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ABSTRACT 

 

Over the years, and through various research, it has been found there are many ways to 

analyze digital photography to determine its source camera for the original capture.  There are 

many factors to consider when analyzing photography, such as the device used, the 

environment of the capture, the software used to process the image and any alterations or 

editing which may have been done.  One very important technique of camera source 

identification is to analyze photo response non-uniformity (PRNU).  It has been found every 

camera, or more specifically every camera’s sensor, reacts differently in various conditions.  

The photo response non-uniformity acts as a fingerprint for a camera.  In this paper, we will 

explore the various techniques used to determine the source of a photo. We will also explore 

how the unique PRNU fingerprint responds to various situations, including environments of 

high saturation, artificial light and natural light.  Chapter 4 will provide the framework for 

analyzing such images through multiple case studies using different devices.  This study will 

provide a basis and explanation of how multiple levels of saturation can affect PRNU through 

the camera’s sensor during capture. 

The form and content of this abstract are approved.  I recommend its publication. 

Approved: Catalin Grigoras 
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CHAPTER I 

INTRODUCTION 

This thesis involves studying the background of camera sensors, how they react to 

environment, specifically pertaining to light sources, and above all, how a camera’s fingerprint 

reacts to saturation in capture.  There are many ways to authenticate an image; however, little 

studies have been conducted on the effects of saturation on photo response non-uniformity 

(PRNU), or a camera’s sensor fingerprint.  Every camera is different; this also pertains to 

identical makes and models.  It is important to understand how PRNU relates to image 

authentication and how it can be a useful tool in determining an image’s source.  Unfortunately, 

with any forensic science discoveries, there are also anti-forensics to consider.  As our 

community moves forward in digital imaging research, there are others who may be using the 

research for ill practice.  Determining the effects on authentication measurement techniques 

will allow an understanding of how one might employ anti-forensics in this area.  This paper 

will focus mainly on the effects of saturation on PRNU through original camera studies, both 

from digital still and mobile phone cameras.  It is here where light will be shed as to if and 

how one can intentionally produce false readings for personal gain. 

History of Camera Sensors 

It has been defined that an image is a variation of light intensity of a reflection as a 

function of position on a plane; however, to capture an image, means to convert the information 

to signals which are then stored on a device.  In electronic photography, there are two primary 

methods of storage: analog and digital.  In analog cameras, image signals from the camera’s 

sensor are converted and stored as video signals; whereas, in digital cameras, they are 

converted and stored as digital signals [1].  Before information can be converted into a signal 
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and stored on a device, the camera itself must have the proper hardware to do so.  The focus 

of this study will be digital cameras, mainly cameras in mobile devices.  There are many 

components to even the smallest of digital cameras, such as: lens barrels, multiple lenses, a 

lens mount and the information chip, as seen in Figure 1 [2].  Located on the information chip, 

is the camera’s sensor, or the heart of the camera.   

 

Figure 1   Camera Module of Mobile Phones 

 

To understand a camera’s sensor, one must first comprehend how information reaches 

it.  A camera lens is responsible for focusing light onto the sensor.  The image sensor converts 

this light into electronical signals.  As an image is captured, the light passes through the lens 

and falls onto the sensor, which consists of small photo-detectors.  These detectors are also 

referred to as pixels.  There are two different types of image sensors:  Charged Coupled Device 

(CCD) and Complementary Metal-Oxide Semiconductor (CMOS).  Regardless of type, 

sensors cannot distinguish between various light wavelengths.  In other words, the sensors 

cannot identify individual colors.  It is the responsibility of the filter in front of the sensor to 



3 
 

assign color to the corresponding pixels of a capture [2].  There are a few differences between 

the CCD and the CMOS sensor.  It was October of 1969, when George Smith and Willard 

Boyle invented the charge-coupled device (CCD).  This was widely used in digital 

photography in analog cameras because it produced very high quality images.  However, in 

the 1970’s the CMOS sensor was invented and offered higher speeds for transfer than the 

analog chip known as the CCD.  It is here where digital photography presented more options 

[3]. 

Digital Photography 

As previously mentioned, the heart of a digital camera is its sensor.  There is a very 

important difference in the two sensors known as CCD and CMOS.  The difference lies in how 

charges are passed through the pixels.  In the older CCD model, the pixel’s charge is transferred 

through output nodes and assigned to be converted into voltage.  From there, the charge is then 

buffered and sent off-chip as an analog signal.  In other words, the work of transferring light 

into a charge is outsourced.  The output’s uniformity is high which results in very high quality 

photographs.  All of the pixels can be devoted to light capture which aids in this higher quality.  

This contributed to the CCD model’s popularity.  This was the case until the CMOS model 

could be put into widespread production in the 1990’s.  The CMOS became popular because 

it required lower power consumption and lowered fabrication costs.  The CMOS sensor works 

by each pixel having its own charge-to-voltage conversion and includes amplifiers, noise-

correction and digitization circuits so the output of the chip consists of digital bits.  Because of 

this, the uniformity, or the quality, is lower; however, it is parallel and allows for higher transfer 

speeds [3].     
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There is a common thread between both the CCD and CMOS sensors, and that is the 

way color is read during capture.  As mentioned before, the sensor cannot see color on its own.  

It relies on a filter in front of the sensor to assign color to each pixel.  This filter is referred to 

as the Bayer Pattern color filter array (CFA).  The Bayer Pattern works by adding two green 

pixels, one red pixel, and one blue pixel in each square of four-by-four pixels.  By this process, 

each pixel can register one of the three primary colors and any missing color values can be 

gathered from its neighboring pixels [4].  So the process starts as a scene is captured, it passes 

through the lens of a camera, through the filters and then to the CFA.  Once color is assigned 

to the pixels of the sensor, the RAW image is then stored before processing and compression 

stages occur within the camera [5].  This digital photography flow can be seen in Figure 2. 

 
Figure 2   Digital Image Acquisition Pipeline 

 

Another common thread between the CCD and CMOS sensors are what is called sensor 

noise.  Both produce sensor noise; however, how each sensor responds and corrects this noise 

varies between the two sensor types.  For example, in very saturated, or highly lit 

environments, overexposure of individual pixels can occur.  This is referred to as anti-

blooming.  The CMOS sensor presents better noise correction in these situations as it handles 

signal conversion for each pixel individually; whereas, the CCD sensor handles signal 

conversion as a whole and is dependent on conversion off-sensor [6].  In a CCD sensor, there 
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are four different types of noise sources: Read Noise, Dark Current, Photon Noise, and Pixel 

Response Non-Uniformity.  Read Noise (RN) is noise caused by thermally induced motions 

of electrons in the output amplifier.  This noise can limit the performance of a CCD sensor, but 

can be reduced in lengthier read out times.  Simply stated, the faster the readout, the more noise 

is present.  Dark Current is a noise which is caused by thermally generated electronics in the 

CCD sensor, but can be eliminated by cooling the CCD.  Photon Noise is when the sensor 

detects photons in an unpredictable fashion.  To explain, photons are distributed to the sensor, 

pixel-by-pixel. So basically, Photon Noise is when the pixels acquire unequal amounts of 

photons across the entire sensor.  It is an uneven distribution of photons.  It is also referred to 

as “shot noise”.  Pixel Response Non-Uniformity, simply put, is a defect in the silicon of the 

sensor by the manufacture.  This is why every camera sensor possess a different fixed pattern 

noise.  To correct this defect and remove the noise, flat fielding, or frame averaging, can be a 

technique used [7].  Much like the CCD sensor, the CMOS sensor also has noise obstacles.  

Notable issues with the CMOS sensor are high-level dark current shot noise and reset noise. 

Shot noise has already been addressed with the CCD sensor; however, the CMOS sensor also 

possesses reset noise.  It is produced from thermal noise causing fluctuations in voltage in the 

reset level for any given pixel [8].  Due to the noises produced from sensors, it creates more 

characteristics to be studied in each individual camera.  These noises will be explained in more 

detail later. 

Authentication 

There are a many ways to determine an image’s source camera through image 

authentication.  Such information can be found in an image’s file structure, in an image’s 

source properties and through the image’s sensor pattern.  A lot of research has been conducted 
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around analysis of these techniques, to include using Exiftool to review file format/EXIF data 

and camera properties, using HxD, JPEGSnoop, X-Ways or MATLAB to run metadata 

keywords and even researching how a camera distinctively compresses its images.  These 

techniques and tools, although beneficial in providing file data information, are not to be 

considered authentication tools, but rather tools which aid in obtaining further information 

about an image’s source.  Some of these methods, however, such as analyzing hex data and 

metadata keywords, can be manually altered.  A camera’s sensor is the true fingerprint and is 

difficult to alter. A camera’s sensor is imperfect from the start, straight from the manufacture.  

No sensor, nor its pattern, is identical.  Each camera produces its own unique noise.  This is 

commonly coined as “camera ballistics”.  Much like scientists can determine which firearm a 

bullet was fired from, scientists can also determine which camera was used for a photo capture.  

There are many different types of camera noises to consider: temporal noise, photon noise, 

dark current noise, readout noise, quantization noise, spatial noise, fixed pattern noise, and 

photo response non-uniformity (gain noise).  Temporal noise is a combination of all noises 

which can change a pixel’s value.  In CCDs, the charge is shifted so many times during readout 

that temporal noise is considered the most dominate noise source for those sensors.  Photon 

noise, coined as “shot noise” earlier mentioned, is from an uneven distribution of photons into 

the pixels.  Dark current noise is created by electrons that evolve through thermal processes of 

the pixel.  This noise can be reduced by cooling of the sensor.  Readout noise is when the 

charge, or electrons, is converted into voltage.  This noise is directly related to readout speed.  

As previously mentioned, the faster the readout speed, the more noise is apparent.  

Quantization noise is when A/D conversion occurs, or when voltage is converted into a digital 

value.  Spatial noise occurs when the pixels are exposed to a homogeneous light and react 
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differently due to varying sensitivity levels.  It is most dominate in the CMOS sensors, as the 

pixels are read out through different circuits.  Fixed pattern noise, also called dark signal non-

uniformity (DSNU), is the difference between the lowest and highest measured values for all 

active pixels in the array.  Photo response non-uniformity (PRNU) has often been referred to 

as the difference between what a camera sensor’s ideal response to light should be and what 

the true response is on the pixels [9]. 
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CHAPTER II 

PHOTO RESPONSE NON-UNIFORMITY 

 As previously stated, the PRNU is considered the fingerprint of a camera’s sensor.  

There are two main categories of noise which fall under PRNU, or a camera’s sensor 

imperfections and signature.  Those categories are temporal noise, or random noise, and fixed 

pattern noise (FPN).  Random noise is when the location and time of occurrence of pixel 

differences is unpredictable.  Fixed noise, on the other hand, is when occurrence is based on 

location due to an underlying structure.  Fixed noise will appear constant in every photo taken 

from that particular device.  Fixed pattern noise consists of dark signal non-uniformity (DSNU) 

and photo response non-uniformity (PRNU).  DSNU is considered an offset between pixels in 

the dark.  It is measured in the absence of light and can be corrected by subtracting a dark 

frame.  PRNU is just the opposite.  It is seen as a variation between pixels under a certain 

amount of illumination.  It is corrected by offset and gain for each pixel. PRNU is a signal 

dependent noise and is created due to a variation amongst pixels in their sensitivity to light.  

Figures 3-5 show examples of random noise, fixed pattern noise and a typical pattern of PRNU 

[10] [11].   

 

                    
        Figure 3   Example of Random Noise       Figure 4   Example of Fixed Pattern Noise 
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Figure 5  Example of PRNU Pattern from a Kodak V550 Camera (magnified) 

 

Identification 

Photo response non-uniformity can be divided into two separate components: 

individual detector uniformity and array divide uniformity.  The variation in responsivity 

between adjacent pixels is considered high-frequency PRNU.  High-frequency PRNU is when 

the FPN pattern appears more evident in the brighter areas of an image than the darker areas.  

Identifying tolerances on defective or “hot” pixels is usually done using a high-frequency 

PRNU pattern.  Low-frequency PRNU is a good measure to use when evaluating the variations 

in responsiveness from one side of the photo array to the other. It is also referred to as photo-

response shading.  Generally speaking, when manufactures refer to PRNU, they are referring 

to the low-frequency rather than the high-frequency measure.  The low-frequency measure 

displays the difference in response levels between the most and the least sensitive pixels across 

the sensor array under uniform illumination conditions.  The degree of non-uniformity in 

PRNU is related to a few factors: amplitude of the non-uniform pixels, the pixels’ polarity, the 

pixels’ location, the pixel’s total count, the pixel’s distance between non-uniform pixels and 

the column amplitude.  When measuring PRNU is important to note what causes a weak or 

strong signal pattern for better comparison results.  For example, red and infrared (IR) light 

produce a strong PRNU pattern than the blue and green wavelengths captured.  This is due to 

the deeper penetration lengths at the end of the spectrum (the redder end).  At the redder end 
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of the spectrum, photons encounter more defect sites and material variations.  It is important 

to understand obstacles prior to selecting a model to use for PRNU fingerprint measurement.  

It is also crucial to remember the purpose of such measurement and suspect images involved 

[12]. 

 There are many forensic uses for measuring a sensor’s PRNU pattern such as camera 

identification, device linking, recovery of processing history and detection of digital forgeries.  

These tasks aid in criminal investigations and can link a suspect to a particular camera and/or 

contraband image.  PRNU is typically reliable for making these determinations and although 

PRNU is stochastic, or random in nature, the life span is very stable.  PRNU has multiple 

credible properties.  It has dimensionality – it provides large information content.  It has 

universality – all sensors will exhibit its own PRNU pattern.  It has generality – the fingerprint 

is present in every capture regardless of camera settings or content environment.  It has stability 

– the pattern can withstand time under various environmental conditions such as temperature 

and humidity.  Lastly, PRNU has robustness – it can survive lossy compression, filing, gamma 

correction and other forms of processing within the camera or through outsourced software 

[13]. 

Measurements 

There are a few different methods in measuring a camera’s PRNU sensor pattern.  The 

most widely accepted model consists of running a reference pattern from a particular camera 

against the image in question.  To start, a reference pattern must be obtained by capturing 30-

50 flat field images with the device.  A flat field is a solid color, preferably light, displaying 

illumination without heavy saturation. Once these frames are captured, an average must be 

taken for the best possible estimate of the sensor pattern. Using MATLAB, a code can be run 



11 
 

to obtain the correlation coefficient between the reference pattern and the subject image to 

determine its linear relationship.  A correlation coefficient (CC) is a measure of the strength of 

the straight-line or linear relationship between two variables, in this case, the reference image 

and the subject image.  The CC will have a value ranging between +1 and -1.  To interpret the 

correlation, it must be understood what the values indicate.  A value of 0 indicates no linear 

relationship between reference image and subject image. A value of +1 indicates a perfect 

positive linear relationship, or both variables increase in its values through an exact linear rule.  

A value of -1 indicates a perfect negative relationship, or one variable increases in value while 

the other decreases in value.  Values between 0 and 0.3 (0 and -0.3) indicate a weak positive 

(or negative) relationship through a shaky linear rule.  Values between 0.3 and 0.7 (-0.3 and    

-0.7) indicate a moderate positive (or negative) relationship through a fuzzy-firm linear rule.  

Values between 0.7 and 1.0 (-0.7 and -1.0) indicate a strong positive (or negative) linear 

relationship through a firm linear rule.  A value of “r” squared is the percent of variation shared 

between the two variables being examined.  All of these values can make the linear 

determination if the relationship is already known.  If the relationship is unknown or nonlinear, 

the CC will be useless and questionable [14]. 

After covering the basic model and correlation coefficient values, other models will 

now be discussed.  The second model for PRNU measurement consists of measuring the CC 

just the same as mentioned in the first model; however, in this model, exposure time of the 

reference images is taken into account.  In other words, instead of taking flat field images one 

after another to average together for one solid PRNU reference pattern, the flat field images 

will be taken at various exposure or integration times.  This allows the sensor to cool between 

captures and reduces thermal noise and dark current in each of the 20-50 reference images.  So 
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as a result, each reference photo is a strong pattern reference prior to the frame averaging 

process. Figure 6 shows the sensor output with light input as a function of the exposure time.  

Note the sensor starts to saturate at 400 ms [15].   

 
Figure 6   Sensor output with light input as a function of different exposure times 

 

 The next model is referred to as color-decoupled PRNU (CD-PRNU).  It is believe the 

color interpolation process of photo capture creates noise which affects the readout of the 

PRNU pattern.  When a scene passes through the lens and into the color filter array (CFA), the 

camera assigns one color per pixel.  This is part of the color interpolation process within the 

camera.  Artificial colors are obtained through this process which are not a part of the scene 

itself nor the camera hardware.  Couple-decoupled PRNU is a method which proposes to 

decompose each color channel into 4 sub-images, then extracts the PRNU noise from each sub-

image.  This will eliminate the additional, artificial noise created by on-board processing.  Once 

the sub-images are obtained, they are compared against the subject image from the same 

camera.  It was noted during the experiment of this method that CD-PRNU correlation 

coefficient figures are slightly higher than the traditional PRNU method.  This is to infer the 
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CD-PRNU provides more positive results in strong linear relationships between reference 

images and subject images [16]. 

 The last method to measure PRNU is to utilize the traditional PRNU-frame averaging 

method, but also further adopt a model which entails comparing only the larger components of 

the two signals.  It is suggested this method is more accurate for determining the linear 

relationship between a reference image and a subject image because it increases the correct 

detection possibility and decreases the computational complexity of using the whole PRNU 

pattern as opposed to just the larger components it carries.  Through the algorithm of this 

method, it was found that highly saturated images, or even areas of an image, carry no PRNU 

information; whereas, dark location carries a weak PRNU signal.  The idea is to obtain a PRNU 

pattern from illumination, with little dark current and no high saturation.  In the first, most 

often used, model of PRNU extraction previously mentioned, it is necessary to extract PRNU 

by subtracting the denoised version from the original image.  So to obtain the correlation 

coefficient, the reference image is directly compared to the subject image for PRNU pattern.  

In this algorithm, it is proposed that the PRNU pattern should be extracted from both the 

reference images and the subject image, both undergo removal of color interpolation, then the 

reference residual images to be averaged and compared to the subject residual image.  In other 

words, the reference images have their PRNU pattern extracted individually prior to frame 

averaging, then compared to the pattern, itself, of the subject image.  Figure 7 displays the 

results of PRNU extraction from a subject image and Figure 8 shows the model algorithm and 

how to utilize the PRNU pattern once obtained. This method of PRNU extraction and 

comparison is preferred by some as traditional PRNU extraction poses many issues such as 

addition of shaping noise, background noise left as the extraction is not perfectly content-
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adaptive, evidence of small-magnitude high-frequency noise and, as mentioned in the previous 

CD-PRNU model, cameras can only capture one color per pixel [17].  These are all valid 

factors which affect the readout of the PRNU pattern.  Unfortunately, these are only to name a 

few. 

 
Figure 7    Denoising filters used to obtain residual image of subject or test image 

 

 

Figure 8   Diagram of large component extraction algorithm 
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CHAPTER III 

ARTIFACTS 

 Regardless of model algorithm used to extract PRNU and compare to a subject image, 

there are always artifacts to consider.  These artifacts can provide false readouts and incorrect 

correlation coefficients.  These objects found in the PRNU pattern could be due to multiple 

factors, such as the color interpolation process, excess background noise, artifacts due to 

heating of the sensor and quick exposure time, additional shaping noise, defective pixels, 

alterations or edits and heavy saturation.  Some other artifacts include those specific to select 

cameras.  Special care must be given to acknowledge these artifacts to prevent false readings 

and misinterpretation.  Gloe, Pfennig and Kirchner reported a case study from the Dresden 

Image Database which revealed similar artifacts found in certain camera models.  The cameras 

explored were the Nikon CoolPix S710, the FujiFilm J50 and the Casio EX-Z150.  It was found 

the Nikon CoolPix S710 presented a diagonal line artifact in all its captures.  The FujiFilm J50 

images exhibited a slight horizontal shift and the Casio EX-Z150 displayed irregular geometric 

distortions.  On one hand, these artifacts can be beneficial in further device identification; 

however, on the other hand, these artifacts can prove detrimental to a case if the examiner is 

uncertain or unaware of these model-specific pattern issues. One of the major challenges of 

camera identification by use of PRNU is the suppression of non-unique artifacts.  These are 

artifacts which are specific to a camera model or make.  These artifacts, however, may be very 

similar to those in a PRNU pattern of a different device altogether.  Figures 9-10 show 

examples of known-model artifacts in PRNU [18]. 
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Figure 9   Nikon S710 diagonal artifact 

 

 

  
Figure 10   Casio p-maps with artifacts at various focal lengths in lens distortion 

 

Defect Pixels 

 As already established, a camera’s sensor will always have defects to the silicon by the 

manufacture.  This is inevitable.   These defects, among others, display across the array of the 

PRNU fingerprint in different ways.  One display of imperfection might show as defective or 

dead pixels.  Dead pixels are any pixel with intensity below a specified percentage of mean.  

Defective pixels are any pixel that deviates from the mean light field intensity by more than a 

specified percentage of mean.  These defective and dead pixels mentioned above are those in 

light field space.  If a defective pixel exists in dark field space, it is considered a “hot” pixel.  

Typically, CMOS sensors have an on-chip algorithm to correct defective or dead pixels, or this 

could be done through the camera’s processing stage.  If multiple dead or defective pixels exist, 
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the camera’s onboard processing may not be able to correct them all.  In these cases, provided 

there are limited defectives, this can prove fruitful in the PRNU pattern analysis [19].  Although 

uncorrected defective pixels aid in camera identification the best, corrected defective pixels 

can still give insight as to their original state even post-processing.  This is done by analyzing 

the pixel values individually.  A corrected pixel, when captured with uniform illumination, will 

appear either much lower or much higher in value than its surrounding pixel neighbors.  This 

is a good indication this was once a defected pixel which has been corrected during post-

processing and can still prove in aiding in camera identification [20].  To test or check the 

value of a pixel, Mathworks has developed a code referred to as “impixel” to be used in the 

MATLAB program.  This code can provide the pixel values of RGB images, grayscale images 

and binary images.  This aids in the determination of pixel value comparison to neighboring 

pixels which provides an indication of defective pixels within a PRNU fingerprint [21].  

Defective pixels are only one artifact which affects the PRNU fingerprint. 

Compression 

 There are many artifacts which can affect the PRNU readout. Another artifact is 

compression.  There are two main types of compression: lossy and lossless compression.  

Lossy compression refers to data compression, or shrinkage in size, in which information is 

lost, but it is unnecessary information.  The data is still mostly intact.  Lossless compression is 

shrinkage without any data or information loss.  All the data is still intact.  An example of this 

is when a raw image file is compressed to a portable network graphics (PNG) file.  A PNG 

compression is an example of lossless compression.  An example of lossy compression is when 

a raw image file is compressed to a joint photographic experts group (JPG) file.  The image is 

still intact, but some information is lost and the file may appear a bit grainy or pixelated.  In 
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the lossy scheme, a JPEG converts the color in images into a suitable color space and processes 

these color components independently from one another.   

Compression is performed in three basic steps.  The first step is called the discrete 

cosine transform (DCT).  This technique is when an image is divided into 8x8 or 16x16 non-

overlapping blocks.  From there, each block is shifted from an unsigned integer to a signed 

integer.  The DCT transformation occurs and the signal is converted into elementary frequency 

components.  The remainder of the image consists of visually significant information and is 

concentrated in a few coefficients of the DCT [22].  The second step is quantization.  This step 

is defined as a division of each DCT coefficient by the corresponding quantizer step size, 

followed by rounding to the nearest integer.  It is this step where the most information is lost.  

The third and final step is entropy coding.  The DCT quantized coefficient are lossless coded 

and written into a bitstream.  It is here where Huffman tables are formed.  These tables are 

from the Huffman algorithm and are viewed as a variable-length code table, which presents a 

source symbol for the lossy compression [23].  Lossy compression is the higher compression 

rate, of about 10x the original size, with some information loss.  Lossless compression is used 

to compress raw images into smaller images without information or data loss (i.e. PNG).  This 

compression is at a rate of 2x the original size [24].  After analyzing how an image is 

compressed, we must explore how this affects the PRNU pattern of an image.   

When an image is compressed, specifically through lossy compression, it creates the 

block artifact, commonly seen in JPEG images.  Although the PRNU fingerprint is robust and 

can survive certain levels of compression, heavy lossy compression compromises the PRNU 

pattern and causes an impairment in camera identification.  There is also an issue of 

recompression.  This is the image processing operation of decompressing an image, possibly 
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changing the uncompressed image, and then compressing the image again.  If using the same 

quantization tables as the initial compression, further degradation will not occur.  However, if 

using different quantization tables from the first compression, additional degradation will 

occur and the PRNU fingerprint may be lost.  Photo-editing programs will often introduce 

different quantization tables from the camera’s JPEG to the software’s JPEG resaved image.  

This will alter the PRNU pattern [25].  So to summarize, lossless compression does not alter 

the PRNU fingerprint enough to cause much error in camera identification; however, lossy 

compression and alterations through editing software programs will degrade the pattern and 

may prevent a positive identification. 

Alterations 

  It has already been discovered the effects of compression on the PRNU fingerprint.  

Studies have also been conducted about editing effects on PRNU, specifically pertaining to 

image forgeries and the ability to still identify a camera source through such alterations.  Video 

and analog cameras often have distinctive scratches on the film and negatives.  This makes it 

easy to identify the origin of an image even with alterations and overexposure; however, in the 

age of digital photography and software editing, it has been more challenging.    There are 

many different filters used in software editing programs.  These filters are used to attack pixel 

values by assigning them new values based on neighboring pixels.  When a filter is used on a 

color image, the three values (red, blue, green) are determined separately.  In the study by 

Bouman, Khanna, and Delp, five filters were tested on an original image, then compared to an 

average to test for the PRNU pattern and the effects of each filter on the image.  The filters 

used were blurring, weighted blurring, histogram equalization, sharpening and pseudo-random 

noise.  It is said that the closer a correlation value is to 1, the more similar it is to the camera’s 
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noise pattern and a more positive camera identification can be made.  From this study, it was 

found that all the source cameras could be matched to the subject images, regardless of filter 

or editing progress; however, some filters degrade the pattern more than others.  From the five 

filters tested and from most damaging to least damaging to the PRNU were histogram 

equalization, blurring, pseudo-random noise, sharpening and weighted blurring.  This was just 

one notable test of filter effects on PRNU within the scientific community [26].   

Saturation 

 Much like defective pixels, compression and editing affect a camera’s PRNU readout, 

so does image saturation.  First, we must differentiate between certain terms.  The term 

luminance refers to the intensity of light emitted from a surface in a given direction.  The term 

saturation refers to the state or process which contains the maximum amount of Chroma or 

purity.  It is of the highest intensity of hue and free of admixture of white.  There have been 

little studies of the effects of highly saturated scenes on the PRNU fingerprint.  Before we can 

compare low-color verses high-color saturated photos against reference images from their 

camera source, we must explore dynamic range.  The dynamic range is the number of exposure 

stops between the lightest white and the darkest black in a digital camera.  It is tricky to 

determine the darkest useable black in a digital camera as the darker tones produce more noise 

pattern.  In the lighter areas of a scene, there will be less noise pattern visible [27].  So we have 

established lumination is necessary for a good readout of PRNU; however, a scene that is too 

bright or too dark will disguise the pattern making it more difficult to read and compare to the 

camera’s reference images.  This leads us to the saturation experiment.  
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CHAPTER IV 

FRAMEWORK FOR MEASURING SATURATION EFFECTS ON PRNU 

 In this study, I looked at ten different camera models, shown in Table 1.  The Table 

shows camera make and model, type of sensor, image resolution, ISO and image format.  A 

camera’s ISO number represents its sensitivity to light.  In other words, the lower the ISO 

number, the lower the random noise exists and the pattern noise will be easier to detect [28].  I 

took 30-40 flat field photos and averaged them for one solid reference PRNU fingerprint per 

camera model.  From there, I analyzed ten low-color saturated and ten high-color saturated 

image captures per camera to determine exactly if and how saturation affects the PRNU 

fingerprint.  I calculated the correlation coefficient figures and examined which camera model 

best preserved the pattern fingerprint in highly saturated environments.  I notated the camera 

make and model, the settings and image capture conditions.  First, I took 30-40 flat field photos, 

of a solid neutral color and applied the MATLAB code found in Figure 11 [29].  I then took 

ten low-color photos with each camera.  From there, I took another ten high-color photos with 

each camera, some outside with natural light and some inside with artificial light.  Once the 

reference photos were averaged for one solid residual pattern and the subject photos were 

taken, I compared them to each other to determine correlation coefficient figures in each 

environment.  After those numbers were calculated, I was able to determine if and how 

saturation affects the PRNU readout. 
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Table 1   Devices and Specifications 

DEVICE SENSOR RESOLUTION ISO FORMAT 

Samsung Galaxy S3 CMOS 3264x2448 80 JPEG 

LG G4 CMOS 5312x2988 50 JPEG 

Nokia Lumia 635  No light/proximity sensor 2592x1456 100 JPEG 

LG G3 Vigor CMOS 3264x2448 100 JPEG 

Slate 8 Tablet CMOS 2560x1920 50 JPEG 

Alcatel One Touch Tablet No light/proximity sensor 2560x1920 100 JPEG 

GoPro Hero3 CMOS 2592x1944 100 JPEG 

Kodak EasyShare V1003 CCD 3648x2736 80 JPEG 

Canon Powershot G2 CCD 2272x1704 100 JPEG 

Motorola Nexus6 CMOS 4160x3120 40 JPEG 

 

% read + average all JPGs in a folder 
% 
clear all; 
%--------------------- Detect files --------------------- 
dir1=uigetdir;      % select the JPG folder 
cd(dir1);           % DOS cd to dir1 
D=dir('*.JPG');     % dir for JPG files 
[a,b]=size(D);      % a = number of JPG files 
M1=[D(1).name];     % first file 
M1i=imread(M1);     % read image 
I=im2double(M1i);   % convert to double 
for k=2:a 
M2=[D(k).name]; 
Mi=imread(M2); 
Mi=im2double(Mi); 
I=I+Mi;             % add new image to the previous 
end 
clear M1i 
 

imwrite(I,name1);       % save the averaged image 
disp('Average computed and saved.') 

 

Figure 11   MATLAB code for frame averaging for residual pattern 

 

 

 

Camera Studies 

 

 For the study, I took ten separate camera devices and calculated an averaged residual 

photo and compared it to ten low-color photos and ten high-color or high-color photos from 

the same devices.    I then took an average of the correlation coefficient figures from each 

camera for the low-color and the high-color photo study.  For the purpose of this paper, details 
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will be given for three of the ten cameras studied.  Picked at random, the cameras which will 

be highlighted here are the Nokia Lumia 635, the LG G3 Vigor and the Kodak EasyShare 

V1003.  The Nokia and the LG are both cellular devices.  The Kodak is solely a digital camera.  

Figures 12-14 show samples of low-color saturated and high-color saturated photos from the 

Kodak used in the study.  Also shown is the Kodak PRNU reference image derived from flat 

field frame averaging.  All of the low-color photos taken with each camera were of doors, 

walls, furniture and anything else of low saturation or very neutral colors.  The high-color 

photos were mostly taken outside at high noon daylight displaying bright blue skies, greenery 

and flowers.  It must be noted these photos were taken in the daylight, but not with direct 

sunlight, sunbeams or sunbeam reflection.  This ensured the proper collection was made to 

show the deepest colors of the spectrum without heavy luminance or reflection of high sunlight.  

It should also be noted these photos consisted of many different environments; however, they 

mostly consisted of heavy blues and greens.  As mentioned previously, PRNU patterns are 

most dominate in red or IR scenes.  

    
           Figure 12   Kodak Low-Color Image    Figure 13   Kodak High-Color Image 
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Figure 14   Kodak PRNU Reference Image 

 

 The images above, and similar images for each camera, were used in this experiment.  

Using written code in MATLAB, I ran the residual image, or PRNU reference, against the low-

color photos and then ran the residual image against the high-color photos.  To explain this 

further, the code promotes a clipping effect.  In this process, a white box is displayed on the 

test image to show where pixel saturation is being clipped for analysis. It is clipped in a 

percentage format which can be shown in Figures 15-18.  From that analysis, the correlation 

can be drawn.  When viewing the results, it will be found that some percentages of pixel 

saturation, or measurement via clipping, stop at 55% as opposed to 70% or higher in other 

images.  This is due to each camera capture presenting different resolutions and dimensions.  

The clipping process starts as a perfect square of data taken from the top left of the photo at 

0% or 1%.  This square increases a certain percentage with each level of pixel saturation 

clipped until the clipping achieves the largest perfect square based on the size of the image and 

the increment of the increase.  In an ideal experiment, resolution and picture dimensions are 

exactly the same from one camera model to another; however, this cannot always be achieved.  

Due to that factor of the experiment, the actual percentage of pixel saturation varies.   

 



25 
 

       
              Figure 15   Pixel Saturation at 10%    Figure 16   Pixel Saturation at 34% 

 

       
             Figure 17   Pixel Saturation at 50%     Figure 18   Pixel Saturation at 70% 

 

 

It should be noted this will not affect the final results in comparing correlation between one 

camera model and another and between low-color and high-color saturated photos.  At each 

level of pixel saturation, the correlation coefficient is assigned between -1 and 1 to determine 

the linear relationship between subject images and the PRNU reference.  These numbers will 

signify how strong the match is between a subject image and a camera possibly used to capture 

that image.  Tables 2-4 and Figures 19-21 show the Nokia, LG G3, and the Kodak camera 

correlations to their own PRNU in both low-color and high color saturated environments.  It 

should be noted the correlation figures in these tables are of one low-color and one high-color 

photo from the each camera.   
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Table 2   Nokia Lumia 635 Low vs. High-Color Saturation 

Percentage of Pixel Saturation Low-Color Saturation High-Color Saturation 

0% 0.30851 0.025203 

1% 0.30624 0.024962 

3% 0.30462 0.024815 

5% 0.30269 0.024525 

6% 0.29985 0.024159 

8% 0.29708 0.023876 

10% 0.29382 0.023423 

12% 0.28972 0.022952 

15% 0.28583 0.02268 

17% 0.28048 0.021974 

20% 0.27545 0.022316 

24% 0.26923 0.021258 

27% 0.26366 0.021192 

31% 0.25609 0.020398 

35% 0.24897 0.019251 

40% 0.2405 0.018241 

45% 0.23138 0.015694 

50% 0.22134 0.01467 

55% 0.21073 0.014389 

 

 

 
Figure 19    Nokia Lumia 635 Plot Low-Color vs. High-Color Saturation 
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Table 3   LG G3 Vigor Low vs. High-Color Saturation 

Percentage of Pixel Saturation Low-Color Saturation High-Color Saturation 

0% 0.0010026 -0.00039006 

1% 0.00098032 -0.00039935 

2% 0.00089497 -0.00037365 

4% 0.00093415 -0.00054247 

5% 0.0010093 -0.00050572 

8% 0.0010536 -0.00050318 

10% 0.0011603 -0.00056076 

13% 0.0010981 -0.00057124 

16% 0.0010595 -0.00053795 

20% 0.0010098 -0.00054959 

24% 0.0010974 -0.00073298 

28% 0.0012627 -0.00051283 

33% 0.0011283 -0.00042726 

38% 0.00089573 -0.00045035 

44% 0.0011883 -0.00036856 

50% 0.0015186 -0.0004383 

56% 0.0018156 -0.00037294 

63% 0.0011286 -0.00010892 

70% 0.0011585 0.00054099 

77% 0.0011454 0.00013703 

 

 

 
Figure 20    LG G3 Plot Low-Color vs. High-Color Saturation 
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Table 4   Kodak EasyShare V1003 Low vs. High-Color Saturation 

Percentage of Pixel Saturation Low-Color Saturation High-Color Saturation 

0% 0.21285 0.085872 

1% 0.21016 0.084553 

2% 0.20763 0.084215 

4% 0.20472 0.083154 

5% 0.20148 0.081153 

8% 0.198 0.079486 

10% 0.19403 0.077688 

13% 0.19 0.0759 

16% 0.18494 0.074382 

20% 0.18004 0.072829 

24% 0.17472 0.069823 

29% 0.16966 0.06686 

33% 0.1632 0.062687 

39% 0.15664 0.061329 

44% 0.1494 0.058998 

50% 0.14232 0.058393 

57% 0.13366 0.056248 

63% 0.12448 0.053903 

70% 0.1126 0.0515 

 

 

 

Figure 21    Kodak EasyShare Plot Low-Color vs. High-Color Saturation 

 

0

0.05

0.1

0.15

0.2

0.25

0% 10% 20% 30% 40% 50% 60% 70% 80%

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Percentage of Pixel Saturation

Kodak EasyShare V1003

Low-Color Saturation High-Color Saturation



29 
 

 Based on the correlation figures from the Nokia Lumia 635, it can be said that the low-

color saturated photo has a weak positive relationship through a shaky linear rule as the 

numbers range between 0.2 and 0.3.  Although the saturated photo shows lower correlation to 

the camera’s actual PRNU reference image, ranging between 0.01 and 0.02, it still falls under 

the same category: weak positive.  The correlation figures for the LG G3 show a large 

difference between low-color and high-color environments.  These differences are great 

enough to fall into different categories.  The low-color photo, with a range of 0.001 and 0.0011, 

falls under a weak positive, while the high-color photo, with a range of -0.0003 and 0.0001, 

falls under a weak negative correlation. The correlation figures for the Kodak EasyShare show 

similar to that of the Nokia camera.  The low-color photo produced better results than that of 

the high-color photo; however, all correlation coefficients are between 0 and 0.3, which 

indicate a weak positive linear relationship to the PRNU pattern for that camera.   

Final Results 

 After reviewing all the relationships between subject images and PRNU patterns, I 

compared the correlation coefficient figures to make a determination between the different 

camera models. Tables 5-6 show the breakdown of each camera and the results of the low-

color and high-color saturation photos.  In Table 5, it shows the lowest correlation and the 

highest correlation of all ten low-color saturation photos taken for each camera model.  Table 

6 displays the lowest and highest correlation of all ten high-color saturation photos taken for 

each camera model.   
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Table 5   Low-Color Saturation Correlation Coefficients per Camera Model 

Device Low-Color Saturation (Lowest CC) Low-Color Saturation (Highest CC) 

Samsung S3 0.039618 0.095084 

LG G4 0.00194 0.10441 

Nokia Lumia 635  0.012831 0.30851 

LG G3 Vigor 0.000211 0.0010026 

Slate 8 Tablet 0.13728 0.38318 

Alcatel Tablet 0.012415 0.10434 

GoPro Hero3 0.039513 0.16715 

Kodak EasyShare  0.073982 0.21216 

Canon Powershot  0.0063403 0.026674 

Motorola Nexus6 0.088532 0.16229 

 

 

Table 6   High-Color Saturation Correlation Coefficients per Camera Model 

Device High-Color Saturation (Lowest CC) High-Color Saturation (Highest CC) 

Samsung S3 0.02052 0.038594 

LG G4 0.023825 0.055266 

Nokia Lumia 635  0.014389 0.049567 

LG G3 Vigor -0.000162 0.0030136 

Slate 8 Tablet 0.092558 0.32575 

Alcatel Tablet 0.032627 0.074759 

GoPro Hero3 0.018619 0.055404 

Kodak EasyShare 0.050754 0.17164 

Canon Powershot 0.0049013 0.029744 

Motorola Nexus6 0.03563 0.16579 

 

It was found that the Nokia Lumia 635, the Alcatel Tablet, the Slate8 Tablet, the GoPro 

Hero3, and the Nexus6 produced much better results when the PRNU pattern was compared 

to low-color image verses a high-color image.  High-color saturation clearly made a difference 

in camera identification with those particular devices.  It was also found in most models tested, 

the higher the pixel saturation level, the closer in numbers the low-color and high-color 

correlations were when compared to each other.  Based on the correlation of each photo, 

whether low-color or high-color saturation, it can be determined that all figures fall between -
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0 and 0.3+ which indicate either a weak positive, weak negative, or in some cases, moderate 

positive correlation.  Furthermore, it was found the ISO level and whether photos were taken 

indoors or outdoors were of little importance; however, the sensor type did play a significant 

role in the study.  Two of the ten cameras contained CCD sensors: the Kodak and the Canon 

Powershot.  The PRNU fingerprint of these cameras were not grossly affected by high-color 

saturation compared to the CMOS cameras researched.  Figures 22-28 further illustrate low-

color vs. high-color saturation correlation coefficients in the remaining seven devices. 

 

 
Figure 22    Samsung Galaxy S3 Plot of Low-Color vs. High-Color Saturation 
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Figure 23    LG G4 Plot of Low-Color vs. High-Color Saturation 

 

 

 
Figure 24    Slate 8 Tablet Plot of Low-Color vs. High-Color Saturation 
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Figure 25    Alcatel Tablet Plot of Low-Color vs. High-Color Saturation 

 

 
Figure 26    GoPro Hero3 Plot of Low-Color vs. High-Color Saturation 
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Figure 27    Canon Powershot G2 Plot of Low-Color vs. High-Color Saturation 

 

 

 
Figure 28    Nexus6 Plot of Low-Color vs. High-Color Saturation 
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CHAPTER V 

CONCLUSION 

 

 Through this study, it has been noted that a camera’s sensor, the ISO, or sensor’s 

sensitivity to light, and scene environment plays a role in determining a camera’s PRNU 

pattern-to-subject image correlation.  This study was conducted to determine if saturation 

affects PRNU pattern readout and if so, could it be considered a form of anti-forensics.  After 

the research concluded, it has been determined high-color saturated images do affect a 

camera’s PRNU fingerprint, especially in certain tablets and camera models; however, it does 

not affect it enough to create a false positive nor does it totally prevent positive camera 

identification.  It does however, disguise the fingerprint enough to create lower positives in 

correlation figures.  The results of high-color saturation do not affect the PRNU fingerprint 

enough that it will not cause anti-forensics to occur, but it will aid researchers and examiners 

to be mindful of the environment of an image capture.  Factors which should be considered 

when explaining camera identification in relation to PRNU fingerprint are color saturation 

levels, camera models, their sensors, if the scene of a capture is high in infrared or red hues, 

how the flat field reference images were captured and how frame averaging was conducted. If 

an examiner understands all the factors which cause weak positives, it will allow him to further 

explain the linear relationships in his report.   

 Based on the findings of this experiment and the research conducted, it can be said the 

scientific community could benefit from additional research surrounding frame averaging with 

respect to exposure time of reference images and testing the PRNU fingerprint against different 

camera battery levels and environmental temperatures.  There could be more analysis on dark 

signal non-uniformity (DSNU) regarding the thermal component, which depends on the 
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temperature and exposure times of capture.  There could be more emphasis on decomposed 

PRNU (DPRNU) experiments and how well the PRNU fingerprint upholds when the artificial 

component is separated from the physical component to allow PRNU collection without the 

interference of interpolation noise. These are just a few areas which could prove very valuable 

to the community for further authentication purposes. 
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