has come to be more important with the rise in file exchange sites and download utilities
on the internet. Below is an example of this using a program called WinHex to check for
the HASH value. In Figure 1-1 and Figure 1-2 an example of this is given. A text file called
Test File was created and placed in WinHex to get its HASH value. Figure 1-1 is the
original file and Figure 1-2 is its copy.

Bex WinHex - [Test File.txt]
HEX

DS & & Op o #R2EE M - W S By o O
File Edit Test File bt | Test File - Copy.bt |

Dif=et o1 2 3 4 5 8 7 g 9 10 11 12 13 14 1%

gooooooo |54 68 69 73 20 B9 73 20 61 20 74 65 73 74 20 B6
oooooole 69 6C 65

' -
MD5 (128 bit) o5 =

...for Test File. tut:

0B 26E 31 3ED4ATCABI04E0E 9363E5R 357

Close

.

Figure 1-1: The Original File and its HASH.

HEX WinHex - [Test File - Copy.txt]

EF“E Edit Search MNawigation View Tools Specialist Options Window Help

DexEdESEFE | - BREERR | MBS EM —-Pes | S

Fle Edi Test File bt | Test HIe—Copy.txt|
Of f ==t o 1 2 2 4 5 & 7 2 9 10 11 12 13

goooooon 54 &8 &9 73 20 &9 73 20 81 20 74 e85 73 T4
oooooole 69 BC &85

’ .
MDS5 (128 bit) s]

_..far Test File - Copy.tst:
0B 2EE 312E D447 CARIN4EOE 93R9E GES57

Figure 1-2: The Copy of the Orignal File and its HASH.

In Figure 1-3 and Figure 1-4 one of the file’s contents have been changed. This has caused

the HASH value of that file to have also changed.

Test Filebd | Test File - Copybd

Of f=et n1 2 3 4 5 &6 7 g 910 11 12 13 14 15
gooooooo 54 68 69 Y3 20 69 73 20 61 20 74 65 Y3 74 20 66 This 1s a test f
nooooole 69 BC BS ile

.
MDS5 (128 bit) o3 =

...for Test File.txt:

0B 26E 31 3E DA 7CABIN4B EI3GIESB 5T

Figure 1-3: The Original File and its HASH.

Test File tt | Test File - Copy bd

Of f=e=t o1 2 3 4 5 6 7 8 %10 11 12 13 14 15
oooooooo 54 68 69 73 20 69 73 20 61 BE 20 61 6C Y4 65 72 This is an alter
oooooole 65 B4 20 F4 65 73 74 20 66 B9 BC BS ed test file

g a
MD5 (128 bit) =i

...Tor Test File - Copy.tst:
599995230 1EDS4340CE 24D CEE 4484F64)

Close

—

Figure 1-4: The Copied File Altered.

When working with digital information it is important for an examiner to know that the file
they are working with is the original. A HASH value, when checked, gives the examiner
the assurance that this is indeed a bit-for-bit copy and accurately reflects the original
evidence. The tables in Chapter two are the results of testing for errors in multiple HASH

checker programs.

Common HASH Algorithms

There are many different kinds of HASH algorithms used today. Some of the most common

have been CRC32, Adler32, MD5, SHA1, and WHIRLPOOL.

The cyclic redundancy check (CRC) was first invented in 1961 by W. Wesley Peterson, an
American mathematician and computer scientist. The CRC operates by working on
multiple blocks of data at one time. However, the CRC is not a cryptographic function. It
is a linear function. This means that there is a series of steps that the function needs to go

through in order to find the errors. The following is an example of a CRC algorithm [3]:

F(X) = Xn-kG(X) + R(X) = Q(X)P(X),

4

The Adler32 algorithm was developed by Mark Adler in 1995. Here the algorithm
calculates two 16-bit checksums and then links them together to form a 32-bit result. The
problem with this is that if the data to be analyzed (called a message) is too small than

errors will occur [4].

The Message-Digest-Algorithm 5 (MDS5) is a cryptographic function designed by Professor
Ronal Rivest in 1991 as a stronger version, more secure version of MD4. The algorithm

breaks down the message into 512-bits and processes it through the following function [5]:
Hi+1 =f{Hi,Mi), 0 <i<t— 1.

The Secure HASH Algorithm (SHA-1) is another cryptographic function developed by the
National Institute of Science and Technology (NIST) as a processing standard. The
algorithm has been widely used in government and industry security checks. The algorithm
also processes messages in 512-bit blocks. The following is an example of the SHA-1

algorithm [6]:
mi = (m;3 D mis D mia D mi-16) << 1.

WHIRLPOOL is one of the first freeware algorithms in the market today. Designed by
Paulo S. L. M. Barreto, a cryptographer from Brazil, it is a 512-bit hashing function that

works with messages less than 22°¢ in length. Figure 1-5 is a diagram of the algorithm [7]:

SNP; » H,
|

Figure 1-5: WHIRLPOOL Algorithm Diagram.
Source: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html!

Problems with HASH Values

Some of the most commonly used HASH values are the MD5 and SHA-1. However, it is
known that neither HASH algorithm is infallible. In 1993 collisions were found that caused
some concern with the MD5’s algorithm [8]. Collision means that two different documents
when put through the HASH’s algorithm will come up with the same value. Thus new
algorithms have been created to improve upon security. Newer values like SHA-2,

WHIRLPOOL and Tiger-192 have not caused problems just yet in testing.

A famous example of HASH collision is “The Story of Alice and her Boss,” created by
Magnus Daum and Stefan Lucks as a way of illustrating how two files can have the same
HASH value. Alice is an intern with Caesar and brings a letter of recommendation for

Caesar to sign [9]. The HASH value is shown in Figure 1-6.

letter_of_rec.ps

Of fzat O 1 2 3 4 5 6 7 8 910 11 12 13 14 15 -
DDDDDrﬂﬂn L | C C T T 41 [l | [y [l | CC T ":l11 2E 3'3 DD DA ZIPS_AdDbE_lD
00000 MDS (128 bit) el |78 32 20 30 %BoundingBox: O
00000 20 20 20 20 0 612 792

00000 20 0D OA 28 ¢
00000 ...For letter_of_rec. ps: ES 9C C1 A7 &B!ibM all_eilis
00000 A75F OB 29E E B 396500607 3853344E El FBE 7F 08 <E.-| F¥2h Toti |-
00000 13 43 78 52 Em3 wSa[i | £xR
00000 52 84 79 EB iZ3l6] | nEZRIve
00000 OF OB D9 CA % |5Wav ii2 UE
00000 Close D4 36 1E 20 ps¥E2el | tivle
00000 : BE D8 6B C8B vi.liolels SIOkE
ooood 94 BE 03 90 alé¥a |11 folp

—
00000192 29 28 Ef 42 A BALE 4D U0 E0O DS B9 SF F3 ES 9C 1(&B!ibH ali_eil
00ooo2os C1 A7 2F Ci B7 97 D& 46 7E AA C0 03 54 3E Bl FE AS-/E.| F~2h T:id
ooooozZ4 | 7F 08 45 6D 33 05 01 FC 53 EO SB EF A0 83 13 A3 Em3 uSafi n g

00000240 78 52 ED SA 33 CE 36 99 0D 9C 07 6E 45 SA 52 84 =xRiZ3I61 1 nEZRI
nnnnnN?Es | 78 FR PR BN ONR QK WE E7 0 WL FE A FC ORR OAA NR MR rrEsk 0&WEq- 304

Figure 1-6: The Letter of Recommendation.

In the scenario Alice also wants to have a security clearance and sets up an algorithm so
that two documents will have the same MDS5. The altered document for security is shown

below in Figure 1-7.

letter_of_rec.ps | orderps |

Of f=e=t o1 2 3 4 &5 8 7 8 9 10 11 12 13 14 15 -
or ! 131 2E 30 0D 0& %1PS—Adobe—1.0

] —) Iéj 6F 78 3A 20 30 ¥XBoundingBox: 0

0 20 20 20 20 20 0 e12 792

o ..far order. ps: 20 20 0D 0& 28 {

0 FA8 E5 9C C1 A7 &B!ibM ali_oAlAS

o AZRFFFOBZ9EENB35968CE607 385334469 “E Bl FE 7F 08 ~E. Fr~2h Ts4i 3
a 83 13 23 79 52 Em3 iSA[I 1 AR

0 DAa 52 824 79 EB iZ3I61 1 nEURIVE

0 424 OF OB D9 Ca -k 18Waw:ii2 TE

0 Close 76 D4 36 1E 20 psVH2a) | livde

] 53 86 52 BB CB wi:lioreEs SIXKE

0 Chororoee A B B B 1 S 3 5 S ¥ EF 94 BS 03 90 apaNa |11 Iinp
gooooiez 29 28 E8 42 A6 6A DE 4D 00 E0 D5 B9 5F FB ES 9C J(&B!ibM alil_s=il
gooonzosa Cl1 A7 2F CA B7 97 04 46 7E A& C0 03 54 3E Bl FE | AS~/E-1 Fr2d T:id
gooonzz4 7F 08 45 6D 33 05 01 FC 53 EO0 5B EF A0 83 13 A3 Em3 iSA[I 1 &
ANANN7?AN 78 C7? RPN A 27 F 26 99 NN a9 N7 AF 4G Ca G2 A4 «Ri73far 1 wF7Ra

Figure 1-7: The Altered Document.

How could this happen? Two files are not supposed to have the same HASH value right?

In theory a HASH algorithm is supposed to be collision proof. Two cryptographers, Bert
von Boer and Antoon Bosselaers, published a paper in 1994 explaining an algorithm that
could find collisions within the MD5 algorithm. In the paper they talk about how the search
algorithm can search for collisions in the MD5 algorithm by going through four different

rounds [9]. After its publication a group of scientists took it a step further.

Xiaoyun Wang and Hongbo Yu are both scientists at Shandong University China. In 2005
they published a paper about the different ways to create collisions and break HASH
functions such as MD5. Their results showed how easily the algorithm could be broken by
putting a file through different test rounds and generating the result [5]. Wang and Yu went
on to publish another paper about collision attacks against SHA-1 with Yiqun Lisa Yin

later in 2005 [6].

NIST and NIJ work with HASH

There has been significant work done with HASH values aside from testing for collisions.
The National Institute of Justice (N1J) began work with the National Software Reference
Library (NSRL) to create a program that would help a computer forensic examiner [10].
When working on a case with digital files a computer forensic specialist must determine
what files are the most important for analysis. The new Reference Data Set (RDS) contains
software profiles that can help an examiner find these files. In this dataset a file is given a
profile and a HASH value unique to the dataset allowing for faster results. This is an

ongoing project and is continually updated [11].

Because of the need for security, there is a need for “collision proof” algorithms. The

National Institute of Science and Technology (NIST) had a competition in 2007 for the

generation of the SHA algorithm, SHA-3. Sixty-four submissions were received for the
first round and were narrowed down to five finalists with the help of public opinion. The
hope was that after the selection the algorithm would be able to be collision-proof for at
least twenty years. The finalists were placed through a series of tests that would test for
strength and compatibility. The algorithms not only had to be able to handle large
messages, but shorter ones as well [12]. In 2012 the algorithm Keccak, designed by Guido

Bertoni et al., was chosen as the new SHA-3 algorithm.

When using a HASH algorithm through a software program it is important for the user to
know that they are getting accurate results. There is some good forensically sound software,
like WinHex, that is used by law enforcement when analyzing cases. Unfortunately, this
software is often limited to only law enforcement use. Freeware software allows for
personal and professional use. This paper proposes a way to test some of these programs

for validity.

CHAPTER 11

PROPOSED FRAMEWORK AND EXPERIMENTAL PROCESS

In the forensic sciences, it necessary to employ techniques and tools that are known to
generate repeatable and reproducible results. This means that the testing procedure must
be able to generate the same results when done by another person. During testing a series
is run more than once in order to make sure that accuracy is maintained without bias to

allow for reliability and consistency.

The following is a proposal when testing different freeware HASH programs for validity

and accuracy.

In this series of tests ten different kinds of file types were used. The files were chosen based
on commonality and what can be easily found in a personal computer. For each file type
one hundred files were created. The files were numbered from one to one hundred.
Example: Book001.xlsx, this is the first file for the Excel Documents. The file types made

WCEre:

e Excel Documents
e Word Documents
e JPEG Image Files
e Notepad Text File
e PDF Document

e MP3 Audio File

e WAVE Audio Fie
e WMA File

10

e AVI Video File

e QuickTime Video File

Once each file was created ten different kinds of HASH checker utilities were used to check
both the MD5 and SHA-1 HASH values. Eight of the programs were freeware programs
that can be found and downloaded from the internet and two programs were forensically
sound programs commonly used by forensic examiners. The reason for this was to provide
the ground truth when comparing HASH values to each other. These values will be called

root values. The programs used were:

e FTK, forensically sound program

e WinHex, forensically sound program
e Advanced Hash Calculator (AHC)

e Arpoon

e Febooti Hash-CRC

e HashTab

e HashGenerator

e MDS5-SHAT Hash Utility

e IgorWare Hasher

e SFVNinja

11

Each of the different file types were put into a program one at a time and then run three

times to for later comparison. The value was copied and placed into an Excel spreadsheet.

Three columns were labeled Test 1, Test 2, and Test 3 for each of the different runs.

L

1 |Fi|e Namel

Test1

| Test2

Book001
Book0o2
Book003
Book004
Book005
Book006
Book007
Book008
Book003

= oW s o Ra

w0

10

f- - lAan

a2363b2057ecbaf5f33a2150e2380f14
3c5fb96eedd8d02aa6ca00351a5fd32e
0294a31546a21f54368f58b0e25153925
61dc6135505a045c3f49629354609db1
Be60cea5dn34646bbd6a9794275084d13
1fa78edadab9c018ae42adedde3fo246
281d1ac305c116d497eeblae0eb872f7
ef49e68d7f1dad86dcdfcfeB37931867
2921ch466bb3524005b0dfafob17861a

B N S a3

a2363b20572cbBf5f33a2150ee380114
3c5fb96eedBd8d02aa6c800351a5fd32e
0294a31546a21f54368f58b0e25153925

61dc6135505a045c3f49629354609db1
Bed0ceasdn34646bbde9794275084d13
1fa78edadab9c018ae42adedde3fo246
281d1ac305c116d497eeblae0e6872f7
ef49e68d7f1daBaadcdfcfaR3 7931867

2921c6466bb35e4005b0dfafob17861a

T T T Lot P Lol g

Figure 2-1: Excel Spreadsheet Example.

D
Test3

a2363b20572ebB8f5f33a2150e2380f14
3c5fb96eed88d02aa6c800351a5fd32e
0294a1546a21f54368f58b0e25153925
61dc6135505a045c3f496293546b9db1
Bedlceasd634646bbd6e9794275084d13
1fa78edadab9c018ae42adedde3fo246
281d1ac905c116d497eeblaeles872f7
ef49e68d7f1das86dcdfcfeB3 7931867
2921c6466bb35e4005b0dfafob17861a

MARNAF AT - e e efe mAdTAR AR~ o oL

After all the HASH values were gathered and placed into Excel MATLab was used to
compare each of the value to ensure that they were the same. A script created by Catalin

Grigoras was used for this. The full script can be found in the Appendix.

In MATLab each freeware value was compared to the two root values, first FTK then
WinHex. The Excel documents were loaded in MATLab and the script was run. First the
three columns were compared to see if the values matched. If they did a 1 would appear in

the row and a message “All the HASH values match” would appear.

EDU>> SeanThesis0l

411 cll HASH walues
211 cl2 HASH
211 cl3 HASH
411 the c HLSH
A11 the o HASH values
11 c23 HASH wvalues
211 the HASH wvalues match.

fx EpUS>

the matech.

the values match.

the valuezs match.

]
[

values match.

match.

[§%]
[}%]

the match.

Figure 2-2: All HASH Values Match.

12

cl =

I T T = = = S SR SCRRY U Sy B
I T T = = = S SR SCRRY U Sy B
I T T = = = S SR SCRRY U Sy B

Figure 2-3: All HASH Values Match, columns.

If the values did not match, a 0 would appear in the work and a message “Check the HASH

differences” would appear.

EDU>> SeanThesis0l

211 the cl1l1 HASH walues match.
211 the cl2 HASH wvalues match.
A11 the cl3 HASH wvalues match.

211 the c2l1 HASH wvalues match.
A1l the c22 HASH wvalues match.
A1l the o23 HASH walues match.
Check the HASH differences.

fx EDU>> |

Figure 2-4: HASH Value Differences.

13

cl =

[TR T s O T i Y i O e Y O O o T v T s Y N i Y Y |
[TR T s O T i Y i O e Y O O o T v T s Y N i Y Y |
[TR T s O T i Y i O e Y O O o T v T s Y N i Y Y |

Figure 2-5: HASH Value Differences, column.

If a difference was detected the file would be run again through that HASH program and
then run through MATLab again. If a value of 0 appeared again then the file was run
through the program once more as well as MATLab. If the value was again 0 then it would
be assumed that there was something wrong within the freeware HASH checker and it

would fail the test.

Once all three columns had matching values the freeware file values were compared to the
root value. If the values all matched a value of 1 was given and a message “All the HASH
values match” would appear. If the values did not match a value of 0 was given and a
message “Check the HASH differences would appear.” If a difference was detected the file
would be run again through that HASH program and then run through MATLab again. If
a value of 0 appeared again then the file was run through the program once more as well

as MATLab. If the value was again 0 then it would be assumed that there was something

14

wrong within the freeware HASH checker. Results were recorded in an Excel spreadsheet.
A green X was used to indicate that all files matched and a red O was used to indicate

where files did not match despite being tested three different times.

Table 1: Excel Document MD5 Results
Checker Name FTK WinHex

FTK X

WinHex
AHC

Arpoon

Febooti Hash-CRC

HashTab

HashGenerator

MD5 SHA1

IgorWare Hasher

X |X |X | X | X | X |X | X | X |X
X |X |X | X | X | X |X | X |X

SFVNinja

Table 2: Excel Document SHA-1 Results

Checker Name FTK WinHex

FTK X

WinHex
AHC

Arpoon

Febooti Hash-CRC
HashTab

HashGenerator

MD5 SHA1

IgorWare Hasher

SFVNinja

X |X |X |X (X [X [X |X |X |X
X |X |X |X [X [X [X | X [X

15

Table 3: JPEG Image File MDS5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 4: JPEG Image File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

16

Table 5: PDF File MDS5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 6: PDF File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

17

Table 7: Text File MD5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 8: Text File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

18

Table 9: Word Document MD5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 10: Word Document SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

19

Table 11: WAVE File MD5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 12: WAVE File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

20

Table 13: MP3 File MDS5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 14: MP3 File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

21

Table 15: WMA File MD5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 16: WMA File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

22

Table 17: AVI Video File MD5 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MDS5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

Table 18: AVI Video File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

23

Table 19: QuickTime Video File MD5 Results

Checker Name FTK WinHex

FTK X

WinHex

AHC

Arpoon

Febooti Hash-CRC

HashTab

HashGenerator

MD5 SHA1

IgorWare Hasher

X |X |X |X |[X [X [X |X | X [X
X |X | X |X |[X [X [X | X [X

SFVNinja

Table 20: QuickTime Video File SHA-1 Results

Checker Name FTK WinHex
FTK X X
WinHex X X
AHC X X
Arpoon X X
Febooti Hash-CRC X X
HashTab X X
HashGenerator X X
MD5 SHA1 X X
IgorWare Hasher X X
SFVNinja X X

24

CHAPTER III

CONCLUSION

As seen in the previous tables there were no errors when gathering the HASH values from
these freeware programs. However, this represents only a fraction of the different kinds of
programs available online for download off of the internet. It is recommended that new
programs are tested in a similar way, if not the same way, before they are considered to be
verified. Testing other HASH algorithms, such as WHIRLPOOL, can help in the
verification process. As a reminder MD5 and SHA-1 used together helps to safeguard

against errors when safeguards are checked.

Freeware software is something that can be used to verify digital evidence from a working
case. Proper protocol for handling digital files should still be followed depending on the
Standard Operating Procedure (SOP) setup by a department. It is still recommended to
double check the HASH values with a forensically based program like FTK, but when

gathering evidence at a crime scene freeware programs can be used.

This thesis has proposed a way of testing freeware software for errors, but not for collisions.
Future tests can be done with the dataset to see if collisions occur when the HASH of each

file is compared to the other.

25

BIBLIOGRAPHY

What is a Hash Function? 2012, EMC Corporation. 7 Jul 2013
<http://www.rsa.com/rsalabs/node.asp?id=2176>

Lu, Wenjun, Avinash L. Varna and Min Wu. "Forensic Hash for Multimedia
Information." Media Forensics and Secutiry Il 7541 (2010).

. Peterson, William Wesley, and Daniel T. Brown. "Cyclic codes for error

detection." Proceedings of the IRE 49.1, 1961: 228-235.
Maxino, Theresa. "Revisiting Fletcher and Adler Checksums." (2006).

Wang, Xiayon, and HongBo Yu. "How to Break MDS5 and Other Hash Functions."
Lecture Notes in Computer Science 3494 (2005): 19-35

Wang, Xiaoyun, Yiqun Lisa Yin, and Hongbo Yu. "Finding collisions in the full
SHA-1." Advances in Cryptology—CRYPTO 2005. Springer Berlin Heidelberg, 2005.

The WHIRLPOOL Hash Function. Ed. Paulo S. L. M. Barreto. 2008. 7 Jul 2013
<http://www.larc.usp.br/~pbarreto/ WhirlpoolPage.htmI>

den Boer, Bert, and Antoon Bosselaers. "Collisions for the compression function of
MDS5." Lecture Notes in Computer Science 765 (1994): 293-304

Daum, Magnus and Stefan Lucks. Hash Collisions (The Poisoned Message Attack):
"The Story of Alice and her Boss". 26 May 2013 <http://th.informatik.uni-
mannheim.de/people/lucks/HashCollisions/>

10. National Institute of Standards and Technology (NIST), and United States of

America. "Forensic Examination of Digital Evidence: A Guide for Law
Enforcement." 2004

11. National Software Reference Library. 20 Aug. 2003. National Institute of Software

12.

and Technology. 7 Jul. 2013. <http://www.nsrl.nist.gov/>

Turan, Meltem Sonmez et al. Status Report on the Second Round of the SHA-3
Cryptographic Hash Algorithm Competition. NIST Interagency Report 7764, 2011.

26

APPENDIX

HASH Programs

WinHex
15 Wi Thesis i 03] SO SN RS . R T oG e
gﬂ\e Edit Search Navigation View Tools Specialist Options Window Help _ &
DEL&ER LBRhn ALLEHA B SeEl (&) 9
Fie Eit Thesis Audio Dm.mp3| |
Offsst 0 1 2 3 &5 6 7 & 9101112131415 _—
00000000 | 49 44 33 04 00 00 00 00 00 17 54 53 53 45 00 00 ID3 TSSE Thess Audio 0013
00000016 | 00 0D 00 00 03 4 61 76 66 35 32 2E 39 33 2E 30 Lavfs2 93.0 J\Thesis\Test Documerts\V
00000032 | 00 FF FE BO 44 00 0C 83 49 54 43 13 09 1A F0 79 §&'D 18TC &y
00000048 | 8F 07 A0 3C 63 6E 52 BS 8B 18 4C &5 0D CZ 4B 30 <coRpl L% &K Fie size 15K
00000064 EO 18 F3 19 B 01 0195 1D 2D FA CO 29 A0S0 06 &0, 1 —ih) P 20T bytes
00000030 | 62 24 05 CE 94 BO CO 44 63 40 60 6C 01 9F 41 71 be 11°A0c@'L Iig 00Srame: THESIS1 MF3
0000009 | 23 6F 54 40 81 8F 6D D5 &3 7h 91 6E 33 92 6C 2E #oT@ nliz'md’l
00000112 | 8E 90 23 47 3E BB 75 08 4F D0 40 02 00 08 4E B9 1 #Gowu 0BG Defaut Edt Mode
00000128 | C2 E0 B3 FA EE EF AD 01 3F F3 DO EF C4 CF 4D DC haruii 7uBiiiyi St ogial
00000144 | DC SB 92 22 10 71 67 F1 38 95 DC 42 21 39 C4 24 0" qemellBIsis P 7
00000160 | 44 FC FD DD CE BB BB 96 9F A7 10 DC 38 BF OF C3 Dig¥hul1§ 08 do reveres o
00000176 | 13 EE CB BF & S0 E7 FF E7 35 OF C5 34 8D FB F6 iEc2Poyes At 5
00000192 | 35 7C 7F 7F 44 §3 SE EE 94 0C 5B C4 42 40 82 0B 5| JSNil [ABO Credontine: 0471272013
00000208 | EO 41 OE 06 2F OE 06 EE 6E 7B OF 42 44 E2 7F 00 &k / in{1eDé 15042
00000224 | C5 FB BC 2F 4D F4 44 43 FD FD IC BC AB FD 00 22 AGM/MaDCiy * stwrtatine: O4T8/013
00000240 87 03 73 88 06 06 06 2C CA C2 EB BB 81 BB 9B 9F 1 sl B »ll T am
00000256 | FB BB A7 B3 D7 70 E2 09 DC E7 E3 45 9E 84 88 6F iSixpd UcéEllIo
00000272 | FA 7F AD 00 82 C2 26 E7 FC 28 BE 6E 61 04 17 D3 & IdciiIna © Herbudes A
00000288 | B8 4E 7F FS EG 18 18 1B FC 4D 3D IF 44 BE E6 EE IV 88 iM= Didei Loz D
00000304 | EE 10 00 40 0B S7 9D 07 92 B2 BE A9 BB AB GO F2 i @ 10,01
. Mode: hexadecimal
00000320 | DE B1 94 AC 6E E3 94 A9 97 E3 66 84 04 6 05 1B BEI-nel@I3i1 | ot CP 1000
00000336 12 OF 94 6D 22 # 5B JE 52 CB E2 26 0k 12 A9 91 In'I[.REsk © T s
00000352 | 6B 08 D3 44 FS GF AB 82 79 27 C2 4D Ch 0D BE ID & 0DB "Iy’ BE ¥ Byesperpage. T 162!
00000368 | 21 53 FE C3 E1 0 B6 1C EA §3 15 11 60 15 FECS 1SpEa &7 1 ph)
00000334 |10 C4 4139 56 E3 SE BL A3 2B 10 4E 3D E2 68 ¢k AASVANE:+ Neshd (Lt i
00000400 | 26 61 95 4D 23 84 1C ED 17 56 €D 77 64 DI CA FD faltifl % VandlES (BT i
00000416 |G DA 26 52 DS DL §F 10 6C BE 93 52 22 AC B4 15 TRON0 [~ Cpbont e
00000432 | 71 8F EB 96 77 47 72 D 34 DE 13 64 84 C7 05 96 g ElvGr—b 91 1
0000448 D7 0A B2 22 1A BB FESD 03 F6 0D 0B 0L 12C36C 1':b & Kl TEMPfolder. 448 GBfree
00000464 | EA 2E 2D BC 43 9E B3 C5 7C 4D CD 33 07 D6 E1 16 & -WCP*A|HI3 02 NUA™1\AppData!Local Temp
00000480 | 34 11 4F 6B 64 B6 DO 19 ED 4D ¢A CE 61 9 08 4F - Okd¥D i1 1 0
0000049 | AC B2 0C 99 40 C3 0E 2C 71 8E A3 12 54 35 FS 05 ~& 1 & .qIt T58
00000512 | 45 99 E9 9D 42 ED ED 46 20 7B ID B6 1C 45 05 64 EI¢ oiif {ME j
00000526 | 47 1C CF 79 &3 Db AL DI &4 6E EF 29 CE 87 EE 83 G Dyslifnidirin
00000544 B4 B4 C4 DD 67 7C 35 E7 77 72 3F 34 AF B EB 79 “*A¥g|ScvrM edy
00000560 | BD 68 77 F7 F7 65 E1 33 FC 36 D1 0D 86 83 2F 4& Mw=s=adiieh 1171
10000576 | A2 37 36 FS EA 61 B6 34 AD 0B 02 BB AB C1 06 B3 ¢7686aN - ek & Dsalntepreter [5
00000592 | FE 35 2D A% 7D 8C 39 9E CA 3B 21 1C 00 40 14 92 p5-8H9IE:! @ - BT
0000008 |72 05 BO 46 C7 FL C2 4D EO 42 2B &9 9E OF 56 93 r 'FHENAB+G] K| _ 168 () 17481
328 (2 460681
Page 1of 386 Offset: 0 =73 Block na S

27

IgorWare Hasher

>
© IgorWare Hasher

Options Help

File

Text

Verification data

Browse

SHA-1: | Verification file not found E]
MD5: | Verification file not found E]
CRC32: | Verification file not found E]
Hash Result
SHA-1:
MD5:] erc3z: [Copy | | save |
Ready_ . Calculate
MD5-SHAT1 Utility
- .
= MDS & SHA-1 Checksum Utility 1.1 ==
Help
Generate Hash
File: Browse
MDS5: | | [CopymD5 |
SHA-1: | ' [Copy SHA-T
Venfy Hash with Generated Hash (MD5 or SHA-1)
Hash:
T TT TT T TT T TT T TT TT T VW WV T "

28

Advanced Hash Calculator

-
#E Advanced Hash Calculator

File Action Options Help

* @ Jh

Q| 2| X % | @

Mew List | Add Files Clear Calculate | Settings About
Selected Files | Hash

Drag and drop files from Windows Explerer or click [Add Files] button

Hash: SHA-1

/

29

Febooti HASH-CRC

r -
i Book0OLxlsx Properties e S|

General | Hash /CRC | File Hashes I Security | Dietails I Previous "u"arsions|

E Mame: Book001.xlsx
A Location: J:YThesis\Test_DocumentsExcel_Files',

CRC32 cfa7eat3
MD5 82363b2057ecbsf5f33a2 150023507 14
SHA-1 2e742dfe45eb3a 1c2dbasode 332259 30fec 2345

215,92 KEfs View filz: |Book00 1. xdsx

[Compute ” Copy][Mare]

A e | Gt more modules

30

HashTab

- ==

@ Book00l.xlsx Properties

| General I Hash / CRC | File Hashes |Sec:1.|rrtjr | Details I Previous ‘u’arsinns|

Mame Hash Value

CRC32 CFE7EARS

MD5 AZ363B2057EEBEFSF3I3AZ150EE3S0F14

SHAA ZEF4ZDFE45EB3IATICZDBASIDEIIZART30FECZH. .
Settings

Hash Comparison:
|

0: Compare a file...

HazhTab «5.1.0: 22010 Implbitz S oftware [http:/ Aimplbitz. com]

| ok [Cancal || Aoy |

31

Hash Generator

~
& Hash Generator - www.SecurityXploded.com | = X

Hash Generator

All-in-one Hash Generator Software

Select Input Type: @ File Text
Select File Location: C:\windows\notepad.exe :j
w Generate Hash I
Hash Typé Hash Length Hash VYalue
Download More Free Tools from SecurityXploded Report

32

MATLab Script

clear

% cd directory

cd J:\Thesis\Test Documents\

$cd J:\Thesis\Test Documents\Excel Files\Excel Program HASHes\SHAlL
% cd

%$Get root file
[ExcelRoot, Root] = uigetfile ('*.xlsx', 'Select Root Excel File');
addpath (Root);

%Get comparison file

[ExcelCompare, Compare] = uigetfile('*.xlsx', 'Select Comparison Excel
File');

addpath (Compare)

[

% read the Excel files

% [sean0l, txt0l]=xlsread('Checksums.x1t");
%[sean02, txt02]=xlsread ('HASH CRC.x1t');

% [sean01l, txt0l]=xlsread('Excel File MD5 HASH FTK.xls');
% [sean02, txt02]=xlsread ('Excel File MD5 HASH WinHex.xls');

sean0l, txt0l]=xlsread('Excel File MD5 WinHex');
sean02, txt02]=xlsread (ExcelCompare) ;

$SHAL
[sean0l, txt0l]=xlsread (ExcelRoot) ;
[sean02, txt02]=x1lsread (ExcelCompare) ;

% compute the tables lines and columns numbers
[a01l,b01]=size (txt01l);
[a02,b02]=size (txt01);

% compare the HASH values of the Testl...Test3 columns

% txt0l

for k1=2:a01
cll (kl-1)=strcmpi (txt01l (k1l,2),txt01(k1l,3));
cl2(kl-1)=strcmpi (txt01l (kl,2),txt01(k1l,4));
cl3(kl-1)=strcmpi (txt01l (kl,3),txt01(k1l,4));

end

if prod(cll(:))==1

disp('All the cll HASH values match.')
elseif prod(cll(:))==

disp('Check the cll HASH differences.')
end

if prod(cl2(:))==
disp('All the cl2 HASH values match.')

33

elseif prod(cl2(:))==
disp ('Check the cl12 HASH differences.')
end

if prod(cl3(:))==

disp('All the cl1l3 HASH values match.')
elseif prod(cl3(:))==

disp ('Check the cl13 HASH differences.')
end

% txt02

for kl1=2:a02
c2l (kl-1)=strcmpi (txt02(kl,2),txt02(kl,3));
c22 (kl-1)=strcmpi (txt02(kl,2),txt02(kl,4));
c23(kl-1)=strcmpi (txt02 (k1l,3),txt02(kl,4));

end

if prod(c2l(:))==

disp('All the c21 HASH values match.')
elseif prod(c2l(:))==

disp ('Check the c21 HASH differences.')
end

if prod(c22(:))==

disp('All the c22 HASH values match.')
elseif prod(c22(:))==

disp ('Check the c22 HASH differences.')
end

if prod(c23(:))==
disp('All the c23 HASH values match.')
elseif prod(c23(:))==
disp ('Check the c23 HASH differences.')
end
% compare the HASH values of two different Excel files
for kl=2:min(a0l,a02)
for k2=2:min (b01,b02)
cl(kl-1,k2-1)=strcmpi (txt01l (k1l,k2),txt02(k1l,k2));
end
end

if prod(cl(:))==

disp('All the HASH values match.')
elseif prod(cl(:))==

disp ('Check the HASH differences.')
end

34

