

ANALYSIS OF ZERO-LEVEL SAMPLE PADDING OF VARIOUS MP3

CODECS

By

JOSH BERMAN

B.S., University of Colorado, Denver, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado, in partial fulfillment

of the requirements for the degree of

Masters of Science

Recording Arts

2015

 ii

© 2015

JOSH BERMAN

ALL RIGHTS RESERVED

 iii

This thesis for the Master of Science Degree by

Josh Berman

has been approved by the

Recording Arts Program

By

Lorne Bregitzer

Jeff Smith

Catalin Grigoras, Chair

11/20/2015

 iv

Berman, Josh (M.S. Recording Arts)

Analysis of Zero-Level Sample Padding of Various MP3 Codecs

Thesis directed by Assistant Professor Catalin Grigoras

ABSTRACT

 As part of the MP3 compression process, the codec used will often pad the

beginning and end of a file with “zero-level samples”, or silence. The number of

zero-level samples (ZLS) varies by codec used, sample rate, and bit depth of the

compression. Each re-compression of a file in the MP3 format will typically add

more silence to the beginning and/or end of the file. By creating multiple

generations of files using various audio editors/codecs, we hope to be able to

determine the generation of MP3 compression of the files based solely off of the

number of ZLS at the beginning and end of the file.

 The form and content of this abstract are approved. I recommend its

publication.

Approved: Catalin Grigoras

 v

ACKNOWLEDGEMENTS

 I’d like to thank my family, first and foremost, for being so awesome and

supportive throughout my education. Without you, none of this would have happened.

Another big thanks to all of the great teachers I’ve had throughout the years.

 vi

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION …….…….…….…….…….…….…….…….…….………………. 1

 A Brief History ……….…….…….…….…….…….……….…….…….….…... 1

 Zero-Level Padding ……….…….…….…….…….…….…….…………….…... 1

 Purpose of the Study ………….…….………….…….…….…………….….…... 2

 II. MATERIALS AND METHODS ….………….…….………………………..….….. 4

III. RESULTS …..…….…….…….……..…..….…….…….…….…….…….…….…… 8

 Audacity …….…….…….…….…….…….…….…….…….…….………...…… 9

 Adobe Audition CS3 (Outlier Omitted) …………………………….…..........…10

 Adobe Audition CC2014 ……………………………………………………..... 11

 Adobe Audition CC2015 ……………………………………………………..... 12

 Blade Encoder ………………………………………………………….…….… 13

 dBpoweramp …………………………………………………………….……....14

 ffmpeg ………………………………………………………………………..… 15

 fpMP3 Encoder ………………………………………………………………… 16

 GOGO ………………………………………………………………………..… 17

 Apple iTunes …………………………………………………………………… 18

 Apple Logic Pro ………………………………………………………………... 19

 LAME (Mac Terminal) ………………………………………………….…….. 20

 Mad …………………………………………………………………………..… 21

 vii

 mpg123 ………………………………………………………………………… 22

 Avid Pro Tools (Outlier Omitted) ………………………………………...……. 23

 SoX …………………………………………………………………….………. 24

 Switch (Outlier Omitted) ………………………………………………………. 25

 Wavelab (Fraunhofer) ……………………………………………….….……… 26

 Wavelab (LAME) ……………………………………………………………… 27

 Xing ………………………………………………………………….……….… 28

 All LAME Programs …………………………………………………….……... 29

 All Fraunhofer Programs ………………………………………………….…… 30

IV. DISCUSSION …………..…...……………………………………………….….… 32

 Inter-Program Variance ……………………………………………..…………. 36

V. FUTURE RESEARCH / FRAMEWORK ……….………….……………….…….. 37

VI. CONCLUSION …………….………….………………………………..…..…...… 39

REFERENCES ………………………………………………………………………… 41

 1

CHAPTER I

INTRODUCTION

 1.1 A Brief History

 The MP3 format, developed in the early 1990’s by the Fraunhofer Institute along

with the Motion Picture Experts Group, is a very popular method of digital audio

compression. The motivation behind it’s development was to create a style of

compression that could reduce the size of an audio file drastically while still retaining as

much quality as possible. In the early 90’s hard drive space and Internet bandwidth made

full resolution audio files quite impractical. An average length 3-minute song can take up

to 50 Megabytes of storage, which even by today’s standards can be impractical. The

MP3 codec takes advantage of limitations in human hearing to remove information that

we can’t hear from a lossless audio file. The result is up to 90% smaller file sizes with

minimal compromise to audible quality depending on the bit rate used. Over time,

various MP3 codecs have been developed (Fraunhofer, LAME, etc) and each has it’s own

method of coding and decoding MP3 data. Regardless of the exact codec used, MP3 files

have become the standard for recording and distributing audio.

 Each codec will potentially interpret the same file in different ways. This is due to

the nature of MP3 compression. The MP3 standard states certain things that make an

MP3 file readable by any decoder, however each decoder may decode the information

differently.

 1.2 Zero-Level Sample Padding

 2

 Part of the coding/decoding process for MP3 files is to pad the beginning and end

of the files with silence, or “Zero-Level Samples” (ZLS). Depending on the codec used

and specs of the file, more or less zeroes will be added. Typically, each additional re-

compression will add more zeroes to the beginning and end of the file. See Figure 1

showing the expected number of zeroes for each generation MP3 compression. This

hypothesis is what is being tested in this study.

Figure 1 - Expected number of ZLS for each additional MP3 compression

The exact number of zeroes will vary, but this graph shows a general trend we would

expect to see.

 1.3 Purpose of the Study

The purpose of this study is not to determine the cause/reasoning behind zero-

level sample padding, but rather to provide a comprehensive sample of files and their

respective padding.

With this study, we hope to be able to find out how many generations of MP3

compression a file has undergone, solely based on the zero-level samples at the beginning

and end of a file and on each channel. The default format for most handheld recorders is

 3

MP3, so we expect to see some amount of ZLS on an authentic, unedited file. If a file

were to be loaded into an audio editor, manipulated, and re-saved, we would expect that

the codec used by the audio editor would add more zeroes to the file, telling us that the

file was re-compressed. By collecting files created by various handheld recorders then re-

compressed with various programs/codecs, the purpose is to develop a database to

reference when analyzing a file for authenticity. For example, if “File A” was claimed to

be recorded with “Recorder A” and has 2000 zeroes at the beginning of the file, yet all

sample recordings from “Recorder A” only have ~500 zeroes at the beginning, this is a

sign that the file was likely re-compressed.

 4

CHAPTER II

MATERIALS AND METHODS

The procedure of this study was to take various handheld audio recorders and

record samples of audio, re-compress that audio using different codecs, and analyze the

number of zeroes on the file for each generation. The handheld recorders used were:

(5) Tascam DR-07’s

(1) Olympus DM-520

(1) Zoom H1

(1) Marantz PMD620

(1) Philips LFH0882

(2) Olympus WS-700’s

 Each recorder recorded ten (10) files. The files were all of varying loudness:

(3) Recordings of loud music

(3) Recordings of moderate speech

(4) Recordings of silence

 The total number of files came to 110 (10 recordings on 11 recorders). The next

process was to recompress each file a number of times. Most of the programs used could

both encode and decode data, meaning that they can read and create MP3 files. The

process for such programs was as follows:

 1. Convert each original MP3 file to uncompressed .wav PCM files

 2. Convert new .wav PCM files back to MP3

 3. Repeat for a total of four (4) generations of .wav files

 5

4. Read the number of zeroes at the beginning and end of each .wav file on each

channel.

 Various programs/codecs used were strictly coders, not decoders, meaning that

could only create MP3 files from an uncompressed .wav file and not read them/convert to

.wav. The process for such programs was as follows:

 1. Convert each original MP3 file to .wav PCM using dBpoweramp

 2. Convert new .wav PCM files to MP3 using the code in question

 3. Repeat for a total of four (4) generations of .wav file

4. Read the number of zeroes at the beginning and end of each .wav file on each

channel.

Some programs were purely decoders, meaning that they could read an MP3 file

and save it as a .wav, but not convert to MP3. The process for such files was as follows:

1. Convert each original MP3 file to uncompressed .wav file using the decoder in

question

2. Convert new .wav files back to MP3 using Adobe Audition CC2015

3. Repeat for a total of four (4) generations of .wav file

4. Read the number of zeroes at the beginning and end of each .wav file on each

channel.

The reason for converting each MP3 file to .wav before reading the ZLS is

because each program potentially uses a different decoder to read the files. This means

that opening the same MP3 file in different programs will potentially show a different

level of zero-level samples. By using each decoder to create uncompressed .wav files, we

essentially “print” the number of zeroes imparted on the file by that decoder. Opening

 6

this new .wav file in any program will show the same number of zeroes because no

decoder is being used to read it. This way, all of the .wav files could be read/interpreted

by the same MATLAB script without MATLAB adding (or subtracting) more zeroes. All

files were recorded at 16bit/128kbps mp3 with the exception of the files from the Phillips

LFH0882 which does not have the capability to record at 128kbps. These files were

recorded at 16bit/192kbps instead.

The following programs were used to create the sample files:

Table 1 - Programs/Codecs Used

Program Program Version MP3 Codec Used

Audacity 2.1.1 LAME 3.98.3

Adobe Audition CS3 CS3 Fraunhofer

Adobe Audition CC2014 CC2014 Fraunhofer

Adobe Audition CC2015 CC2015 Fraunhofer

Blade Encoder 0.82 Blade 0.82

dBpoweramp 15.3 LAME 3.99

ffmpeg 2.7.1 LAME 3.99.5

fpMP3 Encoder 1.0.0.2 fpMP3 1.0.0.2

Gogo Encoder 3.13 Gogo 3.13

Apple iTunes 12.3.0.44 Fraunhofer

Apple Logic Pro 9.1.8 Fraunhofer

LAME (Mac Terminal) 3.99.5 LAME 3.99.5

Mad Decoder 0.15.2b Mad 0.15.2b

Mpg123 Decoder 1.22.0 Mpg123 1.22.0

 7

Avid Pro Tools 11.3.1 Fraunhofer

SoX (Mac Terminal) 14.4.2 LAME 3.99.5

NCH Software Switch 4.85 LAME 3.97

Steinberg Wavelab (LAME) 8 LAME 3.98.4

Steinberg Wavelab
(Fraunhofer)

8 Fraunhofer 4.1.3

Xing Encoder 1.5.0.5 Xing 1.5.0.5

The only settings modified in the programs was the bitrate. This was done in

order to keep each new file at 16bit/128kbps CBR. All other settings were left at the

default.

While there were 110 original files, file “H1_L3.mp3” appeared to be corrupt

when opening in certain programs and displayed an abnormally high amount of zeroes.

This outlier was omitted when testing the following programs:

• Adobe Audition CS3

• Avid Pro Tools

• Switch

 8

CHAPTER III

RESULTS

Legend for Data Tables/Graphs:

Term Definition
Initial Average Average of both left and right channels at

the beginning of the file.
Final Average Average of both left and right channels at

the end of the file.
ZLS “Zero Level Samples”, number of zero

level samples.
Generation Number of the .wav file generation.

 9

3.1 Audacity

Generation I II III IV
Initial Average 3.2 3.5 3.1 3.4

Initial Standard
Deviation

3.1 3.4 3.4 3.5

Final Average 0 0 0 0

Final Standard
Deviation

0 0 0 0

Table 3 .1: Audacity

Figure 3.1a: Initial Average – Audacity

Figure 3.1b: Final Average – Audacity

 10

3.2 ADOBE AUDITION CS3 (OUTLIER OMITTED)

Generation I II III IV
Initial Average 1211.9 1973.8 3035.3 4191
Initial Standard

Deviation
901.5 879.9 909.9 901.4

Final Average .2 1604.5 4385.9 7099.3
Final Standard

Deviation
2.4 1976 3353.6 4625

Table 3.2: Adobe Audition CS3 (Outlier Omitted)

Figure 3.2a: Initial Average – Adobe Audition CS3 (Outlier Omitted)

Figure 3.2b: Final Average – Adobe Audition CS3 (Outlier Omitted)

 11

3.3 ADOBE AUDITION CC2014

Generation I II III IV
Initial Average 1206.9 848.8 843 837.7
Initial Standard

Deviation
898.9 788.5 785.1 785.1

Final Average .2 0 0 0
Final Standard

Deviation
2.4 .2 .2 .2

Table 3.3: Adobe Audition CC2014

Figure 3.3a: Initial Average – Adobe Audition CC2014

Figure 3.3b: Final Average – Adobe Audition CC2014

 12

3.4 ADOBE AUDITION CC2015

Generation I II III IV
Initial Average 1206.9 848.8 843 837.7
Initial Standard

Deviation
898.9 788.5 785.1 785.1

Final Average .2 0 0 0
Final Standard

Deviation
2.4 .2 .2 .2

Table 3.4: Adobe Audition CC2015

Figure 3.4a: Initial Average – Adobe Audition CC2015

Figure 3.4b: Final Average – Adobe Audition CC2015

 13

3.5 BLADE ENCODER
Generation I II III IV
Initial Average 1206.9 2109.2 3097.7 4106.7
Initial Standard

Deviation
898.9 954.8 953.6 956.4

Final Average 0 0 0 0
Final Standard

Deviation
.3 0 0 0

Table 3.5: Blade Encoder

Figure 3.5a: Initial Average – Blade Encoder

Figure 3.5b: Final Average – Blade Encoder

 14

3.6 DBPOWERAMP

Generation I II III IV
Initial Average 1206.9 1206.9 1054.8 1037.1
Initial Standard

Deviation
898.9 989.9 907.6 905.3

Final Average .1 .1 .1 .1
Final Standard

Deviation
.3 .3 .3 .1

Table 3.6: dBpoweramp

Figure 3.6a: Initial Average – dBpoweramp

Figure 3.6b: Final Average – dBpoweramp

 15

3.7 FFMPEG

Generation I II III IV
Initial Average 825.1 347 21.2 7.1
Initial Standard

Deviation
806.9 378.8 42.2 10.7

Final Average 0 .1 361.4 498
Final Standard

Deviation
.1 .5 133.6 235

Table 3.7: ffmpeg

Figure 3.7a: Initial Average - ffmpeg

Figure 3.7b: Final Average - ffmpeg

 16

3.8 FPMP3

Generation I II III IV
Initial Average 1206.9 694.6 375.7 112.2
Initial Standard

Deviation
898.9 711.9 445.8 195.7

Final Average .1 0 0 0
Final Standard

Deviation
.3 0 0 0

Table 3.8: fpMP3

Figure 3.8a: Initial Average – fpMP3

Figure 3.8b: Final Average – fpMP3

 17

3.9 GOGO
Generation I II III IV

Initial Average 1206.9 694.6 375.7 112.2
Initial Standard

Deviation
898.9 711.9 445.8 195.7

Final Average .1 0 0 0
Final Standard

Deviation
.3 0 0 0

Table 3.9: Gogo

Figure 3.9a: Initial Average – Gogo

Figure 3.9b: Final Average – Gogo

 18

3.10 APPLE ITUNES

Generation I II III IV
Initial Average 502.9 460.3 441.7 433.8
Initial Standard

Deviation
549.7 515 503.7 498.3

Final Average 0 0 0 0
Final Standard

Deviation
0 0 0 0

Table 3.10: iTunes

Figure 3.10a: Initial Average – iTunes

Figure 3.10b: Final Average – iTunes

 19

3.11 APPLE LOGIC PRO
Generation I II III IV

Initial Average 786.2 691.6 669.7 658.9
Initial Standard

Deviation
782.5 731.5 717.6 709.6

Final Average 492.2 4.4 .4 .9
Final Standard

Deviation
22.4 31.7 6.1 11

Table 3.11: Apple Logic Pro

Figure 3.11a: Initial Average – Apple Logic Pro

Figure 3.11b: Final Average – Apple Logic Pro

 20

3.12 LAME (Mac Terminal)
Generation I II III IV

Initial Average 787.4 723.5 694.4 672.6
Initial Standard

Deviation
783.2 745.2 723.9 715

Final Average 0 0 0 0
Final Standard

Deviation
.3 .1 .1 .3

Table 3.12: LAME 3.99.5 (Mac Terminal)

Figure 3.12a: Initial Average – LAME (Mac Terminal)

Figure 3.12b: Final Average – LAME (Mac Terminal)

 21

3.13 MAD

Generation I II III IV
Initial Average 1 1 1 1
Initial Standard

Deviation
0 0 0 0

Final Average 0 .7 1.1 1.4
Final Standard

Deviation
.2 2.9 4 4.7

Table 3.13: Mad

Figure 3.13a: Initial Average – Mad

Figure 3.13b: Final Average – Mad

 22

3.14 MPG123

Generation I II III IV
Initial Average 881.8 1994 3048.8 4144.5
Initial Standard

Deviation
874.2 905.1 924.8 927.2

Final Average .5 324.5 1178.5 2124.8
Final Standard

Deviation
2.1 262.3 351.7 421.8

Table 3.14: mpg123

Figure 3.14a: Initial Average – mpg123

Figure 3.14b: Final Average – mpg123

 23

3.15 AVID PRO TOOLS (OUTLIER OMITTED)

Generation I II III IV
Initial Average 793.5 1060.1 1537.4 2168.5
Initial Standard

Deviation
784.3 817.8 932 924.6

Final Average 2314.1 3165.2 3630.4 4845
Final Standard

Deviation
1688.1 1727.1 2516.2 2792

Table 3.15: Avid Pro Tools (Outlier Omitted)

Figure 3.15a: Initial Average – Pro Tools (Outlier Omitted)

Figure 3.15a: Final Average – Pro Tools (Outlier Omitted)

 24

3.16 SOX

Generation I II III IV
Initial Average 1206.9 2111.3 3178.9 4261.5
Initial Standard

Deviation
898.9 968.4 967 964.4

Final Average 0 0 0 0
Final Standard

Deviation
0 0 0 0

Table 3.16: SoX

Figure 3.16a: Initial Average - SoX

Figure 3.16b: Final Average - SoX

 25

4.17 SWITCH (OUTLIER OMITTED)

Generation I II III IV
Initial Average 1.6 1 1.1 5.1
Initial Standard

Deviation
2 0 .4 21.2

Final Average .1 0 0 0
Final Standard

Deviation
1.1 0 0 0

Table 3.17: Switch (Outlier Omitted)

Figure 3.17a: Initial Average – Switch (Outlier Omitted)

Figure 3.17b: Final Average – Switch (Outlier Omitted)

 26

3.18 WAVELAB (FRAUNHOFER)

Generation I II III IV
Initial Average 1256.5 2171.7 3284.8 4475.9
Initial Standard

Deviation
886 883.5 917.1 938.7

Final Average 1.6 500.7 1393.6 2383.8
Final Standard

Deviation
7.1 247.1 397 469.6

Table 3.18: Wavelab (Fraunhofer)

Figure 3.18a: Initial Average – Wavelab (Fraunhofer)

Figure 3.18b: Final Average – Wavelab (Fraunhofer)

 27

3.19 WAVELAB (LAME)

Generation I II III IV
Initial Average 1256.5 2258.2 3326.5 4436
Initial Standard

Deviation
886 907.2 875.8 870.2

Final Average 1.6 1.5 3.2 4.6
Final Standard

Deviation
7.1 6.9 13.5 18.1

Table 3.19: Wavelab (Lame)

Figure 3.19a: Initial Average – Wavelab (LAME)

Figure 3.19b: Final Average – Wavelab (LAME)

 28

3.20 XING

Generation I II III IV
Initial Average 1206.9 1842.8 2824.9 3831.5
Initial Standard

Deviation
898.9 807.6 866.1 877.1

Final Average .1 0 .1 0
Final Standard

Deviation
.3 0 .4 .2

Table 3.20: Xing

Figure 3.20a: Initial Average – Xing

Figure 3.20b: Final Average – Xing

 29

3.21 ALL LAME PROGRAMS

This section compiles all programs that used LAME. The chart “Initial Average – All

LAME Programs” and “Final Average – All LAME programs” show all LAME programs

superimposed.

Generation I II III IV
Audacity 825.1 347 21.2 7.1
Wavelab LAME 1256.5 2258.2 3326.5 4436
Switch 1.6 1 1.1 5.1
ffmpeg 825.1 347 21.2 7.1
dBpoweramp 1206.9 1206.9 1054.8 1037.1
LAME 787.4 723.5 694.4 672.6
SoX 1206.9 2111.3 3178.9 4261.5
Average 755.4 950.2 1182.9 1489

Table 3.21: Initial Average of all LAME programs

Figure 3.21a: Initial Average – All LAME Programs

Figure 3.21b: Final Average – All LAME

 30

3.22 ALL FRAUNHOFER PROGRAMS

This section compiles all programs that used Fraunhofer. The chart “Initial Average – All

Fraunhofer Programs” and “Final Average – All Fraunhofer programs” show all

Fraunhofer programs superimposed.

Generation I II III IV

Audition CS3 1211.9 1973.8 3035.3 4191
Audition
CC2014

1206.9 848.8 843 837.7

Audition
CC2015

1206.9 848.8 843 837.7

iTunes 502.9 460.3 441.7 433.8
Logic Pro 786.2 691.6 669.7 658.9
Pro Tools 793.5 1060.1 1537 2168.5
Wavelab
(Fraunhofer)

1256.5 2171.7 3284.8 4475.9

Average 995 1150.7 1522.1 1943.4

Table 3.22: All Fraunhofer Programs

Figure 3.22a: Initial Average – All Fraunhofer Programs

 31

Figure 3.22b: Final Average – All Fraunhofer Programs

 32

Chapter IV

DISCUSSION

 While the original hypothesis of this study was that the number of zero-

level samples at the beginning and end of each file would increase with each additional

compression, that was found to not always be the case. While some programs showed the

general upward trend of adding more zeroes after each additional compression, many did

not. The ones that did not varied from having no zeroes on the files whatsoever to starting

with a substantial amount then going down after each recompression.

Programs/Codecs that behaved as expected (number of ZLS grew after each

recompression):

• Wavelab (LAME)

• Wavelab (Fraunhofer)

• Pro Tools

• Audition CS3

• Blade

• Mpg123

• Xing

• SoX

Programs that did not behave as expected (number of ZLS did not grow after each

recompression):

• ffmpeg

• Switch

• Audacity

 33

• Logic Pro

• dBpoweramp

• iTunes

• Audition CC2014

• Audition CC2015

• Mad

• fpMP3

• Gogo

• LAME (Mac Terminal)

Only 8 out of the 20 programs (40%) of the programs behaved as expected vs. 12

out of 20 (60%) which did not. Among the programs that did not behave as expected,

some had a high initial number of zeroes then decreased, whereas some had a nominally

small number of zeroes throughout each re-compression.

The programs that had a high initial number of zero-level samples and decreased

throughout were:

• ffmpeg

• Logic Pro

• dBpoweramp

• iTunes

• Adobe Audition CC2014

• Adobe Audition CC2015

• fpMP3

 34

• Gogo

• LAME (Mac Terminal)

The programs that had a nominally small number of zeroes throughout were:

• Switch

• Audacity

• Mad

One possible reason behind the zero-level samples is for gapless playback

information1. Depending on the exact codec and specs used, the encoder and decoder will

add a number of samples. This is used as a buffer by many different audio players to

ensure “gapless playback”. However, in more recent revisions of MP3 codecs, developers

have been able to remove this buffer to some extent. As LAME states in their FAQ:

“Starting with LAME 3.55, we have a new MDCT/filterbank routine written by
Takehiro Tominaga with a 48 sample delay. With even more rewriting, this could be
reduced to 0.”

Other more popular codecs such as Fraunhofer also state that they are working to

reduce the encoder and decoder delays2.

When using LAME directly in the MAC terminal, a message is displayed when

decoding MP3 files which clearly states that the zero-level samples are being skipped:

MP3 Generation 1 Files Being Decoded to WAV Generation 1

 35

MP3 Generation 2 Files Being Decoded to Wav Generation 2

MP3 Generation 3 Files Being Decoded to WAV Generation 3

MP3 generation 4 Files Being Decoded to WAV Generation 4

Note the phrases “Skipping initial 529 samples (encoder+decoder delay)” and “

Skipping final 567 samples (encoder padding-decoder delay)”. According to Mark

Taylor’s LAME FAQ, available at http://lame.sourceforge.net/tech-FAQ.txt, most MP3

codecs have a roughly 528 sample decoder delay and 528 sample encoder delay. At the

time of the writing of that FAQ, LAME was working to reduce this delay further. As

stated by the current version (3.99.5) much of that delay is now ignored when decoding,

meaning the resulted .wav files will have no additional zero-level samples added by the

codec. This does not, however, mean that files decoded with LAME will have no zeros.

The data collected shows that the files will have a very similar number of zeros as the

original file did. In other words, regardless of how many generations are created with

LAME 3.99.5, the file will always have a similar number of zeros. The four generations

created in this stuffy showed a slightly decreasing amount of zeros in each generation on

average, but most individual files showed no decrease.

 36

4.2 Inter-Program Variance

While one would expect multiple programs that use the same MP3 library to

produce identical results, this was found to not always be the case. Take, for example,

SoX and ffmpeg. Both programs were executed in the Mac terminal and use LAME

3.99.5. The two programs produced different results. It is clear that more than just the

MP3 codec used factors into the amount of zero-level sample padding added.

 37

Chapter V

FUTURE RESEARCH / FRAMEWORK

Any future research on this topic would be useful in developing a more

comprehensive database with which to compare evidence files. The most popular codecs

used today are LAME and Fraunhofer, but each has many different revisions with

different behaviors. An interesting topic for further research would be ZLS variance

within different versions of the same codec. This way, if we know which version of a

codec was used to compress a file (sometimes displayed in the file metadata) we can

more accurately estimate how many times the file was recompressed. An interesting topic

of research would be to study each version of a certain codec to see how its behavior

changes over time.

The current framework for audio authentication includes more than just zero-level

sample analysis. One of the more commonly used methods for audio authentication is a

metadata/structure analysis. This analysis includes looking at the metadata of an audio

file to see if it is consistent with an authentic file. A proposed addition to this current

framework is to combine these two analyses (zero-level sample and metadata analysis).

By looking at the metadata of a file we are more likely able to determine the codec and

version used to compress the file. For example, files encoded with LAME will typically

have “LAME” and the version number in the header of the file.

 38

Figure 5: Hex information of a 4th Generation MP3 file created with Steinberg Wavelab

 39

Chapter VI

CONCLUSION

In the past examiners may have used the number of zero-level sample on an MP3

file to estimate whether or not the file has been re-compressed multiple times. According

to the results of this study, many of the new versions of codecs no longer add a

significant amount of zeroes to the file. As a result of this development, it is not

necessarily accurate for all codecs to use the number of zero-level samples on the file to

determine the number of re-compressions. It can be effective for some codecs, but not all.

Depending on the codec used, we can determine that a file was likely recompressed at

least once, but not always exactly how many times it was edited.

Take, for example, a file in question which has no zero-level sample padding at

the beginning or end of the file. It is unlikely that the file is directly from the recorder, as

none of the original files had no zero-level samples straight from the recorder. We

cannot, however, make an accurate estimate as to how many times the file was re-

compressed unless we know which codec and which version were used. Based on this

sample data alone, we know that a file with no zero-level samples at the beginning could

be a 4th generation compressed with LAME 3.99.5, a 3rd generation compressed with

Logic Pro, or a number of other possibilities. Most of the recorders used use the

Fraunhofer codec3, but the exact version is not given. Based on the fact that most of the

original files had some number of zero-level samples at the beginning of the files we can

guess that they are using an older version of the codec, but we cannot be sure.

 40

By considering the findings of this study with the already existing parts of the

audio authentication framework, we can improve our methods and ensure more accurate

authentication results in the future.

 41

REFERENCES/BIBLIOGRAPHY

1Taylor, Mark. "LAME Technical FAQ." LAME Technical FAQ. LAME, June
2000. Web. 14 Oct. 2015. <http://lame.sourceforge.net/tech-FAQ.txt>.

2Allamanche, Eric, Ralf Gieger, Jürgen Herre, and Thoma Sporer. "MPEG-4 Low
Delay Audio Coding Based on the AAC Codec." Audio Engineering Society
(1999). Web. 14 Oct. 2015.

3Product manuals available on manufacturer websites

Sripada, P. (2006). MP3 Decoder in Theory and Practice Masters Thesis
Blekinge Institute of Technology, Sweden

Raissi, R. (2002). The Theory Behind MP3

