MPEG-4 VIDEO AUTHENTICATION

USING FILE STRUCTURE AND METADATA

by

J. RANDOLPH HALL

B.F.A., Ilthaca College, 2002

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science

Media Forensics

2015

This thesis for the Master of Science

degree by

J. Randolph Hall

has been approved for the

by

Catalin Grigoras, Chair and Advisor

Jeff M. Smith

Jason R. Lewis

Date: November 12, 2015

Hall, J. Randolph (M.S., Media Forensics)

MPEG-4 Video Authentication Using File Structure and Metadata

Thesis directed by Professor Catalin Grigoras

ABSTRACT

The goal of this thesis is to research the file structure of MPEG-4 video files, the
contents of the multiple data containers within each file, and the possibilities and
limitations of using this information to authenticate a MPEG-4 file. This thesis will
impact the forensic science community by showing a method of analysis to
examine the meaningful components of a MPEG-4 recording and parse them in
order to identify the features of a recording that are consistent with an original

recording from the device that created it.

The form and content of this abstract are approved. | recommend its publication.

Approved: Catalin Grigoras

TABLE OF CONTENTS

CHAPTER

. INTRODUGCTION.ottt e e e e e e e e e e e neeeeeenne 1
[I. MOTION PICTURE EXPERTS GROUP (MPEG).......ccccoiiiiiiieeeiieene 3
MPEG-4 OVEIVIEW.....coeiiiiiiieiiiiie e e eee et e e e e e nee e e e anee e e e enneeeeeanees 4

I, THE COLLECTION. ... 6
V. ANALY SIS ettt e e e e e e e e e e nneeeean 9
The File TYPe BOX. ...t 10

THE MOVIE BOX ...ttt 11

The Movie Header BOX.........o.viuiuiii e 12

The Free BoX. ... 14

The Movie Data BOX.........oovuiii e 15
TOOIS fOr ANAIYSIS. ... e 16
ALOMICPArSIEY ... 16

Medialnfo. ... 19

V. ANALYSIS OF CAMERA FILES..... .o 21
VI. ANALYSIS OF EDITED FILES.......coo e 47
L] €= TR PP TTPPPPPPPTPP 47
AdODE PremMiEIe.ueiiiiiiiiiiee ettt 51

Apple QUICKEME........oo e
YOURUDE-AL. ...
VII. CONCLUSION.t
REFERENCES. ... e

LIST OF FIGURES

FIGURE

1 MPEG-4 BOX STrUCLUIe.........iii e 9

2 MPEG-4 BOX SiZE......eeiiiiiiiie e a e e 10
3 IMPEG-4 BOX TYPE. .. eeieeiiiiieeeiiiee e eiie e e eieee e et e e e e ee e e e e e e e enneeeeeenneeas 10
4 MPEG-4 BoX CONtENtS.o 11
5 MOVIE BOX SiZE...... e 11
6 MOVIE BOX TYPE.. .ttt 11
7 MPEG-4 Nested BOX Size........cccuuiiiiiiiiiiiiiieeee 12
8 Movie Header BOX SizZ€.........ooouiiiiiiiiiiiiiiie e 12
9 Movie Header BOX TYPE....coouiiiiiiiiiiiiieeeei ettt 13
10 MPEG-4 Creation Timestamp.........coooe i 13
11 MPEG-4 Modification Timestamp...........ooooriiiiiiiiiiiciiiee e 13
12 Movie Header Box Time Scale.............ccooiiiiiiiiiiiiiiie e 14
13 Movie Header Box File Duration............cccccooiiiiiiiiiiiieeeeeeee 14
14 Free BoxX Size and TYPe.....coouviiiiiiiiiiii e 14
15 Free BoX Contents.o 15
16 Movie Data BOX SiZe...........uuuiiiiiiiiiiiiiiii e 15
17 Movie Data BOX TYPE......uuuiiiiiiiiiiiiiiieiie e 15
18 Movie Data Box Contents...........cccuuuiiiiiiiiiieeee e 16
19 AtomicParsley Example Output...........coooiiiii e 17
20 LG G3 SHUCHUIE. ... e e 19
21 LG G3 Medialnfo OUIPUL.ee e 20

Vi

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

List of Devices Analyzed for this Paper...........c.coooiiiiiiiiiiieee, 21

Comparison of Two LG G3 Samples to
Validate Structure........ ..o 22

Comparison of Two LG G3 Samples to
Validate Medialnfo Properties............cooiiiii i, 23

Comparison of two LG G3 Structures in
Different Recording Modes
(Full Resolution vs. SIOW Motion)...... ..o 24

Comparison of two LG G3 File Properties
in Different Recording Modes

(Full Resolution vs. SIOW Motion)...... ..o 25
Comparison of LG G3 and Moto X (2013) Structure.................c.oveee. 27
Comparison of Moto X and Samsung S5 Structure.................c...ooeni. 28
Comparison of Samsung S3, S4 Zoom, and S5 Structure.................... 29
Medialnfo Comparison of Samsung S3 and Samsung S5.................... 30
Comparison of ‘stbl’ Boxes in Samsung S3 (top) and S5 (bottom).......... 32
Medialnfo Comparison of Samsung S5 Between Recording Modes 33
Comparison of HTC One M7 and HTC One M8 Structure........................ 34
Medialnfo Comparison of HTC One M7 and HTC One M8...................... 35
Comparison of Panasonic Lumix DMC-TS5

and Panasonic Lumix DMC-CM1 Structurecccccooiiiiiiiiiiiiiiiiee 36
GOPro Hero 3 StrUCIUrecoooiiiiiiii et 37
Parsing GOPIro FIRM BOX.......uuuiiiiiiiiee et 38
Parsing GOPIro LENS BOXuuuuiiiiiiiieeeeeeeeeee e 38
Parsing GOPro CAME BOXuuiiiiiiiie et 38
Comparison of two different GoPro User Data Boxes (‘udta’).................. 38
GoPro Hero 3 Medialnfo Analysis..........ccoooiiiiiiiiiiieiieeeeeeeeeeeeeees 38

Vii

42

43

44

45

46

47

48

49

50

51

52

53

54

95

56

57

Samsung ST200F Structure and Medialnfo Analysiscccccoeviiinnnes
Samsung ST200F UUID Hexadecimal AnalySisccccccveiiiiiiininiinnnnes
Sony Cybershot DSC-QX10 Structureooevveeiiiiiiiieieeeeeeeeeeeeees

Comparison of Samsung ST200F and
Sony Cybershot DSC-QX10 UUID ..o

Medialnfo Comparison of Samsung ST200F
and Sony Cybershot DSC-QX10......couiiiiiiiiiiiie e

Comparison of Canon IXUS 265 and
Panasonic Lumix DMC-TZ57 Structureccccooeeeiiiiiieeieeeiee e,

Medialnfo Comparison of Canon IXUS 265
and Panasonic Lumix DMC-TZ57 ...,

Comparison of Original GoPro Hero 3 and
ffmpeg Encoded File Structure............e e

Medialnfo Comparison of Original GoPro Hero 3 and
fimpeg Encoded File ...

Comparison of Original LG G3 and
ffmpeg Encoded File Structure............iee

Medialnfo Comparison of Original LG G3 and
fimpeg Encoded File ...

Comparison of GoPro Hero 3 Original and
Adobe Premiere Encoded File Structure.............ccuvviiiiiiee

Medialnfo Comparison of Original GoPro Hero 3
and Adobe Premiere Encoded File ...

Comparison of Original LG G3 and
Adobe Premiere Encoded File Structure...............ooooiiiiiiiiiii

Medialnfo Comparison of Original LG G3 and
Adobe Premiere ENCoded Filecoouniiieiiiiiee e

Comparison of GoPro Hero 3 Original and
Apple QuickTime Encoded File Structure ...

viii

58

59

60

61

62

63

64

Medialnfo Comparison of GoPro Hero 3 Original and

Apple QuickTime Encoded File..........cccooiiiiiiiiiiii,

Comparison of LG G3 Original and

Apple QuickTime Encoded File Structureccccciinnnn.

Medialnfo Comparison of LG G3 Original and

Apple QuickTime Encoded File..........cccooiiiiiiiiiiii,

Comparison of Original GoPro Hero 3 and

YouTube Encoded File StruCturecooeeeeeiieieeeeeeeeeeeaea

Medialnfo Comparison of Original GoPro Hero 3 and

YouTube ENCoded File.... ...

Comparison of LG G3 Original and

YouTube Encoded File StruCtureoooeeeeeiieieeeeeeeeeeea

Medialnfo Comparison of LG G3 Original and

YouTube ENcoded File.... .o

CHAPTERI
INTRODUCTION

The focus of this thesis is to demonstrate a framework of how to
authenticate a MP4 video recording based on an analysis of its inherent file
structure. MP4 video files are represented by the MPEG-4 Standard and defined
in ISO/IEC 14496. The MPEG-4 standard and ISO/IEC 14496 have undergone a
number of amendments and additions since its introduction in 1999. The
structure of these files is based on the Apple QuickTime container format first
published by Apple Computer, Inc. in 2001. The extensible architecture of this
file structure has allowed changes to be made within the format over time, while
allowing it to remain a viable and useful file format fifteen years after its
introduction. In its current form, MP4 files are a popular container of H.264-
encoded video, are natively supported in the HTML5 becoming a new standard
of web-based video, and represent the majority of video created by consumer
cameras and mobile devices.

At its root, the extensible nature of this file format is what allows a given
MP4 file to be authenticated as being consistent with the device that was claimed
to have created it. In the research for this thesis, a database of sixty-six video
recordings was created containing exemplar recordings from a variety of
cameras and mobile devices. These recordings were transferred from their
respective devices in a forensically sound manner, making sure to preserve the
original file structure. By parsing the structure of these files, identifying

characteristics can be recognized in their structure as defined by the Apple

QuickTime container format. Due to the inherent design of the file format, there
are very few requirements of what containers must be present and how they are
configured in any given file. Due to the variety in this structure of containers,
identifying characteristics become apparent when comparing the files between
manufacturers and models. In addition to the sometimes self-identifying
metadata contained within the files, the structure, itself, can be used to
authenticate a file as being consistent with the device or to further identify which
software was used to handle the file based on how the structure of containers
has been modified. Just as physical devices record files in a specific structure of
containers, software based manipulation will rearrange the structure of the files
they create providing the same basis for identification. The effects of this
software interaction vary but no software analyzed for this paper made any
attempt to recreate the container structure of the original file.

The National Center for Media Forensics has published proposed
frameworks for digital audio authentication[1] and digital image authentication.[2]
Conspicuously absent is a framework for the authentication of digital video.
There are a number of studies focusing on the authentication of digital video and
none of them are more comprehensive than Forensic analysis of video file
formats, Gloe, et al.[3] This study provides an great deal of detail on specific
video file formats, digital cameras, mobile phones, and video editing software,
however it stops short of the analysis of MPEG-4 video files based on their file
structure. | propose the present study of MPEG-4 file structure format in order to

form the basis of a framework for the authentication of digital video.

CHAPTERIII
MOTION PICTURE EXPERTS GROUP (MPEG)

The Motion Picture Experts Group (MPEG) was established in 1988 by the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). MPEG-1 was their first standard released in
1993 and was defined in ISO/IEC 11172[4]. This first MPEG standard defined a
method of encoding moving pictures and audio that would allow playback at the
bit rate of a compact disc and at the transmission rate of a T1 line of 1.5 Mbps.
MPEG-1 was used primarily in the CD-i video format, Video CD (VCD) format,
and in satellite and cable television transmission. The most notable and lasting
legacy of the MPEG-1 standard is without question the MPEG-1 Audio Layer Il
(MP3) audio compression format which remains relevant today.

MPEG-2, defined in ISO/IEC 13818[5], was released in 1996 and made
considerable improvements on the MPEG-1 standard. Most notable was the
support for a higher transmission bit rate that allowed high definition interlaced
video and multi-channel audio streams. MPEG-2 is used in DVD’s, cable
television, satellite television, and over-the-air broadcast television. Its hardware
is backwards compatible by design so any player capable of playing MPEG-2
encoded data is also capable of playing MPEG-1 data.

MPEG-3, not to be confused with MPEG-1 Layer 3 or MPEG-2 Layer 3,
was a standard that never really was. After realizing that the goal of delivering

high bit rate streams necessary to provide full 1080p video would be possible

with the existing MPEG-2 standard, MPEG-3 was incorporated into MPEG-2 and
the standard was shelved.

MPEG-4 OVERVIEW

The MPEG-4 standard has undergone a number of changes since its
introduction in 1999. MPEG-4 Part 1, MPEG-4 Part 2, and MPEG-4 Part 3 were
the first standards that outlined the file format which was to contain audio and
video signals. These standards are defined in ISO/IEC 14496-1[6], ISO/IEC
14496-2[7], and ISO/IEC 14496-3[8]. This structure is based on the Apple
QuickTime container format first published in 2001 by Apple, Inc. [9].

A significant amendment to this standard was made in 2003 when MPEG-
4 Part 14 was introduced and described in ISO/IEC 14496-14[10]. MPEG-4 Part
14 defined the MP4 file format as it is used today and while there have been
many further amendments to the MPEG-4 standard the file structure at its base
has remained the same.

MPEG-4 Part 10 defined in ISO/IEC 14496-10[11] introduced
H.264/Advanced Video Coding (AVC) in 2003. The storage format for this
encoded data was created with MPEG-4 Part 15, defined in ISO/IEC 14496-
15[12], released in 2004. H.264 is the video compression standard of the Blu-
Ray Disc format. It has also been adopted for online streaming video through
services like YouTube, Vimeo, and Apple’s iTunes Store. It is used for HDTV
over-the-air transmissions, cable, satellite television transmissions, and is the

dominant codec used by security system DVR’s and digital CCTV systems.

MPEG-4 Part 12 described in ISO/IEC 14492-12[13] defined the ISO base
media file format that is at the root of the analysis in this paper. This definition
provides the structure for a container file format to store video files locally or
transmit them across a network. The structure and contents of these containers
is extensible and all registered extensions of the ISO base media file format are
maintained by an official registration authority[14]. This provision for the
registration of these extensions has existed since MPEG-4 Part 1 was initially

released.

CHAPTERIII
THE COLLECTION

In creating a database of video files for this thesis, it was important to
create a framework by which files could be collected without any opportunities for
their structure to be altered when transmitting them from their respective devices.
An initial test was performed using a LG G3 mobile phone. In testing the LG G3,
a sample video was created and stored on its internal memory. This file was
then transferred off of the device using Android File Transfer over a USB
connection. The file was then copied to the G3’s removable micro SD storage
card, sent as an attachment to an email, and synced to another computer using
Dropbox. After all of the files had been collected hash values were generated
and when compared they all showed matching MD5, SHA-1, and SHA-256
values. In the case of the LG G3 Android device, no transcoding had occurred
when transferring a file from the device through any of these techniques.

It should be noted that Dropbox will change the name of the file if using
their Camera Upload feature but the structure and contents of the file were not
changed. The intra-variability among these methods of retrieving files from their
respective devices was zero.

Just because the LG G3 was successful in moving video files off of the
device without transcoding them or altering their structure is by no means an
endorsement that all other devices will behave in the same fashion. The files not
collected personally were created and transmitted using a clear set of guidelines

established in order to preserve the originality of the files. When it was not

possible to perform such an exhaustive test or when access to the device was
not possible, the properties of the files were examined to determine if they had
been transcoded in some way to alter their format from the published
specifications of their respective device. Consumer cameras and their
removable media posed no unexpected challenges in collection. The Android
devices, represented in this database, all transmitted files without any
modifications using any of the techniques mentioned. While the collection and
study of Apple QuickTime files is outside the scope of this paper, it should be
noted that the Apple devices examined for the sake of comparison would by
default transcode their video files to a much lower quality when attached to an
email message. The original files could be retrieved from the device using
Dropbox but no further testing was performed on these devices.

In collecting these files, it was worth considering how the average user
would share their videos or how these files would most likely and most easily
moved off a mobile device with no availability of external storage. Once
configured, the ease of Dropbox synchronization is undeniably simple however
the two most obvious and ubiquitous choices were moving files via email and
MMS messages. As previously observed, an emailed video would retain its
original structure on the Android devices examined. In the case of transmitting
via MMS message, the Android device transcodes the original file due to size
limitations. Once the methods of collecting the video data were validated the
most common means of collecting the videos from their respective devices was

via email attachments.

When collecting video samples for the database of files to be examined, it
was important to create multiple samples from each device. Modern mobile
devices have the capabilities to record video at a wide range of resolutions and
frame rates; it was important to collect the data from these devices using each of
their possible recording modes. It was also important to collect multiple samples
of each possible mode so that any variability within a single given device could
be identified and investigated further. This behavior was not observed in any of

the devices examined.

CHAPTER IV
ANALYSIS

In order to manually parse a MP4 file, it is important to understand the
container-based nature of the file itself. The structure of these files is based
entirely on the Apple QuickTime File Format Specification[15]. Apple refers to
this fact openly in the documentation of their QuickTime standard and states
clearly that the primary difference between QuickTime and MPEG-4, “An atom,
as described in this document, is functionally identical to a box, as described in
the ISO specifications for MPEG-4 and Motion JPEG-2000. An atom that
includes version and flags fields is functionally identical to a full box as defined in
those specifications.” Conversely, the ISO/IEC 14496-12:2005(E) publication
points out that in the first publication of their specification a ‘box’ was referred to
as an ‘atom’. For the purposes of this paper, we will refer to these containers as
‘boxes’ as in ISO/IEC 14496-12:2005(E). These boxes act as individual

containers or as containers of additional containers nested inside one another.

box
box size
box type

box
box size
box type

box
box size
box type

Figure 1. MPEG-4 Box Structure

Each of these boxes begins with an unsigned 32-bit or 64-bit integer in big

endian format that defines the size of the box itself. The vast majority of boxes

use the 32-bit integer but there are examples of 64-bit sizes in the data surveyed
for this paper: a box that is simply so large that it requires a 64-bit integer to
represent its size[13], and a series of Universally Unique Identifiers. If the size of
the box is 0x00 then the contents of the box extend to the end of the file.[13]

For the purposes of parsing the MPEG-4 boxes all byte size values will be
described in hexadecimal values using the prefix ‘Ox’ where 0x00=0 bytes,
0x10=16 bytes, 0x20=32 bytes, etc.

The File Type Box

In this example file, the first four bytes represent the size of the box: 0x18
bytes. This measurement includes the bytes used to represent the size of the

box itself.

Of fset o1 2 3 4 5 6 7 8 9 A B C D E F

0oooo0o0 [(EMOGECIEEMce 74 79 70 6D 70 34 32 00 00 00 00 |MEMitypmpd?2
00000010 69 73 6F 6D 6D 70 34 32 00 00 0D A8 6D 6F 6F 76 isommpd2 “moow
0ooooozo 00 00 00 6C 6D 76 68 64 00 00 00 00 D1 A4 82 AOD Imvhd REY

Figure 2. MPEG-4 Box Size

The next four bytes define the type of box. In this example, the first box of
the file is ‘ftyp’, a File Type Box. The ISO specification requires this box to exist
as early as possible in the file. In the files examined for this paper, it was always
the first box in each sample. There can be only one ‘ftyp’ box per file and it must
exist in order for the file to meet the ISO specification. The ‘ftyp’ box must also
exist at the top level of the file. The File Type Box allows a given file to define
compatibility with multiple standards if applicable. In this case, the box contents

contains ‘mp42’, ‘isom’, and a second ‘mp42’.

10

Of fset 012‘3456789ABCDEF

pooooooo | [EOEMCEIEENGE 74 79 70 6D 70 34 32 00 00 00 00 [EEEMftypnpd?
00000010 69 73 6F 6D 6D 70 34 32 00 00 0D A8 6D 6F 6F 76 isommpd2 moov
00000020 00 00 00 6C 6D 76 68 64 00 00 00 00 D1 A4 82 A0 1mvhd REN]
00000030 D1 AA 82 A0 00 00 03 E§ 00 00 13 AB 00 01 00 00 Nz & o«

Figure 3. MPEG-4 Box Type

In this example, the first ‘mp42’ used as a major brand identifier, referring
to the use of the Microsoft MPEG-4 codec. The 0x00 at offsets 0xOC through
OxOF act as a placeholder for any identifiers that would be used to define the
minor version of the major brand of this file. ‘isom’ and the second ‘mp42’
identify what are referred to as the compatible brands of this File Type Box. In
this example, the standards identified in the ‘ftyp’ box are complimentary. In the
event where the audio or video were to not follow the ISO standard, the file types
would be defined so that a decoder would correctly handle the data for decoding

and playback.

Offset o1 2 3 4 5 6 7 8 9 A B C D E F

00000000 | [NECTEFENGET74779170 | I3genpd2 |
00000010 [ENENFETNTIFTEETEEF00 00 0D A3 6D 6F 6F 7¢ [MS=MRTW noov
00000020 00 00 00 6C 6D 76 68 64 00 00 00 00 D1 AA 82 AO Imvhd W21
00000030 D1 A 82 A0 00 00 03 E3 00 00 13 4B 00 01 00 00 RNap & «

Figure 4. MPEG-4 Box Contents

The Movie Box

The next four bytes of our file contain the box size for our next box:

OxODAS8.

Of f=set o1 2 3 4 5 6 7 8 9 A B C D E F

Tl 00 00 00 18 66 74 79 70 6D 70 34 32 00 00 00 00
U RIEREGc S 73 6F 6D 6D 70 34 32 00 00 0D AS [VENINNINIEE] somnpd 2 Mnoov
000o0O0O0O20 00 00 00 6C 6D 76 68 64 00 00 00 00 D1 AA 82 AD Imvhd Nay
00000030 D1 AA 82 A0 00 00 03 ES 00 00 13 AB 00 01 00 00 N2 e o«

Figure 5. Movie Box Size

The four bytes following that define the box: moov.

11

00000030 DT ¥¥ 85 ¥0 00 00 03 E8 00 00 T3 ¥B 00 OT 00 00 Hsl e «
0oooooso 00 00 00 eC D e B8 ¥ 00 00 00 00 DT ¥¥ 85 ¥O Twapq ER

UGLIGIRATEECS 53 €E €D €D 50 39 35 00 00 0D ¥8 [NFINg I -QET=0wwbDgs l=Er
D00 00 00 T8 ee 4§ Ag A0 eD A0 37 35 00 00 00 00

Ort=ef o T 5 3 ¥ 2 & & 8 a8 ¥ B CDE E

Figure 6. Movie Box Type

‘mooV’ identifies this box as a Movie Box. The Movie Box contains the
metadata of the file represented in additional boxes. In this example, the moov
box contains 3496 bytes, it is significantly larger than the ‘ftyp’ box and contains
all of the identifying information describing the contents of the video file. The
structure and contents of these metadata boxes are at the root of building a
framework to authenticate the file. ‘moov’ is a top-level box that must exist and
there can be only one box in order for the file to meet the ISO specification.
There are forty-two nested boxes inside this ‘moov’ box but the one of most
forensic interest is ‘mvhd’, the Movie Header box.

The Movie Header Box

In the research for this paper, the variability in the positioning of the
MPEG-4 boxes provided a method to identify a file based on the order and

organization of the data containers themselves.

Offset o1 2 3 4 5 6 7 8 9 &4 B C D E F
e 00 00 00 18 66 74 79 70 6D 70 34 32 00 00 00 0O

00000010 @ CENENTEEEIETEFEITETTFCECDICENCEN7E | s Fcoyv
0000O0O0D20 OO0 OO0 00 6C 6D 76 68 64 00 00 00 00 D1 A4 82 AD Imvhd REN
00000030 D1 A4 82 A0 00 00 03 ES 00 00 13 4B 00 01 00 00 N2y &«

Figure 7. MPEG-4 Nested Box Size
To begin parsing the ‘moov’ box which is OxODA8 bytes, there are no
immediate contents in this box; instead there is a four byte string identifying the

size of another box.

12

Offset
oooooooo
gooooolo
gooooozo
oooooo3o

o1 2 3 4 5 6 7 8 9 4 B C D E F
00 00 00 18 66 74 79 70 6D 70 34 32 00 00 00 0O

69 73 6F 6D 6D 70 34 32
(EENETEENcD 76 68 64 00 00 00 00 D1 A4 82 A0 |[nvhd REY
D1 A4 82 AD 00 00 03 ES 00 00 13 &B 00 01 00 00 HNzj e«

Figure 8. Movie Header Box Size

Measuring 0x6C bytes in length this is the first example of a nested box:

‘mvhd’.

Offset
oooooooo
oooooo1o
oooooozo
00000030

o1 2 3 4 5 6 7 8 9 A B CDEF
00 00 00 18 66 74 79 70 6D 70 34 32 00 00 00 00
69 73 6F 6D 6D 70 34 32 isonnpd 2
EETE6D 76 68 64 100 00 00 00 D1 A4 82 A0 [nvhd ff2)
D1 A& 82 A0 00 00 03 ES 00 00 13 AB 00 01 00 00 Nzj & o«

Figure 9. Movie Header Box Type

The Movie Header Box defines the characteristics of the media data

contained within the file and contains a number of useful pieces of information;

in this example: creation time, modification time, time scale, and duration. At an

offset of OxOC from the start of the ‘mvhd’ box is the creation time of the example

file presented in a 32-bit integer in big endian that represents the number of

seconds since midnight, January 1, 1904 in UTC time. This was the same timing

scheme used for the Mac OS’s Hierarchical File System up through OS 9 and

was also the timestamp format of the Palm OS but now this epoch time system is

really only used as the encoded time in MPEG-4 and QuickTime files.

Of fset

0ooooooo
00000010
oooooozo
00000030

o1 2 3 4 5 6 7 8 9 A B C D E F

00 00 00 18 66 74 79 70 6D 70 34 32 00 00 00 00
isonnpd 2
[ENEETNEENED 76 68 6400 00 00 0O ETnvhd N2 |
D1 A4 82 A0 00 00 03 ES 00 00 13 AB 00 01 00 00 N2y &«

Figure 10. MPEG-4 Creation Timestamp

The modification time of the file is contained in the same time format as

the creation time in four bytes at the offset of 0x10 from the beginning of the

‘mvhd’ box. In the case of this example file, it is identical to the creation time of

the file.

13

Of fset 012-3456789ABCDEF

00000000
00000010 isommpd 2
oooooozo [EMEEMEENEENED 76 68 64 00 00 00 00 D1 Aa 82 A0 [nvhd RER]
00000030 [FRUVAGEENIN00 00 03 ES 00 00 13 AB 00 01 00 00 BENM & «

Figure 11. MPEG-4 Modification Timestamp
The following four bytes at offset 0x14 contain the time scale of the file
presented as an integer that represents the number of time units that pass in one
second. In this case, a value of 0x3E8 represents a time scale 1/1000" of a

second, or one millisecond.

Of fset n1 2 3 4 5 6 7 8 9 A B C D E F

00000000
00000010 isonmpd?2
00000020 [EMECMEONESNGED 76 68 64100 00 00 00 D1 AA 82 A0 [@mwhd N2)
00000030 D1 Ak 82 A0 [INGINEENSENN00 00 13 AB 00 01 00 00 N2p B «

Figure 12. Movie Header Box Time Scale
At an offset of 0x18 from the start of the ‘mvhd’ box are four bytes that
represent the duration of the file. In this example: 0x13AB or 5035 milliseconds.

The example file has a duration of 5.035 seconds.

Of fset o1 2 3 4 5 6 7 8 9 &4 B C D E F

00000000
00000010 isommpd 2
pooooozo | [EOGMEENEENED 76 68 64 00 00 00 00 D1 A 82 A0 [mvhd REN]
00000030 D1 AA 82 A0 00 00 03 ES [IIWEENS:=No0 01 00 oo a2y I

Figure 13. Movie Header Box File Duration

The Free Box

3496 bytes from the starting point of our ‘moov’ box at 0OxODAS8 starts our

next top-level box at offset 0xODCO. The size of this box is 0x62060.

Offset o1 2 3 4 5 & 7 8 9 A B C D E F

0o000Dco [(MEENETIEINGE 72 65 65 00 00 00 00 00 00 00 o0 [Niree
oooooppo 00 00 0O OO OO OO OO OO 0O 0O 0O 0O 0O 00 00 00
00000DED 00 00 00 00 0O 0O OO OO OO0 00 0O 00 00 00 00 00

Figure 14. Free Box Size and Type
The free box is defined by the ISO standard as being irrelevant and that its
contents may be ignored[13]. In this example, the contents of the free box is

filled entirely with zeroes. Throughout the files examined for this paper, there

14

were other examples of free boxes as well as skip boxes whose contents and

function are identical to the free box.

Of f=et o1 2 3 4 5 6 7 8 9 A B C D E F

0o000Dco | [(MEANFTNANGE 72 65 65 N recH
00000DD0 I
00000DED I
00000DF0 I
00000EDD I
00000E1LD I
00000E20 00 00 00 00 0D OO OO0 OO OO0 OO0 OO OO0 OO0 OO OO0 0O _
00000E30 []

Figure 15. Free Box Contents

The Movie Data Box

401,504 bytes from the start of the free box is our next top-level box
measuring 0x1146A6C bytes. This is the final top level box in this example file
and while the ISO standard would allow its size to be represented by 0x00
because its contents fill the remainder of the file, the manufacturer has chosen to
In the files examined for this paper no

define the size of the box nonetheless.

Movie Data Box was defined as a size of 0x00.

Of fset 012-34567 g 9

4 B C D E F
00062E20 [FEEEWEFWESNCD 64 61 74 21 10 05 20 44 1B FF C0 [EFIndat! H A
00062E30 00 00 0O OO OO OO OO OO OO OO OO OO OO OO OO OO
00062E40 00 00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO
00062ES0 00 00 0O OO OO OO OO OO OO OO OO OO OO OO OO OO0

Figure 16. Movie Data Box Size
The final top-level box in this example file is ‘mdat’. The Media Data Box
contains the media data of the file, in this case the compressed audio and video
stream. A file may have multiple ‘mdat’ boxes containing multiple data streams
or no ‘mdat’ box whatsoever if the file in question is acting only as a pointer to

media data in other files.

Of fset 012-34567 8 9

4 B C D E F
00062E20 [FEEEWFWESNED 64 61 74 21 10 05 20 A4 1B FF c0 [EPmdat! o i

00062E30 00 00 OO 0O OO OO OO OO 0O OO OO OO OO 0O OO0 00
00062E40 00 00 0O 0O OO OO OO OO 0O OO OO OO OO 0O OO OO0
0DODDE2ESO 00 00 0O OO OO OO OO OO OO OO OO OO OO OO OO OO

Figure 17. Movie Data Box Type

15

In this example, there is a single media data box containing a single media

data stream. This was the case for all of the files examined for this paper.

Of feet 01 2 3 45 6 7 8 9 A BCODEF
TR0 14 62 6C [(DETRFRVION21 10 05 20 44 1B FF C
00062E30
00062E40
00062ES0
00062E60
T2l 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O
3o 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0
00062E90

Figure 18. Movie Data Box Contents

)

T nda tIEET

o
()] [me) [[we) [se) [oe)

o

Tools for Analysis

Parsing the file structure of MPEG-4 files manually is a necessary means
of understanding the box structure of a file, however, to examine a larger
collection of video files, it was necessary to incorporate a number of software
tools for analysis. There are a number of software tools readily available online
for a variety of operating systems but two in particular were invaluable for
analyzing this collection of video files. Each one focused the example file in a
different way and both are freely available. The methods for using these tools
should be validated in order to insure that they are reporting correct information
and can be considered a forensically sound tool. It is important to note that in the
research for this paper there were many instances where one tool could
authenticate a file as being original to its device but by utilizing both tools many
points of comparison can be identified to authenticate a given file.

AtomicParsley was used to determine container structure of the files.
Medialnfo was used to interpret the contents of these containers. For the
hexadecimal analysis a variety of hexadecimal editors were used including

Winhex, 010 Editor, and the native Unix command ‘hexdump’ to carve individual

boxes based on the sizes and offsets returned by AtomicParsley in order to
validate the method.

AtomicParsley

AtomicParsley is a piece of software released under the terms of the GNU
General Public License and available online at
https://bitbucket.org/wez/atomicparsley/. Originally developed by puck_lock and
currently maintained by Wez Furlong and Oleg Oshmyan, AtomicParsley will
parse the box structure of a MPEG-4 file and output it to an easily readable

format displaying the size and structure of the boxes.

Atom ftyp @ @ of size: 24, ends @ 24
Atom moov @ 24 of size: 3496, ends @ 3520
Atom mvhd @ 32 of size: 108, ends @ 140
Atom udta @ 148 of size: 84, ends @ 224
Atom auth [eng] @ 148 of size: 19, ends @ 167
Atom adzc @ 167 of size: 28, ends @ 187
Atom adzm @ 187 of size: 17, ends @ 204
Atom adze @ 284 of size: 28, ends @ 224
Atom trak @ 224 of size: 1869, ends @ 2093
Atom tkhd @ 232 of size: 92, ends @ 324
Atom mdia @ 324 of size: 1769, ends @ 2093
Atom mdhd @ 332 of size: 32, ends @ 364
Atom hdlr @ 364 of size: 44, ends @ 408
Atom minf @ 408 of size: 1685, ends @ 2093
Atom vmhd @ 416 of size: 20, ends @ 436
Atom dinf @ 436 of size: 36, ends @ 472
Atom dref @ 444 of size: 28, ends @ 472
Atom stbl @ 472 of size: 1621, ends @ 2093
Atom stsd @ 480 of size: 157, ends @ 637
Atom avcl @ 496 of size: 141, ends @ 637
Atom avcC @ 582 of size: 39, ends @ 621
Atom pasp @ 621 of size: 16, ends @ 637
Atom stts @ 637 of size: 744, ends @ 1381
Atom stss @ 1381 of size: 36, ends @ 1417
Atom stsz @ 1417 of size: 588, ends @ 2085
Atom stsc @ 2005 of size: 52, ends @ 2057
Atom stco @ 2057 of size: 36, ends @ 2093
Atom trak @ 2093 of size: 1427, ends @ 3520
Atom tkhd @ 2101 of size: 92, ends @ 2193
Atom mdia @ 2193 of size: 1327, ends @ 3520
Atom mdhd @ 2201 of size: 32, ends @ 2233
Atom hdlr @ 2233 of size: 44, ends @ 2277
Atom minf @ 2277 of size: 1243, ends @ 3520
Atom smhd @ 2285 of size: 16, ends @ 2301
Atom dinf @ 2301 of size: 36, ends @ 2337
Atom dref @ 2309 of size: 28, ends @ 2337
Atom stbl @ 2337 of size: 1183, ends @ 3520
Atom stsd @ 2345 of size: 91, ends @ 2436
Atom mpda @ 2361 of size: 75, ends @ 2436
Atom esds @ 2397 of size: 39, ends @ 2436
Atom stts @ 2436 of size: 32, ends @ 2468
Atom stsz @ 2468 of size: 964, ends @ 3432
Atom stsc @ 3432 of size: 52, ends @ 3484
Atom stco @ 3484 of size: 36, ends @ 3520
Atom free @ 3520 of size: 401504, ends @ 405024
Atom mdat @ 4085024 of size: 18115188, ends @ 18520204

~ denotes an unknown atom

Total size: 18520284 bytes; 45 atoms total. AtomicParsley version: 98.9.8 (utf8)
Media data: 18115180 bytes; 485024 bytes all other atoms (2.187% atom overhead).
Total free atom space: 481584 bytes; 2.168% waste. Padding available: @ bytes.

Figure 19. AtomicParsley Example Output

In this example, the structure of our example file can quickly be identified
and the nested structure of the boxes becomes clear. Manually parsing the file

and comparing the results can validate the output of AtomicParsley. The size of

17

each individual box is not important for the purpose of authentication. When
recording multiple videos with the same device, variability in the size of boxes
was observed, even when video files were created to be as similar as possible by
matching settings and duration. However, there were no observed instances of a
variability in the structure of boxes when creating multiple files using matching
settings on a given device. This consistency in structure allows the examiner to
create a framework to authenticate MPEG-4 video files.

It is important to note that Atomic Parsley reports boxes that are not part
of its database of valid box types with a ‘~’ and defines them as unknown atoms.
These unknown atoms can be considered an excellent piece of identifying
information due to the extensible nature of the MP4 standard. In the research for
this paper, a number of unregistered boxes were identified, some of which
contained a wealth of identifying data. The MP4 Registration Authority maintains
the standards for codecs[16], file types[14], and box types[17]. By design, an
unknown box will not prevent a file from being opened. By design, if an unknown
box type is encountered, it will simply be ignored by the playback software.

By using the output of AtomicParsley, it is possible to create a table
representative of the box structure of the example file. This will allow a visual
inspection of the file structure and allow the examiner to communicate about the
nature of the structure. In the case of our example, ‘ftyp’, ‘moov’, ‘free’, and
‘mdat’ are all in the 1% or top tier of the file. The ‘moov’ box is the only box in our
file with nested containers: ‘mvhd’, ‘udta’, and two ‘trak’ boxes containing the

video and audio streams individually. The total number of boxes can quickly be

18

identified, in this example file there are 46 total boxes. The depth of the boxes
can also be described. In this example file, there is a depth of 8 boxes. The
‘mooVv’ box contains ‘trak’, which contains ‘mdia’, which contains ‘minf, which
contains ‘stbl’, which contains ‘stsd’, which contains ‘avc1’, which contains ‘avcC’
and ‘pasp’. Rather than using such lengthy sentences to describe the structure
of these containers, the creation of a table to visualize the file structure is

invaluable when performing comparisons.

3 mvhd
4 udta
5 auth
6 adzc
7 adzm
8 adze
9 trak
10 tkhd
1 mdia
12 mdhd
13 hdir
14 minf
15 vmhd
16 dinf
17 dref
18 stbl
19 stsd
20 avci
21 avcC
22 pasp
23 stts
24 stss
25 stsz
26 stsc
27 stco
28 trak
29 tkhd
30 mdia
31 mdhd
32 hdlr
33 minf
34 smhd
35 dinf
36 dref
37 stbl
38 stsd
39 mp4a
40 esds
41 stts
42 stsz
43 stsc
44 stco

Figure 20. LG G3 Structure

19

Medialnfo

Another valuable tool in the analysis of MPEG-4 video files is Medialnfo.
Released as Open Source software under the BSD license, Medialnfo is
available online at https://mediaarea.net/en/Medialnfo. For the purpose of the
examinations in this paper, the CLI (Command Line Interface) version was used.
Medialnfo provides a comprehensive output of the properties of a video file.
Medialnfo makes no attempt to examine the structure of an input file but it excels
at quickly parsing out the contents of these containers and presenting the
properties of the video container, audio container, and the file itself. As a tool,
Medialnfo was most useful when used to compare files from the same
manufacturer that otherwise shared an identical MPEG-4 box structure.

After using Medialnfo to analyze the collection of files it became clear that
as a tool it yielded certain inconsistencies when examining the properties of a file
which will be described on page 23. It is imperative to understand that Medialnfo
should not be relied on as the sole tool when working to authenticate a file due to
these inconsistencies. A forensic examiner must understand the limitations of
Medialnfo as a tool and not base any meaningful conclusions on its otherwise

inconsistent results.

20

General
Complete name
Format

Format profile
Codec ID

File size
Duration
Overall bit rate
Performer
Encoded date
Tagged date

Video

0

Format

Format/Info

Format profile
Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Minimum frame rate
Maximum frame rate
Color space

Chroma subsampling
Bit depth

Scan type
Bits/(PixelxFrame)
Stream size

Title

Language

Encoded date

Tagged date
mdhd_Duration

Format/Info

Format profile
Codec ID

Duration

Source duration
Source_Duration_FirstFrame
Bit rate mode

Bit rate

Nominal bit rate
Channel(s)

Channel positions
Sampling rate
Compression mode
Stream size
Source stream size
Title

Language

Encoded date
Tagged date
mdhd_Duration

: 3840x2160-LG-G3-2015-06-20 02.38.24-JH.mpd

: MPEG4

Base Media / Version 2

mp42
17.7 MiB
: 5s 35ms
29.4 Mbps
LGE
: UTC 2015-086-20
: UTC 2015-086-20

L §

: AVC

: Advanced Video
High@L5.1
Yes
1 frame

: M=1, N=30

: avcl
Advanced Video
4s 822ms

: 29.9 Mbps

: 3 840 pixels

: 2 160 pixels
16:9
Variable
29.451 fps

: 29.221 fps

: 29.703 fps
Yuv

: 8 bits
Progressive

: 8,122
17.2 MiB (97%)

: VideoHandle
English

: UTC 2015-986-20
UTC 2015-986-20

1 4822

: 2

AAC

Advanced Audio
: LC

: Constant
156 Kbps
96.8 Kbps
2 channels
Front: L R
: 48.0 KHz
Lossy
95.9 KiB (1%)
95.9 KiB (1%)
: SoundHandle
English

: UTC 2015-086-20 @
20

: UTC 2015-96-
: 5035

02:38:24
@ 24

Coding

@

Figure 21. LG G3 Medialnfo Output

21

CHAPTER YV
ANALYSIS OF CAMERA FILES
When beginning to examine the structure of the files for this paper, the
extensible nature of the MPEG-4 standard became readily apparent. There are
similarities in the box structure between devices and in some cases the structure
is identical when comparing the structure of devices from the same
manufacturer. In these cases, it is important to examine the file properties using
Medialnfo as the contents of the boxes can hold important pieces of information
that will aid in helping to authenticate the file to the device on which it was

created. The following devices were examined for this paper:

Make Model
Canon ELPH 340/IXUS 265
GoPro Hero 3
Google Nexus 5
HTC One M7
HTC One M8
LG G3 (Android OS 5.0)
Motorola Moto X (2013) (Android OS 4.4.4)
Nokia E72
Nokia Lumia 1020
Nokia Lumia 1050
Nokia Lumia 800
Nokia Pureview 808

Panasonic Lumix DMC-CM1

Panasonic Lumix DMC-TZ57

Samsung Galaxy K

Samsung Galaxy S3 (Android OS 4.3)
Samsung Galaxy S3 Mini

Samsung Galaxy S4 Zoom

Samsung Galazy S5 (Android OS 4.4.2)
Samsung 927

Samsung NX500

Samsung ST200F

Sony A7
Sony Cybershot DSC-QX10
Sony Xperia Z1

Figure 22. List of Devices Analyzed for this Paper
To begin, two video clips were created using the LG G3 in its full

resolution mode. In order to validate the method of using AtomicParsley as a

22

tool and the LG G3’s ability to produce repeatable results in file structure, both

files were analyzed and compared.

3

4 udta

5 auth
6 adzc
7

auth

adzc

adzm

adze
trak

tkhd

mdia

adzm
8 adze
9 trak
10 tkhd
1 mdia
12 mdhd
13 hdir
14 minf
15 vmhd
16 dinf
17 dref
18 stol
19 stsd
20 avel
21 aveC|
22 pasp
23 stts
24 stss
25 stsz
26 stsc
27 stco

avct
aveC
pasp

trak
tkhd
mdia

28 trak
29 tkhd
30 mdia
mdhd
hdir
minf.
smhd
dinf
dref
stbl
stsd

31 mdhd
32 hdir
33 minf
34 smhd
35 dinf
36 dref
37 stol
38 stsd
mpda
esds

39 mpda
40 esds
M stts

42 stsz

43 stsc

) stco

45 free

46 mdat

Figure 23. Comparison of two LG G3 Samples to Validate Structure

stts.

stsz
stsc
stco

45 free
46 mdat

The two video clips show a matching structure of MPEG-4 box containers
and it is now necessary to validate the method of using our second software tool
Medialnfo. For this validation, the properties of the same two video files were

compared.

23

023824 6-2002:38:52
UTC 2015-06-20 023824 UTC2015-06-20 02:38:52

Ave
Advanced Video Codec
1

aaaaaa

Figure 24. Comparimsor; of t@o LG G3 Samples to Validate Medialnfo Properties

When comparing the two files, Medialnfo reported a property in one file
that it didn’t in the other: Source Duration. A series of additional test videos were
created originally thinking that the presence of the Source Duration property
might correlate to the duration of the video itself, in other words, a short video
would not store that property but a longer video would. In testing, no correlation
could be found to explain the presence or absence of this property reporting in
Medialnfo. However, the box structure analysis with AtomicParsley did remain
consistent throughout testing. In this case, the presence or absence of the
Source Duration property has no effect on the authentication of the LG G3 video
clips being examined but it is important to make note of any inconsistencies
when examining files.

The Source Duration property was attached to both the audio and video

tracks so the Track Box (‘trak’) and Media Header Box (‘mdia’) for each stream

24

were parsed manually and each contained duration information. This is an
excellent demonstration of the importance that should be placed on parsing
manually when any inconsistencies are observed, in order to better understand
the output of the tools being used for analysis and to better understand the
structure of the files in question before making a meaningful decision based on
the results of analysis.

To continue validating the LG G3, one of the full resolution video clips was
compared to a lower resolution, slow motion recording mode available on the

device. The structure of these two files were then parsed and compared.

9 trak 9 trak

12 mdhd
13 hdir
14 minf

12 mdhd
13 halr
14 minf
15 vmhd
16 dinf
17 dref
18 stol
19 stsd
20 avet
21 aveC
22 pasp
23 stts

stss

15 vmhd
16 dinf
17 dref
18 stbl
19 stsd
20 avcl
21 aveC|
22 pasp
23 stts

stss
25 stsz
26 stsc
27 stco
28 trak
29 tkhd
30 mdia

25 stsz
26 stsc
27 stco
28 trak

29 tkhd

30 mdia

3 mdhd

32 hdir

33 minf

34 smhd

35 dinf

36 dref

37 stbl

38 stsd

39 mpda

40 esds
M@ stts.

42 stsz

43 stsc

44 stco

45 free

46 mdat

31 mdhd
32 hdr

33 minf

34 smhd

35 dinf

36 dref

37 stbl

38 stsd

39 mpda

40 esds
r stts

42 stsz

43 stsc

44 stco

45 free

46 mdat

Figure 25. Comparison of two LG G3 File Structures in Different Recording
Modes (Full Resolution vs. Slow Motion)

The box structure using the two different modes on the LG G3 remained
consistent. For the sake of further validation, the files were compared using

Media Info.

25

Figure 26. Compwarain;on gf two LG G3 File Proggerties in Different Recording
Modes (Full Resolution vs. Slow Motion)

The results reported by Medialnfo confirmed the different properties of the
two files but again reported some properties in one file and not in the other. In
this case, the Media Header Box (‘mdhd’) duration was not reported in the lower
resolution file. Again, this information exists in both files but Medialnfo failed to
report it for the second file. Further analysis of files using Medialnfo revealed
that the absence or presence in reporting Source Duration or Media Header Box
(‘mdhd’) duration occurred throughout the analysis for this paper. Multiple tests
of multiple files were performed and in some cases the same file was examined
multiple times. Medialnfo never returned a different result when examining the
same file multiple times but there were simply some files that it would report
these properties on and others that it would not.

After establishing that the LG G3 creates files with consistent structure, a

comparison was made with the Motorola Moto X 2013. The Motorola Moto X

26

2013 would only record in one mode; the device was validated against itself to
confirm that it made consistently structured recordings.

By visualizing the structure of these two files, it is possible to quickly
compare them in order to determine if they have a matching structure of boxes or
if they are different in some way. In the case of the LG G3 and the Motorola
Moto X 2013, the file structures are very similar but the LG G3 includes a User
Data (‘udta’) box which contains a number of boxes that are unique to the LG
device: ‘auth’, ‘adzc’, ‘adzm’, and ‘adze’. The ISO/IEC 14496-12:2005(E)
standard only defines a copyright notice to be contained inside a User Data Box
(‘'udta’) but it is an extensible container which can be used as the manufacturer
sees fit as in the case of the LG G3. Were it not for this ‘udta’ box and its
contents, the structure of the two files is otherwise identical and it would be

necessary to parse out the identifying properties of the files themselves.

mdhd
hdir

9 minf

10 vmhd

1 dinf

12 dref

13 stol

14 stsd

15 avet

16 avcC
17 pasp
18 stts

19 stss

9 trak

12 mdhd
13 halr

14 minf

15 vmhd

16 dinf

17 dref

18 stol

19 stsd

20 avet

21 avcC
22 pasp
23 stts

20 stsz
21 stsc
22 stco
23 trak

24 tkhd

25 mdia

26 mdhd

27 hdir

28 minf

29 smhd

30 dinf

3 dref
32 stbl

33 stsd
34 mpda

25 stsz
26 stsc

27 stco

28 trak

29 tkhd

30 mdia

31 mdhd

32 hdr

33 minf

34 smhd

35 dinf

36 dref

37 stbl

38 stsd

39 mpda

40 esds
r stts

42 stsz

43 stsc

44 stco

45 free

46 mdat 46

Figure 27. Comparison of LG G3 and Moto X (2013) Structure

35 esds
36 stts.

37 stsz

38 stsc

39 stco

27

When comparing the Motorola Moto X and the Samsung S5, the structure
is clearly unique between the two devices. Most notably, the Samsung S5
places the ‘moov’ box after the ‘mdat’ box but Samsung also inserts a User Data
(‘'udta’) box containing three additional boxes: ‘SDLN’, ‘smrd’, and ‘smta’. The
placement of the Movie Data Box (‘mdat’) before the Movie Box (‘mooV’) is
notable because ISO/IEC 14496-12:2005(E) specifically recommends placing the
descriptive information of a MPEG-4 file before the data itself. This
recommendation is to facilitate the streaming of the video. In this case, the video
from the Moto X could be streamed because the file type header and descriptive
data for the video content itself would be received then the playback would begin
streaming the audio and video data contained in the ‘mdat’ box. The file created
by the Samsung Galaxy S5 could not be streamed because in order for playback
to occur, the entire file would need to be loaded in order to receive the
descriptive content in the ‘moov’ box to then be able to interpret the data

contained in the ‘mdat’ box.

28

2 moov 2 mdat
3 mvhd 3 moov
4 trak 4 mvhd
5 tkhd 5 udta
6 mdia 6 SDLN
7 mdhd 7 smrd
8 hdr 8 smta
9 minf 9 trak
10 vmhd 10 tkhd
1 dinf 1 mdia
12 dref 12 mdhd
13 stol 13 hdlr
14 stsd 14 minf
15 avet 15 vmhd
16 aveC 16 dinf
17 pasp 17 dref
18 stis 18 stbl
19 stss 19 stsd
20 stsz 20 avet
21 stsc 21 aveC
22 stco 22 stts
23 trak 23 stss
24 tkhd 24 stsz
25 mdia 25 stsc
26 mdhd 26 stco
27 hdir 27 trak
28 minf 28 tkhd
29 smhd 29 mdia
30 dinf 30 mdhd
31 dref 31 hdir
32 stol 32 minf
33 stsd 33 smhd
34 mpda 34 dinf
35 esds 35 dref
36 stts 36 stol
37 stsz 37 stsd
38 stsc 38 mpda
39 stco 39 esds
40 free 40 stts
41 mdat @ stsz
42 42 stsc
43 43 stco

Figure 28. Comparison of Moto X and Samsung S5 Structure
When comparing file structure across Samsung devices, they are
expectedly similar. The Galaxy S3 and Galaxy S5 have identical structures while
the S4 Zoom has a structure that differs only slightly from the S3 and S5 in its

User Data Box (‘udta’).

29

1 2 3 4 5
ftyp
mdat
moov
mvhd
udta
SDLN
smrd
smta
trak
tkhd
mdia
mdhd
hdir
minf
vmhd
dinf
stbl
trak
tkhd
mdia
mdhd
hdir
minf
smhd
dinf

stbl

Figure 29. Comparison of Samsung S3, S4 Zoom,

dref

stsd

avel

stts

stss
stsz
stsc
stco

dref

stsd

stts

stsz
stsc
stco

mp4a

avcC

esds

2 mdat

43

mvhd
udta

trak

trak

smrd
©xyz
smta

tkhd
mdia

tkhd
mdia

mdhd

hdir

minf
vmhd
dinf

stbl

mdhd

hdir

minf
smhd
dinf

stbl

stts

stsz
stsc
stco

dref
stsd
stts
stss
stsz

stsc
stco

dref

stsd

avcl

mp4a

avcC

esds

SDLN

smrd

smta
9 trak

10 tkhd

1" mdia

27 trak
28 tkhd
29 mdia

mdhd

hdir

minf
vmhd
dinf

stbl

mdhd

hdir

minf
smhd
dinf

stbl

and S5 Structu

Presented with two files of identical box structure, the next step in

dref

stsd

avel

stts

stss
stsz
stsc
stco

dref

stsd

stts

stsz
stsc
stco

re

avcC

mp4a
esds

authenticating these files should be to examine their properties in order to make

further attempt to authenticate them to a known device. Using Medialnfo, the

properties of these two files can be examined and compared to quickly identify

any characteristics that would differentiate the two files. In the case of these two

files being examined, Medialnfo reports that the resolution of the two files is

different.

30

1920x1080-Samsung-S3-20150514_230819-KH.mpé

5_01.mpé

17.2 Mbps
UTC 2015-05-15 03:08:49
UTC 2015-05-15 03:08:49

7.1 Mbps.
UTC 2014-02-04 02:28:51
014-02.04 02:28:51

UTC 2014-02-04 02:28:51
ITC 2014-02.04 022851

UTC 2015-05-15 03:08:49
Tagged date UTC 2015-05-15 03:08:49
mmmmmmm 12245

Figure 30. Medialnfo Comparison of Samsung S3 and Samsung S5

When examining the individual files, it is important to understand where
Medialnfo is deriving this information. ISO/IEC 14496-12:2005(E) requires that
the horizontal and vertical resolution of a file be defined in the Sample
Description Box (‘stsd’) which is contained in the Sample Table Box (‘stbl’), which
is ultimately contained in the Track Box (‘trak’) for the video stream of the
respective files. In the Samsung Galaxy S3 and Samsung Galaxy S5, this data
is represented in two unsigned 16-bit integers beginning at an offset of 0x31 from
the beginning of the Sample Table Box (‘stbl’). The first two bytes represent the
horizontal resolution (in green) and the second two bytes represent the vertical

resolution (in blue).

31

Offset o1 2 3 4 5 6 7 g 9 A B C D E F

0D193CCF0D 72 &C 20 00 00 00 01 00 00 12 05 73 74 62 6C rl stbl

0193CD00

0193CD10

0193CD20 07

0193CD30 80 1E

0193CD40

0193CD50

0193CDeD0

0193CD70

0193CD80 00 00 DA EO 73 74 74 73 astts
0193CDS0 00 0O OO0 0O OO OO 01 SA& OO0 0O OO 01 OO 0O OB BS Z 1]

Offset o1 2 3 4 5 6 7 8 9 A B C D E F

07495170 00 00 1D 11 73 74 62 6C stbl
07495180

07495190

07495140 0F 00

074951E0

074951C0

074951D0

074951E0

074951F0

07495200 00 00 11 EO 73 74 74 73 00 00 0O astts

"

Figure 31. Comparison of ‘stbl’ Boxes in Samsung S3 (top) and S5 (bottom)
The maximum resolution that the Galaxy S3 can record is 1920x1080
where the maximum video resolution of the Galaxy S5 is 3840x2160. Therefore,
in this example, while the box structure of the two files is identical, an analysis of
the contents of the Sample Description Box (‘stsd’) can be examined to
determine more specific properties of the video files in order to authenticate
them. This is a valid means of authenticating a video whose MPEG-4 box
structure is identical to determine if it is the correct resolution for the device in
question. This specific technique has a limitation if a device capable of recording
in a lower resolution than its maximum resolution is compared against a second
device recording at the same resolution. In the study for this paper, when a
Samsung Galaxy S3 recording at its maximum resolution of 1920x1080 is
compared against a Samsung Galaxy S5 recording at a lower than maximum

resolution of 1920x1080, the files appear identical both in structure and in

32

metadata. Medialnfo confirms the resolutions of both files as being identical and
other than small variances in the frame rate, which should not be considered a
viable means of differentiating the files in this case, there is no meaningful data
to exclude these two files from being a match as the same device.

This result was not unexpected or surprising. The Samsung devices show
a great number of similarities in their file structure and metadata including the
contents of their User Data Box (‘udta’). In this example, both devices report the
same video format profile. In both Samsung files, the video format profile is
reported as ‘High@L4'. Looking back at the Medialnfo output of a Samsung
Galaxy S5 video recorded at 3840x2160, the video format profile is reported as
‘High@L5.1’. This is a second way to differentiate between the Samsung Galaxy
S3 and Galaxy S5 recording at their maximum resolutions. These descriptors do
not appear to be standardized in any way and appear to define the quality of

encoding on the device.[18]

12245

Figure 32. Medialnfo Comparison of Samsung S5 Between Recording Modes

33

While Samsung maintains a constant structure of video format profiles
across the Samsung Galaxy S3 and Galaxy S5, this is a matter left up to the
manufacturer and is in no way defined by ISO/IEC 14496-12:2005(E). When
applying the same technique of analysis to a different set of identically structured
files from a different manufacturer, the results are different. The HTC One M7

and the HTC One M8 create files of identical MPEG-4 box structure.

1 2 3 3 5 6 7 8 1 2 3 4 5 6 7 8

3 mvhd
4 udta

5

6 trak

7 tkhd
8 mdia

tkhd
mdia

26 tkhd
27 mdia
mdhd
hdir

Figure 33. Comparison of HTC One M7 and HTC One M8 Structure

While the file structures are identical when analyzed with Medialnfo, their
metadata begins to reveal differences. Both files are recorded in identical
resolution but the File Type Box (‘ftyp’) reveals that the M7 identifies its file with a
file type of ‘mp42’ representing the ISO/IEC 14496-14 standard while the M8
identifies with the file type ‘isom’ representing an 1ISO Base Media file. This
should be an immediate cause for the two files to be viewed as originating from

different devices but HTC uses a different video format profile in the two devices.

34

The HTC One M7 reports a video format profile of ‘Baseline @L4" and the HTC

One M8 reports a video format profile of ‘High@L4'.

General General
Complete name 1920x1080-HTC-One-M7-HD-MC-1.mp4 Complete name 1920x1080-htc_one_m8_01.mp4.
Format MPEG-4 MPEG-4
Format profile Base Media / Version 2 Format profile Base Media
Codec ID mp42 Codec ID isom
File size 14.1 MiB File size 487 MiB

55 504ms Duration 205 203ms

215 Mbps Overall bit rate 20.2 Mbps

UTC 2015-04-28 00:54:03 Encoded date UTC 2014-04-03 08:02:33

UTC 2015-04-28 00:54:03

1

Tagged date UTC 2014-04-03 08:02:33
Vi

D 1

Format AVC Format AVC
Format/info Advanced Video Codec Format/info Advanced Video Codec
Format profile Baseline@L4 Format profile High@L4

Format settings, CABAC No Format settings, CABAC Yes

Format settings, ReFrames 1 frame, Format settings, ReFrames 1 frame

Format settings, GOP M=1,N=31 Format settings, GOP M=1, N=60

Codec 1D avel Codec ID avel

Codec ID/info Advanced Video Coding Codec ID/info ‘Advanced Video Coding
Duration 55 500ms Duration 205 195ms

Source duration 55 506ms Bit rate 19.7 Mbps

Bit rate 20.1 Mbps Width 1920 pixels

Width 1920 pixels Height 1080 pixels

Height 1080 pixels Display aspect ratio 16:09

Display aspect ratio 16:09 Frame rate mode Variable

Rotation 90° Frame rate 30.354 fps

Frame rate mode Variable Minimum frame rate 30313 fps

Frame rate 29.970 fps Maximum frame rate 30.395 fps

Minimum frame rate 25561 fps Color space Yuv

Maximum frame rate 30303 fps Chroma subsampling 4:02:00

Color space Yu Bit depth 8 bits

Chroma subsampling 4:02:00 Scan type Progressive

Bit depth 8bits Bits/(Pixel"Frame)

Scan type Progressive 475 MiB (97%)
Bits/(Pixel*Frame) 0323 VideoHandle

Stream size 13.2 MiB (94%) English

Source siream size 13.2 MiB (94%) UTC 2014-04-03 08:02:33
Title VideoHandle Tagged date UTC 2014-04-03 08:02:33
Language English

Encoded date UTC 2015-04-28 00:54:03

Tagged date UTC 2015-04-28 00:54:03

mdhd_Duration 5500

Audio Audio

D 2) 2

Format AAC Format AAC

Format/info Advanced Audio Codec Format/info Advanced Audio Codec
Format profile Format profile

Codec ID 40 Codec ID 40

Duration 55 504ms Duration 205 203ms

Bit rate mode Constant Source duration 205 209ms

Bit rate 192 Kbps Bit rate mode Constant

Nominal bit rate 96.0 Kbps Bit rate 192 Kbps.

Channel(s) 2 channels Nominal bit rate 96.0 Kbps.

Channel positions Front: LR Channel(s) 2 channels

Sampling rate 48.0 KHz Channel positions Front: LR
Compression mode Lossy Sampling rate 48.0 KHz

Stream size 129 KiB (1%) Compression mode Lossy

Title SoundHandle Stream size 470KiB (1%)
Language English Source stream size 470KiB (1%)

Encoded date UTC 2015-04-28 00:54:03 Title SoundHandle

Tagged date UTC 2015-04-28 00:54:03 Language English

Encoded date UTC 2014-04-03 08:02:33
Tagged date UTC 2014-04-03 08:02:33

mdhd_Duration 20203

Figure 34. Medialnfo Comparison of HTC One M7 and HTC One M8
Not all devices of identical manufacturer create files of identical structure
requiring further analysis. In the case of the two Panasonic Lumix devices

analyzed, the structure is enough to differentiate between the two files.

35

1

2

3

4

5 tkhd
6 edts

7 elst

8

9 mdhd

10 hdir

" minf.

12 vmhd
13 dinf

15 stbl

16 stsd

17 avct

18 avcC

20 stts
21 stsc.
22 stsz.
23 stco
24 stss

2 tkhd

27 edts

28 elst

29 mdia

30 mdhd

31 hdir

32 minf

33 smhd

34 dinf

35 dref
36 sto

37 stsd
38 mpda

tkhd
mdia
mdhd
hdir
minf
smhd
dinf

stbl

mpda
esds

40 stss
“ stsc.
42 stsz.
43 stco
44 udta

45 PANA

free
mdat

46 free
47 mdat

Figure 35. Comparison of Panasonic Lumix DMC-TS5
and Panasonic Lumix DMC-CM1 Structure

Different devices record different amounts of metadata about the device
itself. The devices analyzed so far contain no meaningful amount of metadata
about the recording device itself and at best can only be identified by their file
structure and metadata. In the case of the GoPro Hero 3, there is a staggering
amount of forensically relevant metadata contained within the file structure of

every video created on a given device.

36

1

2

3

4

5 FIRM
6 LENS
7 CAME
8 SETT
9 AMBA
10 free

12 tkhd
13 tref
14 tmed
15 edts

17 mdia

18 mdhd

19 hdir

20 minf.

21 vmhd
22 dinf

24 stbl
25 stsd

28 stts
29 ctts
30 stsc.
31 stsz
32 stco

34 sdtp

36 tkhd
37 tref

39 mdia

40 mdhd

4@ hdir

42 minf.

43 smhd

44 dinf

45 dref
46 stbl

a7 stsd

a
49 esds
50 stts
51 stsc
52 stsz
stco
54 trak
55 tihd
56 mdia
57 mdhd
58 hdir
59 minf
60 gmhd
61 hdlr
62 dinf
63 dref
64 stol
65 stsd
66 tmed
67 stis
68 stsc
69 stsz
70 stco

Figure 36. GoPro Hero 3 Structure

Examining the structure of a sample Go Pro Hero 3 file reveals an
extensive structure of MPEG-4 Boxes including three instances of a Track Box
(‘trak’) instead of the two that have been observed in other files. The GoPro also
includes a number of manufacturer-specific boxes contained in the User Data
Box (‘udta’). Of increasing interest are the containers ‘FIRM’, ‘LENS’, and
‘CAME’. While ‘FIRM’ and ‘LENS’ both contain useful metadata, ‘CAME’ simply
records the serial number of the device. This is an extraordinary piece of data

unique to the GoPro devices examined for this paper.

37

Of f=set o1 2 3 4 5 6 7 8 9 4 B C D E F

0000000 00 00 00 04 00 00 01 80 75 64 74 61 [KNORNNORNIiES ! 1ud t =
INNNNNEYE CRE RPN 48 44 33 2E 31 31 2E 30 32 2E 30 30MEPHD3 . 11.02.00
000000ED 00 00 00 38 4C 45 4E 53 4C 57 31 33 30 38 32 31 8LENSLW130821

ooooooco 30 33 30 30 31 33 30 32 00 00 00 OO OO OO OO OO 03001302

Figure 37. Parsing GoPro FIRM Box

Of fset o1 2 3 4 5 6 7
UL 00 00 00 38 PSRNk AC 57 31 33 30 38 32 3 SLW130821
ENNNNISEEE 30 33 30 30 31 33 30 32 00 00 00 00 00 00 00 00
WD IaslMR 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oo oopd |
000000E0 | (EMGEEGEERTECTETERTECTEMo0 00 00 18 43 41 4D 45 [CAME
000000F0 48 33 42 2B 42 30 38 31 33 33 39 38 43 32 31 00 H3B+B0813398C21
0ooooioo 00 00 0O 10 53 45 54 54 03 EO 00 10 00 00 Al 84 SETT a il

Figure 38. Parsing GoPro LENS Box

Of fset 01 2 3 4 5 6 7 8 9 A B CDEF
000000OED 00 00 00 00 00 00 00 00 [(INOGEEEEEEN43 41 4D 45 INCAME
000000F0 33 3 33 33 39 38 43 H3B+B0813398C21
00000100 00 00 00 10 53 45 54 54 03 EO 00 10 00 00 A1 84 SETT & i
00000110 00 00 00 80 41 4D 42 41 00 10 00 09 01 01 OF 00 1AMBA

Figure 39. Parsing GoPro CAME Box
In order to demonstrate the unique nature of the ‘CAME’ box, the User
Data Box (‘udta’) of two different model Go Pro devices were compared to show
the unique nature of the ‘CAME’ box and its ability to identify the model and serial

number of each device.

Offset o1 2 3 4 5 6 7 8 9 4 B C D E F

00000090 OO0 OO OO0 04 00 00 01 80 75 64 74 61 00 00 00 14 ludta
000000AD 46 49 52 4D 48 44 33 2E 31 30 2E 30 32 2E 30 30 FIRMHD3.10.02.00
000000BO 00 OO0 00 38 4C 45 4E 53 4C 57 31 34 30 37 31 30 SLENSLW140710

ooooooco 30 39 30 30 31 30 38 38 00 00 0O OO OO OO OO OO 09001088
gooooopo 00 0O OO OO OO OO OO OO OO OO OO OO OO 0O OO OO0

000000ED 00 0O OO OO OO OO OO OO OO OO0 OO 18 43 41 4D 45 CAME
000000F0 48 33 53 2B 41 30 37 31 34 41 45 36 34 35 39 00 H35+A0714AE6459

Offset 0 1 2 3 4 5 6 7 8 9 ABCTDEF

0oooo0osSo 00 00 00 04 00 00 01 80 75 64 74 61 00 00 00 14 ludta
000000DAD 46 49 52 4D 48 44 33 2E 31 31 2E 30 32 2E 30 30 FIRMHD3.11.02.00
00000OED 00 00 00 38 4C 45 4E 53 4C 57 31 33 30 38 32 31 8LENSLW130821

0oooooco 30 33 30 30 31 33 30 32 00 00 00O OO OO OO OO OO 03001302
oooooopo 00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO OO

0000OODED 00 00 0O OO OO OO OO OO OO OO OO0 18 43 41 4D 45 CAME
00000D0FOD 48 33 42 2B 42 30 38 31 33 33 39 38 43 32 31 00 H3B+B0813398C21

Figure 40. Comparison of two different GoPro User Data Boxes (‘udta’)

38

Analyzing the example GoPro file with Medialnfo reveals a number of self-
identifying properties referring to the GoPro by name as well as more information
about the third Track Box (‘trak’). This box contains a QuickTime time code track

which is unique to the GoPro among the devices examined for this paper.

General

Complete name 1920x1080-GOPRO-HERO3-GOPR1683-BL.MP4
Format MPEG-4

Format profile JVT

Codec ID avct

File size 22.5MiB

Duration 7s 174ms

Overall bit rate 26.3 Mbps

Encoded date
Tagged date

UTC 2015-04-26 17:57:07
UTC 2015-04-26 17:57:07

AMBA

Video

ID 1

Format AVC
Format/Info Advanced Video Codec
Format profile Main@L4.2
Format settings, CABAC Yes

Format settings, ReFrames 1 frame
Format settings, GOP M=1, N=8
Codec ID avcl

Codec ID/Info Advanced Video Coding
Duration 7s 174ms

Bit rate mode Constant

Bit rate 25.0 Mbps
Width 1920 pixels
Height 1 080 pixels
Display aspect ratio 16:09

Frame rate mode Constant
Frame rate 59.940 fps
Color space YUV

Chroma subsampling 4:02:00

Bit depth 8 bits

Scan type Progressive
Bits/(Pixel*Frame) 0.201

Stream size 21.2 MiB (94%)
Title GoPro AVC
Language English

Encoded date
Tagged date

UTC 2015-04-26 17:57:07
UTC 2015-04-26 17:57:07

Color range Full

Color primaries BT.709
Transfer characteristics BT.709
Matrix coefficients BT.709
Audio

ID 2

Format AAC
Format/Info Advanced Audio Codec
Format profile LC

Codec ID 40

Duration 7s 168ms
Bit rate mode Constant

Bit rate 128 Kbps
Channel(s) 2 channels
Channel positions Front: L R
Sampling rate 48.0 KHz
Compression mode Lossy
Stream size 112 KiB (0%)
Title GoPro AAC
Language English

Encoded date
Tagged date

UTC 2015-04-26 17:57:07
UTC 2015-04-26 17:57:07

Other

ID 3

Type Time code
Format QuickTime TC
Duration 7s 174ms
Time code of first frame 17:56:02:26
Time code, striped Yes
Language English

Encoded date
Tagged date

UTC 2015-04-26 17:57:07
UTC 2015-04-26 17:57:07

Figure 41. GoPro Hero 3 Medialnfo Analysis

39

In addition to the identifying serial numbers contained in the metadata of
the GoPro recordings, if an owner has entered their name in the camera menu
this information will also be displayed in the User Data Box (‘udta’). In the
research for this paper there were no tools that will parse out the User Data Box
(‘'udta’) box of a GoPro recording. This remarkably valuable information can only
be found by parsing the file manually using a hex editor.

When using AtomicParsley to analyze the Samsung ST200F, a number of
UUID’s are returned as part of the file structure: 50524f46-21d2-4fce-bb88-
695cfac9c740 contained in the top level of the file, and two instances of
55534d54-21d2-4fce-bb88-695cfac9c740 occurring once in each of the two Trak
Boxes (‘trak’). Atomic Parsley returns the UUID as a box identified with the prefix
“uuid=" and returns the formatted UUID as part of its standard output. In order to
analyze the UUID’s present in the video from the Samsung ST200F, the output of
Medialnfo was examined to specifically establish a baseline of the encoding date
and time. Since a UUID could possibly represent time and a MAC address[19], it
would be an important development if the embedded data contained meaningful
data regarding the time and date of the recording and possibly a unique

identifying number of the recording device itself.

40

1 2 3 4 5 6 7 8 General

1 Complete name 1280x720-samsung_st200f_01.mp4

2 uuid=50524f46-21d2-4fce-bb88-695cfac9c740 Format MPEG-4

3 free Format profile Sony PSP

4 mdat Codec ID MSNV

5 moov File size 25.4 MiB

6 mvhd Duration 25s 200ms

7 trak Overall bit rate 8 446 Kbps

8 tkhd Encoded date UTC 2012-06-01 17:13:01
9 edts Tagged date UTC 2012-06-01 17:13:01
10 elst

11 mdia Video

12 mdhd ID 1

13 hdir Format AvVC

14 minf Format/Info Advanced Video Codec
15 vmhd Format profile Main@L4

16 dinf Format settings, CABAC Yes

17 dref Format settings, ReFrames 1 frame

18 stbl Format settings, GOP M=1, N=8

19 stsd Codec ID avel

20 avel Codec ID/Info Advanced Video Coding
21 aveC Duration 25s 200ms

22 stts Bit rate 8 310 Kbps

23 ctts Width 1 280 pixels

24 stsc Height 720 pixels

25 stsz Display aspect ratio 16:09

26 stco Frame rate mode Constant

27 stss Frame rate 30.000 fps

28 uuid=55534d54-21d2-4fce-bb88-695cfac9c740 Color space Yuv

29 trak Chroma subsampling 4:02:00

30 tkhd Bit depth 8 bits

31 edts Scan type Progressive

32 elst Bits/(Pixel*Frame) 0.301

33 mdia Stream size 25.0 MiB (98%)

34 mdhd Encoded date UTC 2012-06-01 17:13:01
35 hdir Tagged date UTC 2012-06-01 17:13:01
36 minf

37 smhd Audio

38 dinf ID 2

39 dref Format AAC

40 stbl Format/Info Advanced Audio Codec
41 stsd Format profile LC

42 mpda Codec ID 40

43 esds Duration 25s 194ms

44 stts. Bit rate mode Constant

45 stsc Bit rate 128 Kbps

46 stsz Channel(s) 1 channel

47 stco Channel positions Front: C

48 uuid=55534d54-21d2-4fce-bb88-695cfac9c740 Sampling rate 44.1 KHz

49 udta Compression mode Lossy

50 vndr Stream size 394 KiB (2%)

51 SDLN Encoded date UTC 2012-06-01 17:13:01
52 Tagged date UTC 2012-06-01 17:13:01

Figure 42. Samsung ST200F Structure and Medialnfo Analysis

No meaningful connection was discovered between the UUID data
returned by AtomicParsley and the embedded timestamps contained within the
MPEG-4 structure of the file, it is worth examining the UUID box that
AtomicParsley is identifying in this sample file. The AtomicParsley output can be
verified with a hexadecimal analysis of the file. In this case, the box structure of
the UUID box is correctly formatted with 0x04 bytes representing the box size of
0x94 bytes, a box name of ‘uuid’, followed by the content of the box. In this
example, the hexadecimal 0x50524F4621D24FCEBB88695CFAC9C740 is the
string being interpreted as the UUID by AtomicParsley. Other meaningful pieces
of this box include ‘mp4a’ at offset 0x60 and ‘avc1’ at offset 0x8C but neither

offer any insight into the meaning of the UUID included in this file.

41

Offset o1 2 3 4 5 & 7 8§ 9 A B C D E F

00000000 00 00 00 1C 66 74 79 70 4D 53 4E 56 01 29 00 46 ftypMSNY) F
00000010 4D 53 4E 56 6D 70 34 32 69 73 6F 6D MSNVmp4 2 isonll]
poooonz2o0 75 75 69 64 LPUELs PROF | 00155 11N
00000030 nEC@

00000040 RF

00000050 _APRF
00000060 npda

5 2
Ilii

00000070 1_-D 4
WLILILENCE 0 52 46 00 00 00 0000 00 00 01 61 76 63 JIMVERE avel
00000030
LI FAN 00 1E 00 00 00 1E 00 00 05 00 02 DO 00 01 00 01
000000BO 00 00 00 08 66 72 65 65 01 95 9B 76 6D 64 61 74 free 1lvndat

00oo00cCo 00 00 FC B4 25 88 84 00 A7 FE 76 02 D8 A3 7E 12 %1l Spv @&~

Figure 43. Samsung ST200F UUID Hexadecimal Analysis
The Sony Cybershot DSC-QX10, another camera examined for this paper,
included a series of UUID’s. The DSC-QX10 contained three UUID’s as part of
its file structure, just as the Samsung ST200F did, but the UUID’s aren'’t just in
the same positions in the structure of the file the UUID’s are identical to those

contained in the Samsung ST200F file.

1 2 3 4 5 6 7 8
1 ftyp
2 uuid=5052446-21d2-4fce-bb88-695cfac9c740
3 mdat
4 moov
5 mvhd
6 trak
7 tkhd
8 edts
9 elst
10 mdia
1 mdhd
12 hdir
13 minf
14 vmhd
15 dinf
16 dref
17 stbl
18 stsd
19 avel
20 aveC
21 stts
22 ctts
23 stsc
24 stsz
25 stco
26 stss
27 uuid=55534d54-21d2-4fce-bb88-695cfac9c740
28 trak
29 tkhd
30 edts
3 elst
32 mdia
33 mdhd
34 hdlir
35 minf
36 smhd
37 dinf
38 dref
39 stbl
40 stsd
41 mp4a
42 esds
43 stts
44 stsc
45 stsz
46 stco
47 uuid=55534d54-21d2-4fce-bb88-695cfac9c740

Figure 44. Sony Cybershot DSC-QX10 Structure

42

A comparison of the two sample files from the Samsung ST200F and
Sony Cybershot DSC-QX10 shows that the hexadecimal structure of what is
being interpreted as the UUID at the top level of the file, along with the rest of the

contents of that box, is identical.

Offset 01 2 3 4 5 6 7 8 9 4 B CDE F
00000000 00 00 00 1C 66 74 79 70 4D 53 4E 56 01 29 00 46 ftypMSNV) F
00000010 6F 6D
oooooozo S50 52 : 4F CE BB 88 69
00000030 C7 0 00 0 00 03 00 00
00000040
000000s0 00 2C 2
WD 70 34 61 00 00 02 OF
oooooo7o 00 00 80 00 00 AC 44 00 00 00 01 00 00 00 :
ooooooso
00000090 4D 00 28 00 02 00 02 00 00 20 66 00 00 3E 80

WXV 00 1E 00 00 00 1E 00 00 05 00 02 DO 00 01 00 01
000OD0DOEO 00 00 00 08 66 72 65 65 01 95 9B 76 6D 64 61 74
000000CO 00 00 FC B4 25 88 84 00 A7 FE 76 02 D8 A3 7E 12 W%l Spv @~
Offset o1 2 3 4 5 6 7 8 9 4 B C D E F

00000000 00 OO0 00 1C 66 74 79 70 4D 53 4E 56 01 SA 00 70 ftypMSNV Z p
oooooo1lo MSNVmpd 2

oooooozo 0 52 4 2 2 E B (s PRO
00000030
00000040
0oooooso
0oooooen
oooooozo
ooooooso
ooooooso
000000AD
000000BO

Figure 45. Comparison of Samsung ST200F and
Sony Cybershot DSC-QX10 UUID

A comparison of the two sample files in Medialnfo reveals that both files
that share a common series of UUID’s also share a Codec ID of MSNV. This
codec is defined by the MPEG-4 Registration Authority as being for the Sony
PlayStation Portable. Further analysis is necessary to confirm the theory that
these UUID’s are placed in the file structure in order to support the Sony
PlayStation Portable but, in the files collected for this paper, these were the only
two devices that created files in this format. It should be noted that regardless of
the UUID’s present, these two files can still be differentiated between one

another based on their respective file structures and the presence or absence of

43

the ‘free’ box which exists in files created by the Samsung ST200F but not in the

Sony Cybershot DSC-QX10.

General General

Complete name 1280x720-samsung_st200f_01.mp4 Complete name 1440x1080-sony_cybershot_dsc_qx10_01.mp4

Format MPEG-4 Format MPEG-4

Format profile Sony PSP Format profile Sony PSP

Codec ID MSNV Codec ID MSNV

File size 25.4 MiB File size 34.3 MiB

Duration 25s 200ms Duration 23s 524ms

Overall bit rate 8 446 Kbps Overall bit rate mode Variable

Encoded date UTC 2012-06-01 17:13:01 Overall bit rate 12.2 Mbps

Tagged date UTC 2012-06-01 17:13:01 Encoded date UTC 2013-01-01 01:40:13
Tagged date UTC 2013-01-01 01:40:36

Video Video

ID 1 ID 1

Format AVC Format AVC

Format/Info Advanced Video Codec Format/Info Advanced Video Codec

Format profile Main@L4 Format profile Main@L4

Format settings, CABAC Yes Format settings, CABAC Yes
Format settings, ReFrames 1 frame Format settings, ReFrames 2 frames
Format settings, GOP M=1, N=8 Codec ID avcl

Codec ID avel Codec ID/Info Advanced Video Coding

Codec ID/Info Advanced Video Coding Duration 23s 524ms

Duration 25s 200ms Bit rate mode Variable

Bit rate 8310 Kbps Bit rate 12.1 Mbps

Width 1280 pixels Maximum bit rate 16.0 Mbps

Height 720 pixels Width 1 440 pixels

Display aspect ratio 16:09 Height 1080 pixels

Frame rate mode Constant Display aspect ratio 16:09

Frame rate 30.000 fps Frame rate mode Constant

Color space YUV Frame rate 29.970 fps

Chroma subsampling 4:02:00 Color space Yuv

Bit depth 8 bits Chroma subsampling 4:02:00

Scan type Progressive Bit depth 8 bits

Bits/(Pixel*Frame) 0.301 Scan type Progressive

Stream size 25.0 MiB (98%) Bits/(Pixel*Frame) 0.26

Encoded date UTC 2012-06-01 17:13:01 Stream size 33.9 MiB (99%)

Tagged date UTC 2012-06-01 17:13:01 Encoded date UTC 2013-01-01 01:40:13
Tagged date UTC 2013-01-01 01:40:36

Audio Audio

D 2 D 2

Format AAC Format AAC

Format/Info Advanced Audio Codec Format/Info Advanced Audio Codec

Format profile Lc Format profile Lc

Codec ID 40 Codec ID 40

Duration 25s 194ms Duration 23s 509ms

Bit rate mode Constant Bit rate mode Constant

Bit rate 128 Kbps Bit rate 128 Kbps

Channel(s) 1 channel Channel(s) 2 channels

Channel positions Front: C Channel positions Front: LR

Sampling rate 44.1 KHz Sampling rate 48.0 KHz

Compression mode Lossy Compression mode Lossy

Stream size 394 KiB (2%) Stream size 366 KiB (1%)

Encoded date UTC 2012-06-01 17:13:01 Encoded date UTC 2013-01-01 01:40:13

Tagged date UTC 2012-06-01 17:13:01 Tagged date UTC 2013-01-01 01:40:36

Figure 46. Medialnfo Comparison of Samsung ST200F
and Sony Cybershot DSC-QX10

The Samsung ST200F and Sony Cybershot are not the only devices with
UUID’s examined for this paper. Two other devices contained UUID’s: Canon
IXUS 265 and the Panasonic Lumix DMC-TZ57. A comparison of their file
structures reveals that they are distinguishable from one another based on their
MPEG-4 box structures and they contain UUID’s which are unique to each

respective device.

44

1 2 3 4 5 6 7 8
1 ftyp 1 fyp
2 moov 2 mdat
3 uuid=85c0b687-820f-11e0-8111-f4ce462b6a48 3 moov
4 udta mvhd
5 manu trak
6 mod!
7 urat
8 free

tkhd
edts
elst
mdia
mdhd
hdir
minf
vmhd
dinf

9 mvhd

10 trak

11 tkhd

12 edts

13 elst

14 mdia

15 mdhd

16 hdir

17 minf

18 vmhd

19 dinf

20 dref
21 stbl

22 stsd
23 avel
24 colr
25 stts
26 stss
27 stsc
28 stsz
29 stco
30 trak

dref
stbl
stsd
acv1
aveC
colr
stts
stsc
stsz
stco
stss
trak
tkhd
edts
elst
mdia
31 tkhd
32 edts
33 elst
34 mdia
35 mdhd
36 hdir
37 minf
38 smhd
39 inf
40 dref
41 stbl
42 stsd
43 mpda
44 esds
45 stts
46 stsc
47 stsz
48 stco 48 uuid=be7acfcb-97a9-42e8-9¢71-999491e3afac
49 free 49
50 mdat

mdhd
hdir
minf
smhd
dinf
dref
stbl
stsd
mp4da
esds
stts
stsc
stsz
stco

Figure 47. Comparison of Canon IXUS 265 and
Panasonic Lumix DMC-TZ57 Structure

Unfortunately, neither of these UUID’s contained a timestamp that
matched the embedded timestamps in the MPEG-4 standard. Medialnfo returns
data which helps to support the differentiation between the two files but adds no
support for the correlation between the properties of the files, as it did with Sony
PlayStation Portable formatting in the cases of the Samsung ST200F and the
Sony Cybershot DSC-QX10. When comparing these two files it is important to
note that while their file structures showed clear differences between the two files

their reports from Medialnfo were remarkably similar.

45

General
Complete name
Format

Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date

Video

ID

Format

Format/Info

Format profile

Format settings, CABAC

Format settings, ReFrames

Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size
Language

Encoded date
Tagged date

Color range

Color primaries
Transfer characteristics
Matrix coefficients

Audio

ID

Format
Format/Info
Format profile
Codec ID
Duration

Bit rate mode

Bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size
Language
Encoded date
Tagged date

1920x1080-canon_ixus_265_hs_01.mp4

MPEG-4

Base Media / Version 2
mp42

76.0 MiB

20s 387ms

31.3 Mbps

UTC 2014-05-07 11:02:46
UTC 2014-05-07 11:02:46

1
AVC

Advanced Video Codec
Baseline@L4.1

No

1 frame

M=1, N=15

avcl

Advanced Video Coding
20s 387ms

30.4 Mbps

1 920 pixels

1 080 pixels

16:09

Constant

29.970 fps

Yuv

4:02:00

8 bits

Progressive

0.49

74.0 MiB (97%)

English

UTC 2014-05-07 11:02:46
UTC 2014-05-07 11:02:46
Full

BT.709

BT.709

BT.709

2

AAC

Advanced Audio Codec
LC

40

20s 373ms

Constant

128 Kbps

2 channels

Front: LR

48.0 KHz

Lossy

318 KiB (0%)

English

UTC 2014-05-07 11:02:46
UTC 2014-05-07 11:02:46

General
Complete name
Format

Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date
PANA

Video

ID

Format
Format/Info
Format profile

Format settings, GOP
Muxing mode

Codec ID

Codec ID/Info
Duration

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate
Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size
Language
Encoded date
Tagged date
Color primaries
Transfer characteristics
Matrix coefficients

Audio

ID

Format
Format/Info
Format profile
Codec ID
Duration
Source duration
Bit rate mode
Nominal bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Source stream size
Language
Encoded date
Tagged date
mdhd_Duration

Format settings, CABAC
Format settings, ReFrames

1920x1080-Panasonic-Lumix-DMC-TZ57_01.mp4

MPEG-4

Base Media / Version 2
mp42

41.3 MiB

16s 800ms

20.6 Mbps

UTC 2015-03-10 11:29:35
UTC 2015-03-10 11:29:35
DMC-TZ57

1

AVC

Advanced Video Codec
High@L4

No

1 frame

M=1, N=15

Container profile=Baseline@4.0
avct

Advanced Video Coding
16s 800ms

20.5 Mbps

1 920 pixels

1 080 pixels

16:09

Constant

25.000 fps

Yuv

4:02:00

8 bits

Progressive

0.395

41.0 MiB (99%)

English

UTC 2015-03-10 11:29:35
UTC 2015-03-10 11:29:35
BT.709

BT.709

BT.709

2

AAC

Advanced Audio Codec
LC

40

16s 800ms

16s 725ms

Constant

128 Kbps

2 channels

Front: LR

48.0 KHz

Lossy

261 KiB (1%)

English

UTC 2015-03-10 11:29:35
UTC 2015-03-10 11:29:35
16800

Figure 48. Medialnfo Comparison of Canon IXUS 265
and Panasonic Lumix DMC-TZ57

46

CHAPTER VI
ANALYSIS OF EDITED FILES

The files examined for this paper that contain the most forensically
relevant data are by far those created by the GoPro devices. Being able to
identify which make and model of camera a file was created on is one thing but
having the recorded evidence of a serial number of the device in question is
invaluable. Whether the file being examined came from a GoPro device or from
another device that records no meaningful user data, the structure of a file is
changed when it is re-encoded. For the purposes of this testing, no edits were
made to the contents of the video itself. Sample files from a GoPro and the LG
G3 were simply re-encoded using commonly available software tools, being
careful to match software settings to export in the MPEG-4 format for each video
editing tool. These resulting files were then analyzed using AtomicParsley and
Medialnfo to demonstrate the results of this re-encoding.
ffmpeg

The first tool tested was ffmpeg, a piece of software released under the
GNU General Public License. It is a powerful audio and video encoder and
decoder at the base of many video editing software tools. For the purpose of
testing ffmpeg, v2.6.2 was used to read the video format of the original file and
create a re-encoded copy of the file using the ‘—c:v copy’ flag for processing.
This flag instructs ffmpeg to not re-encode the video when processing and

creates an exact copy of the existing video stream. Comparing the output of an

47

original GoPro video file and a file re-encoded using ffmpeg, shows a clear

change in the MPEG-4 structure.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 8 9

1 ftyp 1 ftyp

2 moov 2 free

3 mvhd 3 mdat

4 udta 4 moov

5 FIRM 5 mvhd

6 LENS 6 trak

7 CAME 7 tkhd

8 SETT 8 edts

9 AMBA 9 elst
10 free 10 mdia
1" trak 1" mdhd

12 tkhd 12 hdir

13 tref 13 minf

14 tmed 14 vmhd

15 edts 15 dinf

16 elst 16 dref
17 mdia 17 stbl

18 mdhd 18 stsd
19 hdir 19 avcl
20 minf 20 avcC
21 vmhd 21 stts
22 dinf 22 stss
23 dref 23 stsc
24 stbl 24 stsz
25 stsd 25 stco
26 avcl 26 trak
27 colr 27 tkhd
28 stts 28 edts
29 ctts 29 elst
30 stsc 30 mdia
31 stsz 31 mdhd
32 stco 32 hdir
33 stss 33 inf
34 sdtp 34 smhd
35 trak 35 dinf
36 tkhd 36 dref
37 tref 37 stbl

38 tmed 38 stsd
39 mdia 39 mpéa
40 mdhd 40 esds
M hdir M stts
42 minf 42 stsc
43 smhd 43 stsz
44 dinf 44 stco
45 dref 45 udta

46 stbl 46 meta

47 stsd 47 hdir

48 mp4da 48 ilst

49 esds 49 ©too

50 stts 50 data

51 stsc 51

52 stsz 52

53 stco 53

54 trak 54

55 tkhd 55

56 mdia 56

57 mdhd 57

58 hdir 58

59 minf 59

60 gmhd 60

61 hdir 61

62 dinf 62

63 dref 63

64 stbl 64

65 stsd 65

66 tmed 66

67 stts 67

68 stsc 68

69 stsz 69

70 stco 70

71 free 7

72 mdat 72

Figure 49. Comparison of Original GoPro Hero 3 and
ffmpeg Encoded File Structure

The changes to the structure of the ffmpeg encoded file are distinct and
unmistakable. All of the forensically significant user data present in the original

GoPro file has been stripped away and when the re-encoded file is further

48

analyzed with Medialnfo, many other changes to the properties of the edited file
can be observed. The format profile and codec have changed from ‘JVT’ (Joint
Video Team) and ‘avc1’ to ‘Base Media’ and ‘isom’. ffmpeg also zeroes out the
embedded timestamps which are reported as the epoch time of January 1, 1904.
Among the other changes to the properties of the re-encoded file, another
notable addition is the string “Lavf56.25.101” Medialnfo reports as the Writing
Application and is contained in the User Data Box (‘udta’) located at the end of
the re-encoded file. The string corresponds with the ‘libavformat’ library called by
ffmpeg therefore it would be possible to further determine which version of

ffmpeg was used for encoding.

49

General General
Complete name 1920x1080-GOPRO-HERO3-GOPR1682-BL.mp4 Complete name gopro_ffmpeg.mp4

Format MPEG-4 Format MPEG-4

Format profile T Format profile Base Media

Codec ID avet Codec ID isom

File size 20.3 MiB File size 21.3 MiB

Duration 65 440ms Duration 7s 202ms

Overall bit rate 26.5 Mbps Overall bit rate mode Constant

Encoded date UTC 2015-04-26 17:56:56 Overall bit rate 24.8 Mbps

Tagged date UTC 2015-04-26 17:56:56 Encoded date UTC 1904-01-01 00:00:00

AMBA Tagged date UTC 1904-01-01 00:00:00
Writing application Lavf56.25.101

Video Video

D 1 D 1

Format AVC Format AVC

Format/info Advanced Video Codec Format/info Advanced Video Codec

Format profile Main@L4.2 Format profile Main@L4.2

Format settings, CABAC Yes
Format settings, ReFrames 1 frame

Format settings, CABAC Yes
Format settings, ReFrames 1 frame

Format settings, GOP M=1,N=8 Format settings, GOP M=1,N=8

Codec ID avet Codec ID avet

Codec ID/Info Advanced Video Coding Codec ID/Info Advanced Video Coding
Duration 65 440ms Duration 7s 174ms

Bit rate mode Constant Bit rate mode Constant

Bit rate 25.0 Mbps Bit rate 25.0 Mbps

Width 1 920 pixels Width 1 920 pixels

Height 1,080 pixels Height 1,080 pixels

Display aspect ratio 16:09 Display aspect ratio 16:09

Frame rate mode Constant Frame rate mode Constant

Frame rate 59.940 fps Frame rate 59.940 fps

Color space Yuv Color space Yuv

Chroma subsampling 4:02:00 Chroma subsampling 4:02:00

Bit depth 8 bits. Bit depth 8 bits.

Scan type Progressive Scan type Progressive
Bits/(Pixel*Frame) 0.201 Bits/(Pixel*Frame) 0.201

Stream size 19.1 MiB (94%) Stream size 21.2 MiB (99%)

Title GoPro AVC Language English

Language English Encoded date UTC 1904-01-01 00:00:00
Encoded date UTC 2015-04-26 17:56:56 Tagged date UTC 1904-01-01 00:00:00
Tagged date UTC 2015-04-26 17:56:56 Color range Full

Color range Full Color primaries BT.709

Color primaries BT.709 Transfer characteristics BT.709

Transfer characteristics BT.709 Matrix coefficients BT.709

Matrix coefficients BT.709

Audio

D 2 2

Format AAC AAC

Format/info Advanced Audio Codec Format/info Advanced Audio Codec
Format profile Lc Format profile Lc

Codec ID 40 Codec ID 40

Duration 65 421ms Duration 7s 202ms

Bit rate mode Constant Duration_LastFrame -oms

Bit rate 128 Kbps. Bit rate mode Constant

Channel(s) 2 channels Bit rate 128 Kbps

Channel positions Front: LR Channel(s) 2 channels

Sampling rate 48.0 KHz Channel positions. Front: L R
Compression mode Lossy Sampling rate 48.0 KHz

Stream size 100 KiB (0%) Compression mode Lossy

Title Stream size 113 KiB (1%)
Language Language English

Encoded date Encoded date UTC 1904-01-01 00:00:00
Tagged date UTC 2015-04-26 17: Tagged date UTC 1904-01-01 00:00:00
Other

D 3

Type Time code

Format QuickTime TC

Duration 65 440ms

Time code of first frame 17:56:51:27

Time code, striped Yes

Language English

Encoded date UTC 2015-04-26 17:56:56

Tagged date UTC 2015-04-26 17:56:56

Figure 50. Medialnfo Comparison of Original GoPro Hero 3 and
ffmpeg Encoded File

When comparing an original file from the LG G3 to the same file that was
re-encoded using ffmpeg, the file structure is again distinctly different from the
original. The encoding structure of ffmpeg is also consistent with the re-encoding

of the GoPro file.

50

3 mvhd
4 udta
5 auth mvhd
6 adzc trak
7 tkhd
8 edts
elst
mdia
mdhd
hdir
minf
vmhd
dinf

adzm
adze
9 trak
10 tkhd
1" mdia
12 mdhd
13 hdir
14 minf
15 vmhd
16 dinf
17 dref
18 stbl
19 stsd
20 avcl
21 avcC
22 pasp
23 stts
24 stss
25 stsz
26 stsc
27 stco
28 trak
29 tkhd
30 mdia
31 mdhd
32 hdir
33 minf
34 smhd
35 dinf
36 dref
37 stbl
38 stsd
39 mp4a
40 esds
M stts
42 stsz
43 stsc
44 stco
45 free
46 mdat

dref
stbl
stsd
avcl
aveC
stts
stss
stsc
stsz
stco
trak
tkhd
edts
elst
mdia
mdhd
hdir
inf
smhd
dinf
dref
stbl
stsd
mp4a
esds
stts
stsc
stsz
stco
udta
meta
hdir
ilst
©too
data

Figure 51. Comparison of LG G3 Original and ffmpeg Encoded File Structure

Medialnfo reports the same series of changes to the properties in the re-
encoded LG G3 file as it did with the re-encoded GoPro sample ‘file format
profile’ and ‘codec ID’ have been modified, the embedded timestamps have been
zeroed out, and any identifying metadata has been stripped out and replaced

with the same reference to “Lavf56.25.101”.

51

General General

Complete name 3840x2160-LG-G3-2015-06-20 02.38.24-JH.mp4 Complete name LG_ffmpeg.mp4

Format MPEG-4 Format MPEG-4

Format profile Base Media / Version 2 Format profile Base Media

Codec ID mp42 Codec ID isom

File size 17.7 MiB File size 17.3 MiB

Duration 5s 35ms Duration 5s 78ms

Overall bit rate 29.4 Mbps Overall bit rate 28.5 Mbps

Performer LGE Encoded date UTC 1904-01-01 00:00:00
Encoded date UTC 2015-06-20 02:38:24 Tagged date UTC 1904-01-01 00:00:00
Tagged date UTC 2015-06-20 02:38:24 Writing application Lavf56.25.101

Video Video

ID 1 ID 1

Format AVC Format AVC

Format/Info Advanced Video Codec Format/Info Advanced Video Codec

Format profile High@L5.1 Format profile High@L5.1
Format settings, CABAC Yes Format settings, CABAC Yes
Format settings, ReFrames 1 frame Format settings, ReFrames 1 frame

Format settings, GOP M=1, N=30 Format settings, GOP M=1, N=30

Codec ID avel Codec ID avel

Codec ID/Info Advanced Video Coding Codec ID/Info Advanced Video Coding
Duration 4s 822ms Duration 4s 822ms

Bit rate 29.9 Mbps Bit rate 29.9 Mbps

Width 3 840 pixels Width 3 840 pixels

Height 2 160 pixels Height 2 160 pixels

Display aspect ratio 16:09 Display aspect ratio 16:09

Frame rate mode Variable Frame rate mode Variable

Frame rate 29.451 fps Frame rate 29.451 fps

Minimum frame rate 29.221 fps Minimum frame rate 29.221 fps

Maximum frame rate 29.703 fps. Maximum frame rate 29.703 fps.

Color space YUV Color space YUV

Chroma subsampling 4:02:00 Chroma subsampling 4:02:00

Bit depth 8 bits Bit depth 8 bits

Scan type Progressive Scan type Progressive
Bits/(Pixel*Frame) 0.122 Bits/(Pixel*Frame) 0.122

Stream size 17.2 MiB (97%) Stream size 17.2 MiB (100%)

Title VideoHandle Language English

Language English Encoded date UTC 1904-01-01 00:00:00
Encoded date UTC 2015-06-20 02:38:24 Tagged date UTC 1904-01-01 00:00:00
Tagged date UTC 2015-06-20 02:38:24

mdhd_Duration 4822

Audio Audio

D 2 D 2

Format AAC Format AAC

Format/Info Advanced Audio Codec Format/Info Advanced Audio Codec
Format profile LC Format profile LC

Codec ID 40 Codec ID 40

Duration 5s 35ms Duration 5s 78ms

Source duration 5s 44ms Bit rate mode Constant
Source_Duration_FirstFrame 9ms Bit rate 129 Kbps

Bit rate mode Constant Channel(s) 2 channels

Bit rate 156 Kbps Channel positions Front: LR

Nominal bit rate 96.0 Kbps Sampling rate 48.0 KHz

Channel(s) 2 channels Compression mode Lossy

Channel positions Front: LR Stream size 79.7 KiB (0%)

Sampling rate 48.0 KHz Language English

Compression mode Lossy Encoded date UTC 1904-01-01 00:00:00
Stream size 95.9 KiB (1%) Tagged date UTC 1904-01-01 00:00:00
Source stream size 95.9 KiB (1%)

Title SoundHandle

Language English

Encoded date UTC 2015-06-20 02:38:24

Tagged date UTC 2015-06-20 02:38:24

mdhd_Duration 5035

Figure 52. Medialnfo Comparison of Original LG G3 and ffmpeg Encoded File

Adobe Premiere

Example files were tested against re-encoded versions created with
Adobe Premiere CC 2015. Files were imported into Premiere and then exported
directly back out using the MPEG-4 settings in the software dialog being careful
to match encoder settings without creating any edits in the timeline of the videos
themselves. An analysis of the file structure reveals a clear difference between
the original GoPro recording and the re-encoded file. The User Data Box (‘udta’)

containing the device serial number has been moved within the structure of the

52

file and modified to contain data from Adobe but not from the original file. Adobe

inserts a UUID, as well, but it does not appear to be unique to the file itself.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 8 9

3
4 udta 4
5 FIRM 5
6 LENS 6 edts
7 CAME 7
SETT 8
9 AMBA 9 mdhd
10 free 10 hdir
11 trak 11 minf
12 tkhd 12 vmhd
13 tref 13 hdir
14 tmed 14 dinf
15 edts 15 dref
16 elst 16 stbl
17 mdia 17 stsd
18 mdhd 18 avel
19 hdir 19 aveC
20 minf 20 sts
21 vmhd 21 stss
22 dinf sdtp
stsc
stsz
stco
ctts

24 stbl
25 stsd

trak
tkhd
edts

28 sts
29 ctts
30 stsc
31 stsz
32 stco
33 stss
34 sdtp

elst
mdia

mdhd

hdir

minf.
smhd
hdir
dinf

36 tkhd
37 tref

38 tmed
39 mdia stbl
40 mdhd

M hdr

42 minf

43 smhd

a4 dinf

45 dref

46 stol

a7 stsd

48 mpda

49 esds
50 stts

51 stsc

52 stsz

53 stco

stsd
mpda
esds
stts
stsc
stsz
stco
udta
oTIM
oTsc
orsz

51 uuid=be7acfcb-97a9-42e8-9c71-999491e3afac
52 mdat

55 tkhd
56 mdia

57 mdhd

58 hdlr

59 minf

60 gmhd

61 hdir

62 dinf

63 dref

64 stol

65 stsd

66 tmed
67 stts

68 stsc

69 stsz

70 stco

Figure 53. Comparison of GoPro Hero 3 Original and
Adobe Premiere Encoded File Structure

An analysis with Medialnfo reveals that the format profile and codec ID
have been modified by Adobe Premiere. The embedded timestamps have been
updated from the original time to the time of the re-encoding. There are other
changes to the properties of the re-encoded file but most notable is the absence

of the QuickTime Time Code track contained in the original GoPro file.

53

General General

Complete name 1920x1080-GOPRO-HERO3-GOPR1682-BL.mp4 Complete name 1920x1080_gopro_premiere.mp4
Format MPEG-4 Format MPEG-4
Format profile VT Format profile Base Media / Version 2
Codec ID avel Codec ID mp42
File size 20.3 MiB File size 9.91 MiB
Duration 6s 440ms Duration 7s 174ms
Overall bit rate 26.5 Mbps Overall bit rate 11.6 Mbps
Encoded date UTC 2015-04-26 17 Encoded date UTC 2015-10-11 01:04:39
Tagged date UTC 2015-04-26 17: Tagged date UTC 2015-10-11 01:04:40
AMBA ooog ©TIM 00:00:00:00

©TSC 60000

1001

Video
D 1 D 1
Format AVC AVC
Format/Info Advanced Video Codec Format/Info Advanced Video Codec
Format profile Main@L4.2 Format profile Main@L4.2

Format settings, CABAC Yes
Format settings, ReFrames 1 frame

Format settings, CABAC Yes
Format settings, ReFrames 3 frames

Format settings, GOP M=1, N=8 Format settings, GOP M=4, N=59

Codec ID avel Codec ID avel

Codec ID/Info Advanced Video Coding Codec ID/Info Advanced Video Coding

Duration 65 440ms Duration 7s 174ms

Bit rate mode Constant Bit rate 11.3 Mbps

Bit rate 25.0 Mbps Width 1920 pixels

Width 1920 pixels Height 1 080 pixels

Height 1080 pixels Display aspect ratio 16:09

Display aspect ratio 16:09 Frame rate mode Variable

Frame rate mode Constant Frame rate 59.940 fps

Frame rate 59.940 fps Minimum frame rate 59.940 fps

Color space Yuv Maximum frame rate 60.000 fps

Chroma subsampling 4:02:00 Standard NTSC

Bit depth 8 bits. Color space Yuv

Scan type Progressive Chroma subsampling 4:02:00

Bits/(Pixel*Frame) 0.201 Bit depth 8 bits

Stream size 19.1 MiB (94%) Scan type Progressive

Title GoPro AVC Bits/(Pixel*Frame) 0.091

Language English Stream size 9.63 MiB (97%)

Encoded date UTC 2015-04-26 17 Language English

Tagged date UTC 2015-04-26 17:56: Encoded date UTC 2015-10-11 01:04:39

Color range Full Tagged date UTC 2015-10-11 01:04:39

Color primaries BT.709 Color range Limited

Transfer characteristics BT.709 Color primaries BT.709

Matrix coefficients BT.709 Transfer characteristics BT.709
Matrix coefficients BT.709

Audio Audio

D 2 D 2

Format AAC Format AAC

Format/Info Advanced Audio Codec Format/Info Advanced Audio Codec

Format profile Lc Format profile

Codec ID 40 Codec ID 40

Duration 6s 421ms Duration 7s 174ms

Bit rate mode Constant Source duration 7s 211ms

Bit rate 128 Kbps Bit rate mode Constant

Channel(s) 2 channels Bit rate 317 Kbps

Channel positions Front: LR Channel(s) 2 channels

Sampling rate 48.0 KHz Channel positions Front: LR

Compression mode Lossy Sampling rate 48.0 KHz

Stream size 100 KiB (0%) Compression mode Lossy

Title GoPro AAC Stream size 278 KiB (3%)

Language English Source stream size 279 KiB (3%)

Encoded date UTC 2015-04-26 17:56:56 Language English

Tagged date UTC 2015-04-26 17:56:56 Encoded date UTC 2015-10-11 01:04:39
Tagged date UTC 2015-10-11 01:04:39

Other

D 3

Type Time code

Format QuickTime TC

Duration 6s 440ms

Time code of first frame 17:55:51:27

Time code, striped Yes

Language English

Encoded date UTC 2015-04-26 17:56:56

Tagged date UTC 2015-04-26 17:56:56

Figure 54. Medialnfo Comparison of Original GoPro Hero 3
and Adobe Premiere Encoded File

Comparing the original LG G3 recording to the re-encoded copy created
with Adobe Premiere shows an identical change to MPEG-4 file structure as was
observed with the GoPro re-encoding. The embedded UUID is identical and
again any user data in the original file has been stripped away and replaced with

Adobe’s own content.

54

1 ftyp 1 ftyp
2 moov 2 moov
3 mvhd 3 mvhd
4 udta 4 trak
5 auth 5 tihd
6 adzc 6 edts
7 adzm 7 elst
8 adze 8 mdia
9 trak 9 mdhd
10 tkhd 10 hdir
1 mdia 1 minf
12 mdhd 12 vmhd
13 hdr 13 hdir
14 minf 14 dinf
15 vmhd 15 dref
16 dinf 16 tol
17 dref 17 stsd
18 stol 18 avel
19 stsd 19 aveC
20 avel 20 stts
21 aveC 21 stss
22 pasp 22 sdtp
23 stts 23 stsc
24 stss 24 stsz
25 stsz 25 stco
26 stsc 26 ctts
27 stco 27 trak
28 trak 28 thhd
29 tkhd 29 edts
30 mdia 30 elst
31 mdhd 31 mdia
32 hdr 32 mdhd
33 minf 33 hdir
34 smhd 34 minf
35 dinf 35 smhd
36 dref 36 hdir
37 stol 37 dinf
38 stsd 38 dref
39 mpéa 39 stbl
40 esds 40 stsd
r stts 4 mpda
42 stsz 42 esds
43 stsc 43 stis
a4 stco 44 stsc
45 free 45 stsz
46 mdat 46 stco
a7 udta
48 ©TIM
49 oTSC
50 oTSZ
51 uuid=be7acfch-97a9-42¢8-9¢71-99949 1e3afac
52 mdat

Figure 55. Comparison of Original LG G3 and
Adobe Premiere Encoded File Structure

An analysis with Medialnfo reveals the change expected to the embedded
timestamps but a file recorded at 60fps rather than at the 30fps of the original.
There are other inclusions and exclusions in the properties of the re-encoded file
and this level of analysis will only serve to confirm or deny a match between files.
However, at the most basic level a keyword search of either file created by
Adobe Premiere reveals fifteen hits for the string ‘adobe’ in the metadata of the

file itself.

95

General
Complete name

3840x2160-LG-G3-2015-06-20 02.38.24-JH.mp4

General
Complete name

3840x2160-LG-G3_premiere.mp4

Format MPEG-4 Format MPEG-4
Format profile Base Media / Version 2 Format profile Base Media / Version 2
Codec ID mpa2 Codec ID mp42
File size 17.7 MiB File size 6.29 MiB
Duration 5s 35ms Duration 4s 821ms
Overall bit rate 29.4 Mbps Overall bit rate mode Variable
Performer LGE Overall bit rate 10.9 Mbps
Encoded date UTC 2015-06-20 02:38:24 Encoded date UTC 2015-10-11 01:00:25
Tagged date UTC 2015-06-20 02:38:24 Tagged date UTC 2015-10-11 01:00:25
©TIM 00;00;00;00
©TSC 60000
©TSZ 1001
Video Video
D 1 D 1
Format AVC Format AvC
Format/Info Advanced Video Codec Format/Info Advanced Video Codec
Format profile High@L5.1 Format profile Main@L5.2
Format settings, CABAC Yes Format settings, CABAC Yes
Format settings, ReFrames 1 frame Format settings, ReFrames 3 frames
Format settings, GOP M=1, N=30 Codec ID avcl
Codec ID avel Codec ID/Info Advanced Video Coding
Codec ID/Info Advanced Video Coding Duration 4s 821ms
Duration 4s 822ms Bit rate 10.6 Mbps
Bit rate 29.9 Mbps Width 3 840 pixels
Width 3 840 pixels Height 2 160 pixels
Height 2 160 pixels Display aspect ratio 16:09
Display aspect ratio 16:09 Frame rate mode Variable
Frame rate mode Variable Frame rate 59.940 fps
Frame rate 29.451 fps. Minimum frame rate 59.940 fps
Minimum frame rate 29.221 fps. Maximum frame rate 60.000 fps
Maximum frame rate 29.703 fps Standard NTSC
Color space Yuv Color space Yuv
Chroma subsampling 4:02:00 Chroma subsampling 4:02:00
Bit depth 8 bits Bit depth 8 bits
Scan type Progressive Scan type Progressive
Bits/(Pixel*Frame) 0.122 Bits/(Pixel*Frame) 0.021
Stream size 17.2 MiB (97%) Stream size 6.09 MiB (97%)
Title VideoHandle Language English
Language English Encoded date UTC 2015-10-11 01:00:25
Encoded date UTC 2015-06-20 02:38:24 Tagged date UTC 2015-10-11 01:00:25
Tagged date UTC 2015-06-20 02:38:24 Color range Limited
mdhd_Duration 4822 Color primaries BT.709
Transfer characteristics BT.709
Matrix coefficients BT.709
Audio Audio
D 2 ID 2
Format AAC Format AAC
Format/Info Advanced Audio Codec Format/Info Advanced Audio Codec
Format profile LCc Format profile Lc
Codec ID 40 Codec ID 40
Duration 5s 35ms Duration 4s 821ms.
Source duration 5s 44ms Source duration 4s 864ms
Source_Duration_FirstFrame 9ms Bit rate mode Variable
Bit rate mode Constant Bit rate 317 Kbps
Bit rate 156 Kbps Maximum bit rate 388 Kbps
Nominal bit rate 96.0 Kbps Channel(s) 2 channels
Channel(s) 2 channels Channel positions Front: LR
Channel positions Front: LR Sampling rate 48.0 KHz
Sampling rate 48.0 KHz Compression mode Lossy
Compression mode Lossy Stream size 187 KiB (3%)
Stream size 95.9 KiB (1%) Source stream size 188 KiB (3%)
Source stream size 95.9 KiB (1%) Language English
Title SoundHandle Encoded date UTC 2015-10-11 01:00:25
Language English Tagged date UTC 2015-10-11 01:00:25

Encoded date
Tagged date
mdhd_Duration

UTC 2015-06-20 02:38:24
UTC 2015-06-20 02:38:24
5035

Figure 56. Medialnfo Comparison of Original LG G3 and
Adobe Premiere Encoded File

Apple Quicktime

To test another encoding engine, Apple’s QuickTime Player v.10.4 was
used to re-encode the sample files for analysis and comparison using its Export
function to re-encode the two sample files being examined. The MPEG-4
structure of a file re-encoded with QuickTime shows clear differences from the
original GoPro recording. The QuickTime Time Code track has been stripped
away but it should be noted that QuickTime is the first piece of software to make

any attempt to preserve the contents of the User Data Box (‘udta’) present in the

56

original file. To verify the preservation of the User Data Box (‘udta’) contents
between the original and the re-encoded file, these boxes were examined
separately to confirm their data. QuickTime has re-arranged these boxes but

their contents remain valid.

1 ftyp
2 moov
3 mvhd
4 udta
5 FIRM
6 LENS
7 CAME
8 SETT
9 AMBA
10 free
1 trak
12 tkhd
13 tref
14 tmed
15 edts
16 elst
17 mdia
18 mdhd
19 hdir
20 minf
21 vmhd
22 dinf
23 dref
24 stbl
25 stsd
26 avcl
27 colr
28 stts
29 ctts
30 stsc
31 stsz
32 stco
33 stss
34 sdtp
35 trak
36 tkhd
37 tref
38 tmed
39 mdia
40 mdhd
41 hdir
42 minf
43 smhd
44 dinf
45 dref
46 stbl
47 stsd
48 mp4a
49 esds
50 stts
51 stsc
52 stsz
53 stco
54 trak
55 tkhd
56 mdia
57 mdhd
58 hdir
59 minf
60 gmhd
61 hdir
62 dinf
63 dref
64 stbl
65 stsd
66 tmced
67 stts
68 stsc
69 stsz
70 stco
71 free
72 mdat

Figure 57. Comparison of GoPro Hero 3 Original and
Apple QuickTime Encoded File Structure

elst

mdhd
hdir
inf
vmhd
dinf
dref
stbl
stsd
avel
colr
stts
stss
stsc
stsz
stco
trak
tkhd
edts
elst
mdia
mdhd
hdir
minf
smhd
dinf
dref
stbl
stsd
mp4a
esds
stts
stsc
stsz
stco
udta
LENS
AMBA
SETT
FIRM
free
CAME

57

Examining the file with Medialnfo shows that the format profile and the

codec ID have changed, the embedded timestamps have been updated to the

time of re-encoding, and two pieces of self-identifying GoPro references have

been stripped away from the audio and video tracks.

General
Complete name
Format
Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date
AMBA

Video

ID

Format

Format/Info

Format profile

Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate mode

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size

Title

Language

Encoded date
Tagged date

Color range

Color primaries
Transfer characteristics
Matrix coefficients

Audio

D

Format
Format/Info
Format profile
Codec ID
Duration

Bit rate mode

Bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size

Title

Language
Encoded date
Tagged date

Other

ID

Type

Format

Duration

Time code of first frame
Time code, striped
Language

Encoded date

Tagged date

1920x1080-GOPRO-HERO3-GOPR1682-BL.mp4
MPEG-4

wT

avcl

20.3 MiB

6s 440ms

26.5 Mbps

UTC 2015-04-26 17:56:56

UTC 2015-04-26 17:56:56

1

AvC

Advanced Video Codec
Main@L4.2

Yes

1 frame

M=1, N=8

avel

Advanced Video Coding
6s 440ms

Constant

25.0 Mbps

1920 pixels

1080 pixels

16:09

Constant

59.940 fps

Yuv

4:02:00

8 bits

Progressive

0.201

19.1 MiB (94%)

GoPro AVC

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56
Full

BT.709

BT.709

BT.709

2

AAC

Advanced Audio Codec
Lc

40

6s 421ms

Constant

128 Kbps

2 channels

Front: LR

48.0 KHz

Lossy

100 KiB (0%)

GoPro AAC

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56

3

Time code

QuickTime TC

6s 440ms

17:55:51:27

Yes

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56

General
Complete name
Format

Format profile
Codec ID

File size
Duration
Overall bit rate mode
Overall bit rate
Encoded date
Tagged date
AMBA

Video

D

Format

Format/Info

Format profile

Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate mode

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size

Title

Encoded date
Tagged date

Color range

Color primaries
Transfer characteristics
Matrix coefficients

Audio

D

Format
Format/Info
Format profile
Codec ID

Duration

Source duration

Bit rate mode

Bit rate

Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size
Source stream size
Title

Encoded date
Tagged date

1920x1080-GOPRO_quicktime.mp4
MPEG-4

Base Media / Version 2

mpa2

21.3 MiB

7s 174ms

Constant

24.9 Mbps

UTC 2015-10-10 23:41:07

UTC 2015-10-10 23:41:07

1

AVC

Advanced Video Codec
Main@L4.2

Yes

1frame

M=1, N=8

avel

Advanced Video Coding
7s 174ms

Constant

25.0 Mbps

1920 pixels

1080 pixels

16:09

Constant

59.940 fps

Yuv

4:02:00

8 bits

Progressive

4:49:26

21.2 MiB (99%)

Core Media Video

UTC 2015-10-10 23:41:07
UTC 2015-10-10 23:41:07
Full

BT.709

BT.709

BT.709

2

AAC

Advanced Audio Codec
LC

40

7s 124ms

7s 168ms

Constant

128 Kbps

2 channels

Front: LR

48.0 KHz

Lossy

111 KiB (1%)

112 KiB (1%)

Core Media Audio

UTC 2015-10-10 23:41:07
UTC 2015-10-10 23:41:07

Figure 58. Medialnfo Comparison of GoPro Hero 3 Original and
Apple QuickTime Encoded File

Using AtomicParsley to compare the structures of the original LG G3 file

and the QuickTime re-encoded file shows distinct differences in the MPEG-4

structure that would allow the QuickTime file to be identified as being not original.

58

That being said, the structure of the re-encoded LG G3 file is not the same as the
structure of the re-encoded GoPro file. It seems that QuickTime takes certain
parts of the original file’s structure into account when re-encoding rather than re-
encoding using a strict structure as observed with ffmpeg and Adobe Premiere.
While there was no meaningful data contained in the User Data Box (‘udta’) of
the original file this data was not preserved during re-encoding as it was in the

case of the GoPro.

1 ftyp
2 moov
3 mvhd
4 udta
5 auth
6 adzc
7 adzm
8 adze edts
elst
mdia
mdhd
hdir
minf
vmhd
dinf
dref

9 trak
10 tkhd
1 mdia
12 mdhd
13 hdir
14 minf
15 vmhd
16 dinf
17 dref
18 stbl
19 stsd
20 avcl
21 avcC
22 pasp
23 stts
24 stss
25 stsz
26 stsc
27 stco
28 trak
29 tkhd
30 mdia
31 mdhd
32 hdir
33 minf
34 smhd
35 dinf
36 dref
37 stbl
38 stsd
39 mp4a
40 esds
M stts
42 stsz
43 stsc
44 stco
45 free
46 mdat

stbl
stsd
avcl
avcC
pasp
stts
stss
stsc
stsz
stco
trak
tkhd
edts
elst
mdia
mdhd
hdir
minf
smhd
dinf
dref
stbl
stsd
mpda
esds
stts
stsc
stsz
stco

Figure 59. Comparison of LG G3 Original and
Apple QuickTime Encoded File Structure

Analysis with Medialnfo shows that the embedded timestamps have been
updated to the time of re-encoding, the self-identifying reference ‘LGE’ has been

removed, as well as the references to ‘VideoHandle’ and ‘SoundHandle.’

59

youtube-d|

General

General

Complete name 3840x2160-LG-G3-2015-06-20 02.38.24-JH.mp4 Complete name 3840x2160-LG-G3_quicktime.mp4
Format MPEG-4 Format MPEG-4

Format profile Base Media / Version 2 Format profile Base Media / Version 2

Codec ID mp42 Codec ID mpa2

File size 17.7 MiB File size 17.3 MiB

Duration 5s 35ms Duration 4s 999ms

Overall bit rate 29.4 Mbps Overall bit rate 29.0 Mbps

Performer LGE Encoded date UTC 2015-10-10 23:24:08

Encoded date
Tagged date

UTC 2015-06-20 02:38:24
UTC 2015-06-20 02:38:24

Tagged date

UTC 2015-10-10 23:24:08

Video Video

D 1 1D 1

Format AvVC Format AVC

Format/Info Advanced Video Codec Format/Info Advanced Video Codec
Format profile High@L5.1 Format profile High@L5.1

Format settings, CABAC Yes Format settings, CABAC Yes

Format settings, ReFrames 1 frame Format settings, ReFrames 1 frame

Format settings, GOP M=1, N=30 Format settings, GOP M=1, N=30

Codec ID avel Codec ID avel

Codec ID/Info Advanced Video Coding Codec ID/Info Advanced Video Coding
Duration 4s 822ms Duration 4s 821ms

Bit rate 29.9 Mbps Bit rate 29.9 Mbps

Width 3 840 pixels Width 3 840 pixels

Height 2160 pixels Height 2 160 pixels

Display aspect ratio 16:09 Display aspect ratio 16:09

Frame rate mode Variable Frame rate mode Variable

Frame rate 29.451 fps Frame rate 29.451 fps

Minimum frame rate 29.221 fps Minimum frame rate 29.221 fps.

Maximum frame rate 29.703 fps. Maximum frame rate 29.703 fps

Color space Yuv Color space Yuv

Chroma subsampling 4:02:00 Chroma subsampling 4:02:00

Bit depth 8 bits Bit depth 8 bits

Scan type Progressive Scan type Progressive
Bits/(Pixel*Frame) 0.122 Bits/(Pixel*Frame) 0.122

Stream size 17.2 MiB (97%) Stream size 17.2 MiB (99%)

Title VideoHandle Title Core Media Video
Language English Encoded date UTC 2015-10-10 23:24:08

Encoded date
Tagged date
mdhd_Duration

UTC 2015-06-20 02:38:24
UTC 2015-06-20 02:38:24
4822

Tagged date

UTC 2015-10-10 23:24:08

Audio Audio

D 2 D 2

Format AAC Format AAC

Format/Info Advanced Audio Codec Format/Info Advanced Audio Codec
Format profile LCc Format profile LCc

Codec ID 40 Codec ID 40

Duration 5s 35ms Duration 4s 999ms

Source duration 5s 44ms Source duration 5s 44ms

Source_Duration_FirstFrame

9ms

Source_Duration_FirstFrame

9ms

Bit rate mode Constant Bit rate mode Constant

Bit rate 156 Kbps Bit rate 156 Kbps

Nominal bit rate 96.0 Kbps Nominal bit rate 96.0 Kbps

Channel(s) 2 channels Channel(s) 2 channels

Channel positions Front: LR Channel positions Front: LR

Sampling rate 48.0 KHz Sampling rate 48.0 KHz

Compression mode Lossy Compression mode Lossy

Stream size 95.9 KiB (1%) Stream size 95.1 KiB (1%)

Source stream size 95.9 KiB (1%) Source stream size 95.9 KiB (1%)

Title SoundHandle Title Core Media Audio
Language English Encoded date UTC 2015-10-10 23:24:08
Encoded date UTC 2015-06-20 02:38:24 Tagged date UTC 2015-10-10 23:24:08
Tagged date UTC 2015-06-20 02:38:24

mdhd_Duration

5035

Figure 60. Medialnfo Comparison of LG G3 Original and
Apple QuickTime Encoded File

As a final test of the methods of analysis outlined in this paper, the sample
clips from the GoPro Hero 3 and LG G3 were uploaded to YouTube and then
downloaded using ‘youtube-dI’ version 2015.10.09. This software is released into

the public domain and is available online at https://github.com/rg3/youtube-dl/

These downloaded files were then compared with the original files in order to
compare the files created by a popular tool used for downloading YouTube

videos.

60

Using AtomicParsley to extract the file structure of the YouTube re-
encoded file reveals a file structure very different from the original and appears to

be the same output structure as was observed in the ffmpeg structure analysis.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 8 9

1 ftyp 1 ftyp

2 moov 2 free

3 mvhd 3 mdat

4 udta 4 moov

5 FIRM 5 mvhd

6 LENS 6 trak

7 CAME 7 tkhd

8 SETT 8 edts

9 AMBA 9 elst
10 free 10 mdia
11 trak 11 mdhd
12 tkhd 12 hdir
13 tref 13 minf
14 tmed 14 vmhd
15 edts 15 dinf
16 elst 16 dref
17 mdia 17 stbl
18 mdhd 18 stsd
19 hdir 19 avcl
20 minf 20 avcC
21 vmhd 21 stts
22 dinf 22 stss
23 dref 23 ctts
24 stbl 24 stsc
25 stsd 25 stsz
26 avcl 26 stco
27 colr 27 trak
28 stts 28 tkhd
29 ctts 29 edts
30 stsc 30 elst
31 stsz 31 mdia
32 stco 32 mdhd
33 stss 33 hdir
34 sdtp 34 minf
35 trak 35 smhd
36 tkhd 36 dinf
37 tref 37 dref
38 tmed 38 stbl
39 mdia 39 stsd
40 mdhd 40 mpda
M hdir M esds
42 minf 42 stts
43 smhd 43 stsc
44 dinf 44 stsz
45 dref 45 stco
46 stbl 46 udta
47 stsd 47 meta
48 mp4a 48 hdir
49 esds 49 ilst
50 stts 50 ©too
51 stsc 51 data
52 stsz
53 stco
54 trak
55 tkhd
56 mdia
57 mdhd
58 hdir
59 minf
60 gmhd
61 hdir
62 dinf
63 dref
64 stbl
65 stsd
66 tmed
67 stts
68 stsc
69 stsz
70 stco
71 free
72 mdat

Figure 61. Comparison of Original GoPro Hero 3 and

61

YouTube Encoded File Structure

Medialnfo confirms relevant changes to the file properties of the re-

encoded file. The format profile and codec have been modified and the

embedded timestamps have been zeroed out. The presence of the

‘Lavf56.25.101’ string in this file correlates with the theory that youtube-dl is using

ffmpeg to transcode YouTube’s downloaded data stream into a playable format.

General
Complete name
Format
Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date
AMBA

Video

D

Format

Format/Info

Format profile
Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate mode

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size

Title

Language

Encoded date
Tagged date

Color range

Color primaries
Transfer characteristics
Matrix coefficients

Audio

D

Format
Format/Info
Format profile
Codec ID
Duration

Bit rate mode

Bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size

Title

Language
Encoded date
Tagged date

Other

D

Type

Format

Duration

Time code of first frame
Time code, striped
Language

Encoded date

Tagged date

1920x1080-GOPRO-HERO3-GOPR1682-BL.mp4
MPEG-4

JVT

avcl

20.3 MiB

6s 440ms

26.5 Mbps

UTC 2015-04-26 17:56:56

UTC 2015-04-26 17:56:56

1

AVC

Advanced Video Codec
Main@L4.2

Yes

1frame

M=1, N=8

avel

Advanced Video Coding
6s 440ms

Constant

25.0 Mbps

1920 pixels

1080 pixels

16:09

Constant

59.940 fps

Yuv

4:02:00

8 bits.

Progressive

0.201

19.1 MiB (94%)

GoPro AVC

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56
Full

BT.709

BT.709

BT.709

2

AAC

Advanced Audio Codec
LCc

40

6s 421ms

Constant

128 Kbps

2 channels

Front: L R

48.0 KHz

Lossy

100 KiB (0%)

GoPro AAC

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56

3
Time code

QuickTime TC

65 440ms

17:55:51:27

Yes

English

UTC 2015-04-26 17:56:56
UTC 2015-04-26 17:56:56

General
Complete name
Format

Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date
Writing application

Video

D

Format

Format/Info

Format profile

Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Minimum frame rate
Maximum frame rate
Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size

Encoded date
Tagged date

Audio

D

Format
Format/Info
Format profile
Codec ID
Duration

Bit rate mode

Bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size
Encoded date
Tagged date

1920x1080_gopro_youtube.mp4
MPEG-4

Base Media

isom

4.82 MiB

7s 245ms

5584 Kbps

UTC 1904-01-01 00:00:00

UTC 1904-01-01 00:00:00
Lavf56.25.101

1

AVC

Advanced Video Codec
High@L4.2

Yes

3 frames

M=1,N=16

avel

Advanced Video Coding
7s 174ms

5494 Kbps

1920 pixels

1080 pixels

16:09

Variable

59.940 fps

59.920 fps

59.960 fps

Yuv

4:02:00

8 bits

Progressive

1:03:22

4.70 MiB (97%)

UTC 1904-01-01 00:00:00
UTC 1904-01-01 00:00:00

2

AAC

Advanced Audio Codec
LC

40

7s 245ms

Constant

126 Kbps

2 channels

Front: L R

44.1 KHz

Lossy

111 KiB (2%)

UTC 1904-01-01 00:00:00
UTC 1904-01-01 00:00:00

Figure 62. Medialnfo Comparison of Original GoPro Hero 3 and
YouTube Encoded File

The original LG G3 video file uploaded to YouTube was also downloaded

and analyzed. lIts structure is consistent with the ffmpeg re-encoded videos

62

examined for this paper and is distinctly different from the structure of an original

LG G3 file.

4
5 auth
6 adzc
7 adzm
8 adze
9 trak
10 tkhd
1" mdia
12 mdhd
13 hdir
14 minf
15 vmhd
16 dinf

18 stbl

28 trak

29 tkhd

30 mdia

31 mdhd

32 hdir

33 minf

34 smhd
35 dinf

37 stbl

dref

stsd

stts

stss
stsz
stsc
stco

dref

stsd

stts

stsz
stsc
stco

avcl

mp4a

avcC
pasp

esds

elst

mdhd
hdir
minf

elst

mdhd
hdir
minf

hdir
ilst

vmhd
dinf
dref
stbl
stsd
avcl
avcC
stts
stss
ctts
stsc
stsz
stco

smhd
dinf
dref
stbl
stsd
mp4a
esds
stts
stsc
stsz
stco

©too
data

Figure 63. Comparison of LG G3 Original and YouTube Encoded File Structure

As expected, Medialnfo reports the changes to format profile and codec

ID, as well as the resetting of the embedded timestamps and presence of the

ffmpeg identifying string in the metadata of the file.

63

General
Complete name
Format
Format profile
Codec ID

File size
Duration
Overall bit rate
Performer
Encoded date
Tagged date

Video

D

Format

Format/Info

Format profile
Format settings, CABAC
Format settings, ReFrames
Format settings, GOP
Codec ID

Codec ID/Info
Duration

Bit rate

Width

Height

Display aspect ratio
Frame rate mode
Frame rate

Minimum frame rate
Maximum frame rate
Color space

Chroma subsampling
Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size

Title

Language

Encoded date
Tagged date
mdhd_Duration

Audio

D

Format
Format/Info
Format profile
Codec ID

Duration

Source duration
Source_Duration_FirstFrame
Bit rate mode

Bit rate

Nominal bit rate
Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size
Source stream size
Title

Language
Encoded date
Tagged date
mdhd_Duration

3840x2160-LG-G3-2015-06-20 02.38.24-JH.mp4

MPEG-4

Base Media / Version 2
mp42

17.7 MiB

5s 35ms

29.4 Mbps

LGE

UTC 2015-06-20 02:38:24
UTC 2015-06-20 02:38:24

1

AvVC

Advanced Video Codec
High@L5.1
Yes

1 frame

M=1, N=30
avcl

Advanced Video Coding
4s 822ms

29.9 Mbps
3840 pixels
2160 pixels
16:09

Variable

29.451 fps
29.221 fps
29.703 fps
YUV

4:02:00

8 bits
Progressive
0.122

17.2 MiB (97%)

UTC 2015-06-20 02:
4822

2

AAC

Advanced Audio Codec
LCc

40

5s 35ms

5s 44ms

9ms

Constant

156 Kbps

96.0 Kbps

2 channels

Front: LR

48.0 KHz

Lossy

95.9 KiB (1%)

95.9 KiB (1%)
SoundHandle

English

UTC 2015-06-20 02:38:24
UTC 2015-06-20 02:38:24
5035

General
Complete name
Format
Format profile
Codec ID

File size
Duration
Overall bit rate
Encoded date
Tagged date
Writing application

Video
1D
Format

Format/Info

Format profile

Format settings, CABAC
Format settings, ReFrames
Codec ID

Codec ID/Info

Duration

Bit rate

Width

Height

Display aspect ratio

Frame rate mode

Frame rate

Minimum frame rate
Maximum frame rate

Color space

Chroma subsampling

Bit depth

Scan type
Bits/(Pixel*Frame)
Stream size
Encoded date
Tagged date

Audio

D

Format
Format/Info
Format profile
Codec ID
Duration

Bit rate mode
Bit rate

Channel(s)
Channel positions
Sampling rate
Compression mode
Stream size
Encoded date
Tagged date

64

3840x2160_Igg3_youtube.mp4
MPEG-4

Base Media

isom

12.8 MiB

5s 86ms

21.0 Mbps

UTC 1904-01-01 00:00:00
UTC 1904-01-01 00:00:00
Lavf56.25.101

1

AVC
Advanced Video Codec
High@L5.1
No

2 frames
avel
Advanced Video Coding
4s 822ms
22.0 Mbps
3 840 pixels
2 160 pixels
16:09
Variable
29.451 fps
29.450 fps
29.460 fps
Yuv
4:02:00

8 bits.
Progressive

12.7 MiB (99%)
UTC 1904-01-01 00:00:00
UTC 1904-01-01 00:00:00

0:00:00

AAC

Advanced Audio Codec
LC

40

5s 86ms

Constant

126 Kbps

2 channels

Front: LR

44.1 KHz

Lossy

78.3 KiB (1%)

UTC 1904-01-01 00:00:00
UTC 1904-01-01 00:00:00

Figure 64. Medialnfo Comparison of LG G3 Original and YouTube Encoded File

CHAPTER VI
CONCLUSION

The framework for analysis outlined in this paper presents a viable means of
authenticating a MPEG-4 recording based on its file structure and metadata. Test
recordings from the device purported to have made the recording or a model of the
same make and model will need to be created and analyzed in a forensically sound
manner in order to establish the baseline of what constitutes an original file as created
by the device. Once this baseline is established, that structure can be compared
against the structure of the questioned file in order to determine authenticity.

In cases where the provenance of a questioned file is unknown, this framework
of analysis presents a viable means of establishing a greater understanding of the file
based on its file structure and metadata. If the file has been re-encoded due to editing,
then the file's structure will be comparable to that of files created by known encoding
software. To provide the greatest likelihood of identifying an unknown file, this
framework of analysis could be utilized to create a database of file structures and
properties from known devices and software encoders.

There are a number of open questions that present an opportunity for future
work. Neither tool used in this method of analysis was created expressly for the
purpose of forensic video analysis. It is important to explore the use of other existing

tools for the purpose of analysis. Exiftool (http://www.sno.phy.queensu.ca/~phil/exiftool/)

is a powerful tool for viewing image and video file. It supports MPEG-4 video containers
and its use should be explored as an alternative or addition to Medialnfo. Another

powerful tool that should be considered for further analysis is an extension of the ffmpeg

65

project called ffprobe (https://ffmpeg.org/ffprobe.html) VLC

(https://www.videolan.org/vic/index.html) and GSpot

(http://www.videohelp.com/software/GSpot) are two other tools that can report MPEG-4

file properties but It should be noted that none of these tools will report on the MPEG-4
container structure of a file, nor will they report on the contents of any forensically
relevant containers of the file such as the User Data Box (‘udta’). Defraser, a tool
released by the Nederlands Forensisch Instituut (NFI), released under the BSD license

at http://sourceforge.net/projects/defraser/, is a tool used to find video data streams in

unallocated disk space. Its use to bolster this method of authentication should be
explored as it is an actively maintained purpose-built tool for the purpose of forensic
video examination.

In order to create a validated database of file structures from known devices, it
will be important to create a new purpose built tool to parse the file structure of these
files. This tool should also take into account and record the contents of the User Data
Box (‘udta’). None of the tools surveyed for this paper are capable of returning the
contents of this forensically relevant container.

It is also important to expand the pool of video files to be analyzed. A larger
collection of data will only serve to help refine the methods of analysis and reveal further
similarities in file structure across device manufacturers. A study of the effects of
software versions would also serve to help strengthen such a database. There are
many open questions surrounding the idea of how device operating system software
affects the file structure of recorded files. For example, does the file structure change

across different versions of Android OS? An exploration of third party software would

66

also help to identify if the file structure is created at the OS level of the device or by the
software being used. The exploration of third party software would also allow the further
analysis of the contents of the User Data Box (‘udta’) to determine what forensically
relevant information recorded by a given piece of software.

As with any method proposed for the authentication of digital video, this method
of authenticating digital video based on its file structure should be incorporated into a
greater framework of digital video analysis that would correlate findings from as many
analyses as possible in order to strengthen confidence in the ultimate opinion regarding
a file’s authenticity. Digital video should be inherently more easily authenticated since
there are two data streams to consider in analysis: the video and the audio. After the
file structure and metadata have been analyzed for authenticity, further analysis can be
performed on the pixel level of the video stream and at the sample level of the audio
stream. By combining these three methods of analysis, | believe that a greater

framework for digital video analysis can be realized.

67

REFERENCES

[1] Daniel Lawn Rappaport, “Establishing a Standard for Digital Audio
Authenticity: A Critical Analysis of Tools, Methodologies, and Challenges.”
University of Colorado Denver, 27-Apr-2012.

[2] Scott Dale Anderson, “Digital Image Analysis: Analytical Framework For
Authenticating Digital Images.” University of Colorado Denver, 2011.

[3] T. Gloe, A. Fischer, and M. Kirchner, “Forensic analysis of video file formats,”
Proc. First Annu. DFRWS Eur., vol. 11, Supplement 1, no. 0, pp. S68-S76,
May 2014.

[4] ISO/IEC, “ISO/IEC 11172-1:1993 Information technology -- Coding of moving
pictures and associated audio for digital storage media at up to about 1,5
Mbit/s -- Part 1: Systems.” ISO/IEC, 1993.

[5] ISO/IEC, “ISO/IEC 13818-1:1996 Information technology -- Generic coding of
moving pictures and associated audio information -- Part 1: Systems.”
ISO/IEC, 1996.

[6] ISO/IEC, “ISO/IEC 14496-1:1999 Information technology -- Coding of audio-
visual objects -- Part 1: Systems.” ISO/IEC, 19909.

[7] ISO/IEC, “ISO/IEC 14496-2:1999 Information technology -- Coding of audio-
visual objects -- Part 2: Visual.” ISO/IEC, 1999.

[8] ISO/IEC, “ISO/IEC 14496-3:1999 Information technology -- Coding of audio-
visual objects -- Part 3: Audio.” ISO/IEC, 1999.

[9] Apple, Inc., “Classic Version of the QuickTime File Format Specification.”
Apple, Inc., 2001.

[10] ISO/IEC, “ISO/IEC 14496-14:2003 Information technology -- Coding of
audio-visual objects -- Part 14: MP4 file format.” ISO/IEC, 2003.

[11] ISO/IEC, “ISO/IEC 14496-10:2003 Information technology -- Coding of
audio-visual objects -- Part 10: Advanced Video Coding.” ISO/IEC, 2003.

[12] ISO/IEC, “ISO/IEC 14496-15:2004 Information technology -- Coding of
audio-visual objects -- Part 15: Carriage of network abstraction layer (NAL)
unit structured video in ISO base media file format.” ISO/IEC.

[13] ISO/IEC, “ISO/IEC 14496-12:2004 Information technology -- Coding of
audio-visual objects -- Part 12: ISO base media file format.” ISO/IEC, 2004.

[14] MP4 Registration Authority, “MP4REG Registered Types - File Types,”
MP4REG, 15-Oct-2015. [Online]. Available:
http://www.mp4ra.org/filetype.html. [Accessed: 15-Oct-2015].

[15] Apple, Inc., “QuickTime File Format Specification.” Apple, Inc., 2015.

[16] MP4 Registration Authority, “MP4REG Registered Types - Codecs,”
MP4REG, 15-Oct-2015. [Online]. Available:
http://www.mp4ra.org/codecs.html. [Accessed: 15-Oct-2015].

[17] MP4 Registration Authority, “MP4REG Registered Types - Box Types,”
MP4REG, 15-Oct-2015. [Online]. Available:
http://www.mp4ra.org/atoms.html. [Accessed: 15-Oct-2015].

68

[18] Gravity Lab, “What is the difference between Baseline, Main and High h264
mpeg4 / mp4 profiles?,” GravityLab. [Online]. Available:
http://www.gravlab.com/2013/11/07/difference-baseline-main-high-h264-
mpeg4-mp4-profiles/. [Accessed: 15-Oct-2015].

[19] Leach, et al., “A Universally Unique IDentifier (UUID) URN Namespace.”
The Internet Society, Jul-2005.

69

