BUTT-SPLICE DETECTION

ON AUDIO RECORDINGS

WITH LOSSY COMPRESSION

by

AUSTIN JON AESCHLIMAN

B.S., University of Colorado, 2015

A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Recording Arts Program

2020

This thesis for the Master of Science degree by

Austin Jon Aeschliman

has been approved for the

Recording Arts Program

by

Catalin Grigoras, Chair

Douglas S. Lacey

Cole Whitecotton

Date: December 12, 2020

Aeschliman, Austin Jon (M.S., Recording Arts Program) Butt-Splice Detection on Audio Recordings with Lossy Compression Thesis directed by Associate Professor Catalin Grigoras

ABSTRACT

A 'butt-splice' is a digital audio edit that results from deleting a portion of audio from a recording, or otherwise bringing together two non-contiguous portions of audio. This effect is not necessarily detectable by simply listening to the audio or combing through its waveform. As a result, spotting these edits is a potential means of identifying malicious forgery. A detection script can be used to mitigate human error in the pursuit of finding these alterations.

Lossy compression is a form of digital encoding that removes information from audio to reduce its size. This process sacrifices fidelity in pursuit of minimizing storage. As the bitrate decreases, the greater loss of data and the higher degradation relative to the original file. Additionally, certain compression types apply a low-pass filter that cuts off high frequencies.

As butt-splices tend to introduce a high-frequency transient due to the sudden jump in sample values they produce, detection of the removed area may be masked by the compression process itself. Whereas in an uncompressed version of the same file, which may be more easily detected. It is the aim of this document to discern whether a detection algorithm can find evidence of tampering in audio that has been edited with butt-splicing and then compressed.

> The form and content of this abstract are approved. I recommend its publication. Approved: Catalin Grigoras

> > iii

ACKNOWLEDGEMENTS

I'd like to acknowledge some individuals and inanimate objects that were invaluable assets in the completion of this document, people and things that without whom this thesis would either toil in the catacombs of my mind, a perpetual prisoner to postponement, or be a much poorer addition to the scientific hivemind.

Firstly, a heaping helping of thanks to my thesis committee for your guidance during the construction of this pile of paper and throughout the program, Cole for his green chili recipe and early encouragement, Doug for mingling among the student scum as a covert professor, Jeff for his meticulous SGLs and less meticulous karaoke skills, and Catalin for the data assistance and his superhuman knowledge of all things media.

A further helping heaping to my fellow cohort members. Aside from bar hopping through Seattle, forming an impromptu cover band, and sharing the eternal struggle for knowledge and job security, you also were much faster than me at finishing your respective theses, thus providing many fine examples of how to best structure my own. Thank you for rewarding my procrastination with your superior work ethic.

Thanks to my parents, Dede and Barb, for their unflinching support, not just over the years of this Masters, but the 26 before and the couple I have remaining to me after. Thanks to Kristin for graph assistance, tireless encouragement, and general sweet loveliness. Thanks to Patrick for growing up with me and cultivating a mutual respect for intellectual pursuits that allowed me to even seek out such a degree. Thanks to Nathan for being a constant enabler of my strange ideas and having the considerable talent to bring them to fruition.

Lastly, I'd like to dedicate this thesis to coffee, that acidic elixir that kept me upright when I otherwise would surely be bumbling my way through a semiconscious existence.

iv

TABLE OF CONTENTS

CHAPTER

I. INTRODU	CTION	1
Overv	iew	1
Prior I	Research	2
Limita	ations	3
Termi	nology	3
II. METHOD	OLOGY	5
Mater	ials	5
Procee	dure	6
	Capturing Audio	6
	Disabling Interpolation	6
	Trimming Impulses	6
	Splicing Audio	7
	Compressing Spliced Files	9
	Running MATLAB Script	9
III. RESULTS	5	12
Zero-I	Level Padding Offset	13
Errors		15
Thresh	nolds	16
	Errors Per Bitrate	16
	Total Errors Per Compression Type	18
	Errors Per Compression Type in Relation to Bitrate and Splice Value	18

Bitrate								
Splice Value	20							
Errors Per Splice Value	22							
Conclusions								
Bitrate								
Compression Type	25							
Splice Value	25							
IV. DISCUSSION	26							
Goal Appraisal	26							
Does lossy compression mask the detection of butt-splice edits?	26							
Do different lossy compressions have different effects on detection?	26							
Do different bitrates have different effects on detection?	26							
Do different splice values have different effects on detection?	26							
What are the thresholds at which edits are no longer detectable?	27							
Future Research	27							
REFERENCES	28							
APPENDIX	29							
Master Data Spreadsheet	29							
Error Calculations	31							
Errors Per Bitrate	31							
Error Per Compression Type	32							
Errors Per Splice Value	33							

TABLES

TABLE	
1 – Terminology	3
2 – Materials	5
3 – Splice values	8
4 – Data for file 4, uncompressed	12
5 – Data for file 4, compressed	13
6 – AAC and WMA offsets for file 4	14
7 – Errors for file 4	15
8 – Errors per bitrate	16
9 – Errors per compression type by bitrate	19
10 – Errors per compression type by splice value	20
11 – Errors per splice value	22
12 – Master data spreadsheet	29

FIGURES

FIGURE	
1 – Area selected before deletion in file 1-1.wav	7
2 – Resulting butt-splice jump after deletion in file 1-1.wav	8
3 – MATLAB detection of highest jump for file 1-1.wav	11
4 – MATLAB detection of highest jump for file 1-1-AAC-256.aac	11
5 – Total errors per bitrate	17
6 – Mean and standard deviation values of bitrate error	17
7 – Total errors per compression type	18
8 – Errors per compression type by bitrate	19
9 – Mean and standard deviation values of compression type errors by bitrate	20
10 - Errors per compression type by splice value	21
11 - Mean and standard deviation values of compression type errors by splice value	21
12 – Mean splice error by mean splice value increase	23
13 - Mean and standard deviation values of splice value increase	24
14 - Mean and standard deviation values of splice value error	24

CHAPTER I

INTRODUCTION

Overview

When a section of audio is removed from a recording without the use of crossfade interpolation, the raw sample points directly before and after the selection merge, creating a stark amplitude discontinuity. This type of edit is referred to as a 'butt-splice'. As the effect takes place at the minute sample level, a detection script must be used to mitigate human error in the pursuit of spotting these alterations.

Lossy compression is a form of digital encoding that removes repetitive information from audio to reduce its size, resulting in a loss of fidelity. As the bitrate decreases, the greater the loss of quality from the original recording.

The purpose of this study is to examine the effects that lossy compression has on the detection of butt-splice edits in a waveform. The primary goals of this analysis are to determine:

- 1. Does lossy compression mask the detection of butt-splice edits?
- 2. Do different lossy compressions have different effects on detection?
- 3. Do different bitrates have different effects on detection?
- 4. Do different splice values have different effects on detection?
- 5. What are the thresholds at which edits are no longer detectable?

The results of this research are intended to assist with the identification of an audio file as either unedited or edited with a process that produces butt-splices. By verifying characteristics of three common compression types (AAC, MP3, and WMA) and comparing them with their edited and unedited uncompressed originals (WAV), it is hoped that any possible limitations of this detection method can be identified and accounted for in future research.

Prior Research

Though minimal, prior research on the detection of butt-splice edits is available. Primarily, Alan J. Cooper's paper *Detecting Butt-Spliced Edits in Forensic Digital Audio Recordings* [2] with the London Metropolitan Police Digital & Electronics Forensic Service was presented at the Audio Engineering Society's 39th International Conference in June 2010.

In his paper, Cooper describes how editors often use butt-splices that leave their edit points exposed, rather than using a crossfade technique that might mask the forgery more effectively. Due to this oversight, an unnatural amplitude jump remains when such an edit is made. This situation can be exploited by locating the time domain sample where this discontinuity occurs by using a MATLAB script that detects the highest amplitude jump between two consecutive samples.

The script works by scanning the initial audio signal for a 1st and 2nd derivative between adjacent signal samples and high pass filtering it to model a discontinuity at higher frequencies where the discontinuity energy to acoustic signal level is improved. The model is then used as a template, computing the cross-correlation coefficient at each consecutive audio sample point, searching for potential edits in the audio data [2].

Cooper concludes by stating that his detection algorithm is superior to the previous method of traditional auditory and visual waveform analysis because it does not rely on errorprone human interpretation. Without an unbiased mechanism to discern potential splicing, the findings of this study would be far less valid.

Limitations

The scope of this study is limited to the three lossy compression types (MP3, WMA, AAC) and four bitrate values (32, 64, 128, 256) that were tested. Any codecs or bitrate settings beyond these may produce conclusions that vary from those drawn here. This document makes no attempt to decipher the mechanisms by which lossy algorithms process the original files they compress. It instead focuses on whether a peer-reviewed detection script can accurately identify the edited sample point when fidelity is reduced by the compression these codecs apply.

Terminology

<u>د</u>
<i>,</i>
ver
vei
۵
-
te
15 n
.11
;
11
.11
<u>ıp.</u>
$ v = 1$ $\frac{1}{1}$ $$

Table 1: Terminology

Table 1: Continued

Term	Definition				
	A form of encoding that removes redundant				
Lossy Compression	data in an original file to reduce its value at				
	the expense of fidelity.				
	An audio process that removes frequencies				
Low Pass Filter	below a set value and attenuates the				
	frequencies above that value.				
	MPEG Audio Layer III is a lossy				
MP3	compression format originally developed as				
	the audio layer of the MPEG video format.				
	Pulse code modulation is an uncompressed				
	audio method that is used to convert an				
РСМ	analog signal into a digital signal so that a				
	modified analog signal can be transmitted				
	through the digital communication network.				
Quantization Levels (QL)	The measure of quantized amplitude samples.				
	A single discrete element forming part of a				
Samples	digital audio signal that represents where data				
-	occurs on the time domain.				
	The difference in amplitude between two				
Splice Value	samples that have been connected when a				
-	butt-splice is made.				
	The point at which a characteristic of an				
Threshold	edited file (bitrate, compression type, or				
	splice value) starts to report false detections.				
	A form of encoding that has no loss of fidelity				
Uncompressed Audio	from digitization. All data is reconstructed				
	exactly from the original.				
	Waveform Audio File Format is an audio file				
WAV	container format standard developed by				
	Microsoft and IBM.				
	A visual representation of audio data				
	presented in editing software where the time				
Waveform	at which a sample occurs is measured in the				
	horizontal axis and amplitude quantization				
	levels are measured in the vertical axis.				
	Windows Media Audio is a lossy				
WMA	compression format developed by				
	Microsoft to compete with MP3.				
	An aspect of the lossy compression process				
	that pads a compressed file with newly added				
Zero-Level Padding	silence at the beginning of the waveform. The				
	number of zeros added depends on the codec				
	and software used.				

CHAPTER II

METHODOLOGY

Materials

To produce the findings of this study, a selection of materials were utilized to conduct experiments on controlled audio files. The original recordings were captured in uncompressed WAV format on a Samsung phone. These files were imported into Adobe Audition and altered with butt-splice edits. The edited files were then transcoded with lossy compression via FFmpeg. With the full dataset created, each file was run through the MATLAB detection script, the results of which were catalogued in Microsoft Excel.

Material	Version	Description		
Samsung Phone	Galaxy S10+	This cellphone's Voice Recorder application was used to capture audio.		
Adobe Audition	CC 13.0.10	An audio editing software that allows users to import audio files into a workspace and process or alter its waveform in various ways.		
FFmpeg	4.3.1	A command line tool for the purpose of digital audio processing and conversion.		
MATLAB	R2020b	A multi-purpose mathematics software that allows users to write custom scripts to analyze digital content based on peer- reviewed techniques.		
Microsoft Excel	2019 16.0.6742.2048	A spreadsheet creation software that allows users to organize data into tables and graphs with automatic formula calculation built in to mitigate human error.		

	T٤	۱b	le	2:	Ma	teri	als
--	----	----	----	----	----	------	-----

Procedure

Capturing Audio

The original uncompressed audio recordings, which all lossy versions were derived from, consisted of 10 low-level room noise recordings of roughly 10 seconds in length. Room noise was used, opposed to a more complex waveform like recorded speech, because it would allow for a greater amplitude consistency to mitigate false positives that may arise. These were captured on a Samsung Galaxy S10+ cellphone's Voice Recorder application as mono WAV files with a sample rate of 44.1 kilohertz (kHz) and with 16-bit Pulse Code Modulation (PCM) encoding.

Disabling Interpolation

Each recording was imported into Adobe Audition to view its waveform. The software provides an automatic smoothing preset which applies a crossfade interpolation effect to any splice that is made within the workspace. This feature is enabled upon creation of any new Audition session file.

The goal of this experiment was to determine if splices could be detected after being compressed, making it imperative that the controlled edits made to each original file connected the butted ends cleanly, without adulteration. A crossfade could obscure the exact sample point of the splice and potentially interfere with the accuracy of the detection, rendering the dataset unreliable. As a result, this feature was disabled.

Trimming Impulses

It was found within the waveform that, due to the nature of the medium it was captured on, an amplitude impulse was present at the beginning and end of every file. Each recording required the record button to be pressed twice to start and stop the recording process. This left a noticeable volume spike just after capture began and just before it ended, especially in contrast to the low-level room noise these impulses surrounded. To maintain the desired amplitude consistency and avoid false detections, these impulses were removed from each and re-saved with the same WAV file parameters to provide the final uncompressed sample set.

Splicing Audio

For each of the ten original WAV files, five butt-splice edits were made in Audition. The areas removed were deleted across the time domain from the waveform in the software's audio editing window to create the artificial jumps. The edited files were organized with the title format *File #-Splice #*. For example, splice 5 of file 2 was titled 2-5.

Figure 1: Area selected before deletion in file 1-1.wav

To determine which splice values might influence detection, the number that was

removed needed to remain consistent. This was achieved by deleting the same relative number of

QLs from the five splices across all original files, the number decreasing with each subsequent

splice. The highest natural jump of the original files was found by using Cooper's algorithm.

Splice	Area Removed
1	The area between the waveform's highest QL sample and lowest QL sample to
	make the highest possible jump that could be artificially created when merged.
Z	An area with a slightly lower QL difference than Splice 1.
3	An area with a slightly lower QL difference than Splice 2.
4	A small area that was still large enough for the QL difference between the merged samples to be slightly higher than the QL difference of the highest natural jump.
5	An area small enough for the QL difference between the merged samples to be slightly lower than the QL difference of the highest natural jump.

 Table 3: Splice values

After a splice was made, a new WAV file was saved with the same settings as its original (44.1 kHz/16-bit PCM). In total, these alterations produced 50 WAV files that established a control with which to measure the detection accuracy for the lossy compressed versions that would follow.

Compressing Spliced Files

FFmpeg's lossy transcoding feature was used to compress the edited WAVs into three lossy iterations (AAC, MP3, and WMA) at four different bitrates (32, 64, 128, and 256 kilobits per second or kbps).

The commands used to transcode the edited WAV files followed the structure of:

ffmpeg -i Original.wav -b:a BitRate# File#-Splice#-Compression-Bitrate.extension

For example, the command that rendered the 256kbps MP3 of file 1, splice 1 was:

ffmpeg -i 1-1.wav -b:a 256000 1-1-MP3-256.mp3

This process rendered 50 files per bitrate, which made 200 files per compression type, ultimately making a total of 600 lossy compressed files.

Running MATLAB Script

The MATLAB script was composed of several lines of code that needed to be input in sequential order to carry out their intended function.

• Audio selection from containing folder, targeting the file extensions being examined.

[name1,path1]=uigetfile({'*.aac;*.wav;*.mp3;*.wma;'}),

• Loading audio for detection.

[x,fs]=audioread(name1);

• Identifying the first and second derivative within the waveform.

x1=abs(diff(x));

x2=abs(diff(x1));

• Detecting the highest value of the two derivatives.

[a1,b1]=max(x1);

[a2,b2]=max(x2);

• Reporting the highest detected amplitude sample.

mes1=(['1st derivative butt-splice detected at sample # ',num2str(b1),',

Level1=',num2str(a1)]); disp(mes1);

mes2=(['2nd derivative butt-splice detected at sample # ',num2str(b2),',

Level2=',num2str(a2)]); disp(mes2);

For each of the 660 files (10 original WAV, 50 edited WAV, and 600 edited lossy) processed through the script, a PNG image was rendered to showcase the results (Figures

3 and 4 below). The key results displayed in these images included:

- 1. A visual representation of the entire waveform and the location of the detected sample where the highest jump occurred in relation.
- 2. The numerical value of the two consecutive sample points (K, K+1) where the highest detected jump occurred.
- 3. The QL amplitude of the two detected sample points and the difference between them in QLs as an absolute value.

Figure 3: MATLAB detection of highest jump for file 1-1.wav

CHAPTER III

RESULTS

After processing, the data for all 660 files was entered into a master Excel spreadsheet to compare how the various encoding differences affected detection. As an example, below is the data for File 4. The full accounting of all files can be found in the Appendix.

Original WAV														
File	Highe	st Natu	ıral Ju	ımp	Splice	Area Removed					Highes	t Jum	p Dete	ected
	S*	QL1*	QL2	D*		S1S2QL1QL2DSQL1QL2								
					1	290482	292729	151	-129	280	290482	149	-129	278
					2	292393	292729	59	-129	188	292393	60	-129	189
4	74563	42	23	19	3	292664	292729	-54	-129	75	292664	-52	-129	77
					4	292682	292729	-96	-129	33	292682	-97	-129	32
					5	292722	292729	-114	-129	15	74563	42	23	19
				*(S = tim	e domain	location	n in sa	mples					
				*	QL = a	implitude	quantiz	ation	levels					
			*I	$\mathbf{O} = \mathbf{Q}$	L diffe	erence be	tween sa	amples	s (abso	lute	value)			

		AAC MP3							WMA				
Splice	Bitrate						Highest J	lump Dete	ected				
		S	QL1	QL2	D	S	QL1	QL2	D	S	QL1	QL2	D
	32	291506	82	-48	130	290482	54	-42	96	292530	47	-17	64
1	64	291506	115	-89	204	290482	96	-81	177	292530	70	-56	126
1	128	291506	144	-126	270	290482	129	-111	240	292530	139	-115	254
	256	291506	145	-126	271	290482	136	-116	252	292530	136	-116	252
	32	293417	-39	-62	23	292393	1	-65	66	294441	-13	-53	40
2	64	293417	20	-87	107	292393	23	-100	123	294441	12	-72	84
2	128	293417	51	-124	175	292393	48	-114	162	294441	52	-122	174
	256	293417	53	-123	176	292393	51	-120	171	294441	51	-121	172
	32	293688	-81	-106	25	292664	-56	-73	17	165466	35	18	17
2	64	293688	-66	-111	45	292664	-71	-111	40	294712	-68	-111	43
5	128	293688	-53	-131	78	292664	-55	-118	63	294712	-56	-125	69
	256	293688	-53	-126	73	292664	-56	-125	69	294712	-55	-125	70
	32	66386	-17	-32	15	65346	-8	-20	12	165466	35	18	17
4	64	293706	-102	-125	23	292682	-98	-115	17	135687	11	28	17
4	128	293706	-95	-124	29	292682	-93	-120	27	294730	-98	-129	31
	256	293706	-97	-128	31	292682	-99	-127	28	294730	-98	-128	30
	32	301749	-18	-36	18	65346	-8	-20	12	165467	35	18	17
5	64	311006	-34	-38	4	300725	-12	-29	17	135687	11	28	17
5	128	311006	-39	-44	5	19608	-45	-60	15	257540	48	65	17
	256	311006	-39	-43	4	19608	-47	-63	16	302773	-10	-27	17

 Table 5: Data for file 4, compressed

Zero-Level Padding Offset

Before this data could be properly analyzed, an offset needed to be applied with consideration to zero-level padding, a known consequence of the compression process where silent samples are added to the beginning of a file. Otherwise, what would appear to be an inaccurately detected sample point may not actually be, resulting in many false positives.

It became clear that FFmpeg's compression encoding eliminates zero padding in MP3 files as the detected sample and QL of the initial uncompressed area removed consistently matched. As such, only AAC and WMA compression types needed an offset applied.

Unlike the MP3 files, these codecs show a consistently inaccurate report of the detected sample. However, if the correct sample point (S1 of the area removed from the original WAV) is subtracted from the incorrectly detected sample point, a persistent number of samples being added is revealed.

After returning the same number of samples being added to dozens of files, it was

determined that the AAC files required an offset of 1024 samples and the WMA files an offset

of 2048 samples.

		A	AC	W	МА		
Splice	Bitrate		Higl	nest Jump	Detected		
		S	O *	S	0		
	32	291506	290482	292530	290482		
1	64	291506	290482	292530	290482		
1	128	291506	290482	292530	290482		
	256	291506	290482	292530	290482		
	32	293417	292393	294441	292393		
2	64	293417	292393	294441	292393		
2	128	293417	292393	294441	292393		
	256	293417	292393	294441	292393		
	32	293688	292664	165466	163418		
2	64	293688	292664	294712	292664		
5	128	293688	292664	294712	292664		
	256	293688	292664	294712	292664		
	32	66386	65362	165466	163418		
1	64	293706	292682	135687	133639		
-	128	293706	292682	294730	292682		
	256	293706	292682	294730	292682		
	32	301749	300725	165467	163419		
5	64	311006	309982	135687	133639		
5	128	311006	309982	257540	255492		
	256	311006	309982	302773	300725		
	O = sample of a state of a stat	detected ac	counting for	zero offset			

Table 6: AAC and WMA offsets for file 4

Errors

With the actual sample point being detected for each compressed file known,

identification of real errors could commence. Theoretically, this detection should identify the exact sample where the removed area begins in the initially manipulated WAV files. When a result diverged from this expectation, it was labeled as an error.

	W	AV		AA	C	MP	3	WM	A
Splice	Highest Ju	mp Detected	Bitrate		High	lest Jump	Detect	ed	
	S	D		S	D	S	D	S	D
			32	290482	130	290482	96	290482	64
1	200482	279	64	290482	204	290482	177	290482	126
1	290482	278	128	290482	270	290482	240	290482	254
			256	290482	271	290482	252	290482	252
			32	292393	23	292393	66	292393	40
2	202202	190	64	292393	107	292393	123	292393	84
2	292393	189	128	292393	175	292393	162	292393	174
	3 202664		256	292393	176	292393	171	292393	172
			32	292664	25	292664	17	163418	17
2		77	64	292664	45	292664	40	292664	43
3	292004	//	128	292664	78	292664	63	292664	69
			256	292664	73	292664	69	292664	70
			32	65362	15	65346	12	163418	17
4	202692	22	64	292682	23	292682	17	133639	17
4	292082	52	128	292682	29	292682	27	292682	31
			256	292682	31	292682	28	292682	30
			32	300725	18	65346	12	163419	17
5	74563	10	64	309982	4	300725	17	133639	17
5	/4505	17	128	309982	5	19608	15	255492	17
			256	309982	4	19608	16	300725	17

Table	7:	Errors	for	file	4

Thresholds

With errors occurring in the same areas of all ten files, a trend for inaccurate detection

could be determined relating to bitrate, compression type, and splice value.

Errors Per Bitrate

It can be observed that as the bitrate decreased, so did the accuracy of detection.

Specifically, 35.3% of 32kbps files reported errors in contrast to 22% of 256kbps files.

BITRATE	SPLICE	ERROR	TOTAL	ERROR %	TOTAL %	MEAN #	SD		
	1	0	30	0					
	2	0	30	0					
32	3	7	30	23.33	35.33%	10.6	11.3		
	4	16	30	53.33					
	5	30	30	100					
	1	0	30	0					
	2	0	30	0					
64	3	4	30	13.33	27.33%	8.2	11.2		
	4	7	30	23.33					
	5	30	30	100					
	1	0	30	0					
	2	0	30	0					
128	3	1	30	3.33	23.33%	7	11.6		
	4	4	30	13.33					
	5	30	30	100					
	1	0	30	0					
	2	0	30	0					
256	3	0	30	0	22%	6.6	11.8		
	4	3	30	10					
	5	30	30	100					

Table 8: Errors per bitrate

Figure 5: Total errors per bitrate

Total Errors Per Compression Type

All compression types had a similar level of error at high bitrates and splice values but started to differ as they decreased. As the disparities became more pronounced, it was apparent that AAC is the least destructive type of compression with MP3 trailing close behind and WMA is the most destructive.

Errors Per Compression Type in Relation to Bitrate and Splice Value

As the goal of this research was to determine the effect compression has on splice detection, the occurrence of errors in each compression type was compared in relation to the bitrate and splice value thresholds to provide further insight into how these factors influence detection.

Bitrate

	I	I	- JIJ	,			
COMP	BITRATE	ERROR	TOTAL	ERROR %	TOTAL %	MEAN #	SD
	32	16	50	32			
	64	13	50	26			
AAC	128	11	50	22	25.5	12.75	2.04
	256	11	50	22			
	32	17	50	34			
	64	13	50	26	26		
MP3	128	11	50	22	20	13	2.44
	256	11	50	22			
	32	20	50	40			
WMA	64	15	50	30			
	128	13	50	26	29.5	14.75	3.34
	256	11	50	22			

 Table 9: Errors per compression type by bitrate

Figure 9: Mean and standard deviation values of compression type errors by bitrate

Splice Value

14010 10		er compre	coston cyp	e by sprice of		
COMP	SPLICE	ERROR	TOTAL	ERROR %	TOTAL %	MEAN #
	1	0	40	0%		
	2	0	40	0%		
AAC	3	3	40	7.50%	25.50%	10.2
	4	8	40	20%		
	5	40	40	100%		
	1	0	40	0%		
	2	0	40	0%		
MP3	3	3	40	7.50%	26%	10.4
	4	9	40	22.50%		
	5	40	40	100%		
	1	0	40	0%		
	2	0	40	0%		
WMA	3	6	40	15.00%	29.50%	11.8
	4	13	40	32.50%		
	5	40	40	100%		

 Table 10: Errors per compression type by splice value

Figure 10: Errors per compression type by splice value

Errors Per Splice Value

The QL disparity of each splice had a direct correlation to the percentage of errors in the detection. Figure 7 displays the relationship: as the QL percent difference decreased, so did the detection accuracy. This implies that the greater amplitude jump a splice contains, the easier it is to detect, while a smaller jump is more likely to be masked by compression.

This explains why all splice 5 files reported errors, as it was the one splice value that went below the jump value of the original file. Thus, the detected highest jump was identified as the natural jump, as the edit value was smaller in amplitude.

SDI ICE	EII E			SIZE INCE	REASE					ERRORS DE	TECTED		
SPLICE	FILE	OG	EDIT	INCREASE %	MEAN %	MEAN #	SD	ERRORS	TOTAL	ERROR %	TOTAL %	MEAN #	SD
	1	86	502	583.72%				0	13	0%			
	2	142	845	595.07%				0	13	0%			
	3	23	313	1360.87%				0	13	0%			
	4	19	280	1473.68%				0	13	0%			
1	5	20	175	875%	1015 059/	205.4	210.4	0	13	0%	00/	0	0
1	6	16	181	1131.25%	1013.03%	293.4	210.4	0	13	0%	0%	0	0
	7	14	148	1057.14%				0	13	0%			
	8	17	195	1147.06%				0	13	0%			
	9	18	156	866.67%				0	13	0%			
10 1 2 3 4 2 5	10	15	159	1060%				0	13	0%			
	1	86	377	438.37%				0	13	0%			
	2	142	620	436.62%		204.6		0	13	0%			
	3	23	232	1008.70%				0	13	0%			
	4	19	188	989.47%				0	13	0%			
2	5	20	112	560%	666 750/		1627	0	13	0%	09/	0	0
	6	16	135	843.75%	000.75%		102.7	0	13	0%	070	0	0
	7	14	74	528.57%				0	13	0%			
	8	17	98	576.47%				0	13	0%			
	9	18	103	572.22%				0	13	0%			
	10	15	107	713.33%				0	13	0%			
	1	86	172	200%				4	13	30.77%			
	2	142	351	247.18%				7	13	53.84%			
	3	23	140	608.70%				0	13	0%			
	4	19	75	394.74%				1	13	7.7%			
2	5	20	65	325%	266 800/	110.5	88 Q	0	13	0%	0.229/	1.2	2 27
3	6	16	80	500%	300.8976	110.5	00.9	0	13	0%	9.2370	1.2	2.27
	7	14	50	357.14%				0	13	0%			
	8	17	46	270.59%				0	13	0%			
	9	18	67	372.22%				0	13	0%			
	10	15	59	393.33%				0	13	0%			

 Table 11: Errors per splice value

Table 11: Continued

CDI ICE	EILE			SIZE INC	REASE					ERRORS D	ETECTED		
SPLICE	FILE	OG	EDIT	INCREASE %	MEAN %	MEAN #	SD	ERRORS	TOTAL	ERROR %	TOTAL %	MEAN #	SD
	1	86	77	89.53%				12	ERRO RORS TOTAL ERRO 12 13 92 7 13 53.1 2 13 15.4 4 13 30.7 3 13 23. 0 13 09. 1 13 7.7 0 13 07. 1 13 7.7 0 13 07. 13 13 100. 13 13 100. 13 13 100. 13 13 100. 13 13 100. 13 13 100. 13 13 100. 13 13 100. 13 13 10.0 13 13 10.0	92.3%			
	2	142	165	116.12%				7	13	53.8%			
	3	23	60	260.87%				2	13	15.4%			
	4	19	33	173.68%				4	13	30.7%			
4	5	20	33	165%	174 4294	517	10.8	3	13	23.%	22 08%	2	2 66
4	6	16	29	181.25%	1/4.4270	51.7	40.8	0	13	0%	23.0870	3	5.00
	7	14	30	214.28%				1	13	7.7%			
	8	17	24	141.17%				1	13	7.7%			
	9	18	18 34 188 15 32 213					0	13	0%			
	10	15	32	213.33%				0	13	0%			
	1	86	32	37.21%				13	13	100%			
	2	86 32 37.2 142 98 69.01		69.01%				13	13	100%			
	3	23	20	86.96%				13	13	100%			
	4	19	15	78.95%				13	13	100%			
5	5	20	9	45%	61 0494	22.2	26.2	13	13	100%	100%	12	0
5	6	16	14	87.50%	01.9470	22.2	20.2	13	13	100%	10070	15	0
	7	14	9	64.29%				13	13	100%			
	8	17	5	29.41%				13	13	100%			
	9 18 11		61.11%				13	13	100%				
	10	15	9	60%				13	13	100%			
						OG = natur	al jump :	splice					
						EDIT = edit	ed splice	e jump					
						SD = stand	lard devi	iation					

Figure 13: Mean and standard deviation values of splice value increase

Figure 14: Mean and standard deviation values of splice value error

Conclusions

The data collected above demonstrates that all three factors being analyzed (bitrate, compression type, and splice value) will influence the detection of an accurate splice sample. Of the compression types and bitrates tested, the most accurate detections occurred with AAC at 256kbps. The following conclusions can be drawn based on the results.

Bitrate

- A decrease in lossy compression bitrate will result in an increase in detection errors.
- A bitrate below 64kbps will contribute to erroneous results provided that the area being removed isn't significantly larger than the highest natural jump.
- A bitrate above 128kbps will return accurate results provided that the area being removed isn't of similar size with the highest natural jump.

Compression Type

- Detection is least affected by AAC compression.
- Detection is most affected by WMA compression.
- Detection with MP3, while less accurate than AAC, is still more robust than WMA.

Splice Value

- A decrease in the QL disparity associated with a butt-splice will yield less reliable detection results.
- If the artificial amplitude jump is above but near to the highest natural jump, the results will be less reliable.
- If the artificial jump is less than a 100% increase from the highest natural jump, detection will be inaccurate.

CHAPTER IV

DISCUSSION

The five questions this study posed in Chapter I can be re-assessed with the conclusions provided by the results above.

Goal Appraisal

Does lossy compression mask the detection of butt-splice edits?

Undoubtedly, yes. It was clearly shown that certain lossy compression will mask detection. However, the mere fact that a file is compressed does not mean it cannot be detected. The level of degradation is an essential factor to consider. For example, a file with a bitrate of 128kbps or above will require other thresholds to be met to report errors.

Do different lossy compressions have different effects on detection?

Yes, each of the three lossy compression types had different effects on detecting an accurate sample. Their individual algorithms process the files in proprietary ways that make determining which codecs will have a greater or lesser influence on detection unpredictable. It is beyond the scope of this study to decipher why a specific effect is occurring, but report that they do in fact have an effect.

Do different bitrates have different effects on detection?

Yes. The lower the bitrate, the more unreliable the detected sample becomes. It was determined that below 64kbps, results are highly suspect.

Do different splice values have different effects on detection?

Yes. In fact, this appeared to be the most crucial element in the accuracy of detection. Regardless of any other factor, if the amplitude jump introduced by an edit is below that file's highest natural jump, detection will be inaccurate

What are the thresholds at which edits are no longer detectable?

The threshold determinations for each of the three factors are as follows:

Bitrate: Errors are more likely to occur with a lower bitrate. Specifically, a bitrate below 64kbps and especially 32kbps will return more errors than 128 or 256.

Compression Type: While there is not a specific threshold that could be determined for this factor, the study was able to identify that the AAC codec returned the least amount of errors.

Splice Value: Errors are far more likely to occur the smaller the artificial QL jump becomes. Anything below the highest natural jump will not return accurate results.

Future Research

The research conducted for this study, while a successful preliminary look, only represents a small portion of data that could be collected on this subject. Possible areas that could be considered for future research might include:

- A larger preliminary sample size than the ten examined here would be beneficial to solidify the findings beyond the trends this study drew its conclusions from.
- Expanding the number of codecs being tested. Though common, the three compression types used in this study are not a full accounting. For instance, OGG Vorbis may be an enlightening codec to incorporate into future studies.
- Likewise, it would be interesting to experiment with a greater array of QL splice values. Perhaps a more in-depth study could measure the detection differences at minute level, such as a 1 QL difference above or below the highest natural jump.
- Increasing the number of recording devices beyond the one tested here.

REFERENCES

[1] Berman, J. *Analysis of Zero-Level Sample Padding of Various MP3 Codecs* University of Colorado Denver Masters Thesis, Fall 2015.

[2] Cooper, Alan J. *Detecting Butt-Spliced Edits in Forensic Digital Audio Recordings* AES 39th International Conference: Practices and Challenges, June 2010.

[3] Cooper, Alan J. *Detection of Copies of Digital Audio Recordings for Forensic Purposes* PhD thesis, Open University, Milton Keynes, UK, 2006. AAFS 70th Annual Scientific Meeting, Seattle, Washington, 2018.

[4] Grigoras C., and Smith J.M. *Audio Enhancement and Authentication* Siegel JA and Saukko PJ Encyclopedia of Forensic Sciences, 2nd Edition, pp. 315-326. Waltham Academic Press. 2013.

[5] Grigoras, C., Smith, J.M. Time Domain Analysis of Lossy Compression Decoding Artifacts

[6] SWGDE Best Practices for Digital Audio Authentication Version: 1.3 (September 20, 2018)

APPENDIX

Table 12: Master data spreadsheet

File	-	Ori Jiabort N	ginal Joturol In	mn	Splice		4.	on Domo	od	WAV ed Higl QL2 D S		iabort Iu	mn Dotor	tod	Ditrata		A	AC		п.	M short In	P3 pp Dotori	tod		w	MA		orrent
rne	S*	QL1*	QL2	mp D*	spice	SI	S2	QL1	QL2	D	S	QL1	QL2	D	Биган	s	QL1	QL2	D	S	QL1	QL2	D	S	QL1	QL2	D	OFFSET AAC WMA
		-	-					-	-			-	-		32	298037	44	-169	213	297013	52	-112	164	299061	40	-86	126	297013 297013
					1	207012	311207	222	280	502	207012	218	280	108	64	298037	140	-212	352	297013	159	-184	343	299061	63	-146	209	297013 297013
						297015	511207	222	-200	502	297013	210	-280	4.70	128	298037	213	-268	481	297013	183	-242	425	299061	210	-267	477	297013 297013
															32	298037	19	-2/3	485	311127	-13	-255	138	299061	-195	-255	450	297013 297013
															64	312151	72	-213	285	311127	42	-217	259	313175	-9	-162	153	311127 311127
					2	311127	311207	97	-280	377	311127	107	-280	387	128	312151	87	-248	335	311127	83	-247	330	313175	79	-253	332	311127 311127
															256	312151	103	-275	378	311127	87	-260	347	313175	89	-262	351	311127 311127
															32	131029	-111	-3	108	129993	-24	53	104	132083	3	85	82	130005 130035
1	130025	76	-10	86	3	311160	311207	-108	-280	172	311160	-126	-280	154	128	3121.84	-126	-244	143	311160	-137	-241	130	313204	-150	-258	108	311160 129993
															256	312184	-128	-278	150	311160	-134	-272	138	313208	-133	-272	139	311160 311160
															32	131029	-111	-3	108	129993	-24	53	77	132083	3	85	82	130005 130035
					4	311198	311207	-203	-280	77	311198	-191	-280	89	64	131068	38	-48	86	130025	72	-10	82	132041	-28	52	80	130044 129993
															128	212222	102	-0	86	130025	79		87		79		90	130025 130025
															32	131029		-3	108	129993	-24	53	77	132083	3	85	82	130005 130035
						211200	211207	240	200	22	120025	74	10		64	131068	38	-48	86	130025	72	-10	82	132041	-28	52	80	130044 129993
					5	511200	511207	-240	-280	32	130023	70	-10	80	128	131049	80	-6	86	130025	75		87		79		90	130025 130025
															256	114408	-86	-2	259	113384	142	-146	288	115432	142	-12	288	130005 130025
															64	114408	336	-381	717	113384	273	-268	541	115432	273	-268	541	113384 113384
					1	113384	248077	431	-414	845	113384	420	-414	834	128	114408	417	-392	809	113384	355	-355	710	115432	355	-355	710	113384 113384
															256	114408	402	-404	806	113384	381	-375	756	115432	381	-375	756	113384 113384
															32	248849	15	-244	259	247825	43	-189	232	249873	43	-189	232	247825 247825
					2	247825	248077	206	-414	620	247825	216	-414	630	128	248849	201	-312	604	24/825	130	-313	540	249873	130	-315	540	247825 247825
															256	248849	209	-413	622	247825	185	-384	569	249873	185	-384	569	247825 247825
															32	266386	-10	-136	126	265362	-1	-120	119	267410	-1	-120	119	265362 265362
2	265453	13	-129	142	3	247986	248077	-63	-414	351	247986	-239	-414	175	64	266386	30	-101	131	265362	10	-124	134	267410	10	-124	134	265362 265362
-					-										128	249010	-237	-409	172	24/986	-233	-580	14/	26/410	-255	-380	147	247986 265362
															32	266466	-108	-227	119	265441	19	-107	126	267489	-240	-124	126	265442 265441
														1.18	64	266466		-225	124	265441	8		139	267489	16	-129	145	265442 265441
					4	248065	248077	-249	-414	165	248065	-247	-414	167	128	249089	-246	-406	160	248065	-242	-383	141	267489	13	-128	141	248065 265441
															256	249089	-246	-408	162	248065	-256	-405	149	250113	-256	-405	149	248065 248065
															64	266471	-98	-223	125	265446	-15	-143	128	267494			1.29	265447 265446
					5	248070	248077	-316	-414	98	265446	13	-129	142	128	266470	-3	-135		265446				267494		-131	140	265447 265446 265446
															256	266470	14	-126	140	265446	12	-127	139	267494	12	-129	141	265446 265446
															32	72991	67	-77	144	71967	52	-58	110	74015	35	-39	74	71967 71967
					1	71967	253057	153	-160	313	71967	151	-160	311	64	72991	107	-119	226	71967	105	-115	220	74015	65	-77	142	71967 71967
															256	72991	150	-155	305	71967	131	-140	271 284	74015	145	-147	292	71967 71967
															32	253624	-12	-103	91	252600	-24	-94	70	254648	-39	-83	44	252600 252600
					,	252600	252057	72	160	222	252600	42	160	202	64	253624	21	-146	167	252600	8	-123	131	254648	-3	-115	112	252600 252600
					-	252000	255057	/2	-100	2.52	252000	42	-100	202	128	253624	34	-157	191	252600	29	-142	171	254648	34	-148	182	252600 252600
															256	253624	-78	-161	200	252600	-76	-149	38	254648	-82	-150	182	252600 252600
															64	253786	-43	-141	98	252762	-60	-138	78	254810	-61	-135	74	252762 252762
3	173487	-24	-1	23	3	252762	253057	-20	-160	140	252762	-38	-160	122	128	253786	-40	-159	119	252762	-42	-146	104	254810	-44	-156	112	252762 252762
															256	253786	-40	-160	120	252762	-44	-154	110	254810	-44	-154	110	252762 252762
															32	254033	-108	-134	26	173488	-7	15	22	175535	-29	-7	22	253009 173487
					4	253009	253057	-100	-160	60	253009	-104	-160	56	128	254033	-107	-148	41 54	253009	-100	-143	48	255057	-112	-149	53	253009 253009
															256	254033	-106	-161	55	253009	-106	-158	52	255057	-106	-158	52	253009 253009
															32	174511	-23	-3	20	173488	-7	15	22	175535	-29	-7	22	173487 173487
					5	253042	253057	-140	-160	20	173487	-24	-1	23	64	174511		1	23	173487	-23	1	24	175515	-13	-34	21	173487 173467
															256	1024		-24	25	173487		-24	25	2048	-26	-1	25	0 173487
															32	291506	82	-48	130	290482	54	-42	96	292530	47	-17	64	290482 290482
						200402	202720	1.61	120	200	200402	1.40	120	2.70	64	291506	115	-89	204	290482	96	-81	177	292530	70	-56	126	290482 290482
					1	290462	292129	151	-129	280	290482	149	-129	278	128	291506	144	-126	270	290482	129	-111	240	292530	139	-115	254	290482 290482
															256	291506	145	-126	2/1	290482	136	-110	252	292530	130	-110	252	290482 290482
															64	293417	20	-87	107	292393	23	-100	123	294441	12	-72	84	292393 292393
					2	292393	292729	59	-129	188	292393	60	-129	189	128	293417	51	-124	175	292393	48	-114	162	294441	52	-122	174	292393 292393
															256	293417	53	-123	176	292393	51	-120	171	294441	51	-121	172	292393 292393
															32	293688	-81	-106	25	292664	-56	-73	17	165466	35	18	17	292664 163418
4	74563	42	23	19	3	292664	292729	-54	-129	75	292664	-52	-129	77	128	293688	-00	-131	45	292004	- /1	-111	40 63	294712	-08	-111	43	292664 292664
															256	293688	-53	-126	73	292664	-56	-125	69	294712	-55	-125	70	292664 292664
															32	66386	-17	-32	15	65346	-8	-20	12	165466	35	18	17	65362 163418
					4	292682	292729	-96	-129	33	292682	-97	-129	32	64	293706	-102	-125	23	292682	-98	-115	17	135687	00	28	17	292682 133639
															256	293706	-93	-124	31	292682	-95	-120	27	294730	-98	-129	30	292682 292682 292682
															32	301749	-18	-36	18	65346	-8	-20	12	165467	35	18	17	300725 163419
						202722	202720	114	120	15	74562	42	22	10	64	311006	-34	-38	4	300725	-12	-29	17	135687		28	17	309982 133639
					5	292122	292129	-114	-129	15	74505	42	23	19	128	311006	-39	-44	5	19608	-45	-60	15	257540	48	65	17	309982 255492
	-		-										-		256	311006	-39	-43	86	19608	-47	-63	16 62	302773	-10	-27	29	309982 300725
															64	314646	46	-83	129	313622	55	-71	126	315670	31	-52	87	313622 313622
					1	313622	315825	77	-98	175	313622	76	-99	175	128	314646	75	-97	172	313622	66	-87	153	315670	70	-94	164	313622 313622 313622
															256	314646	69	-95	164	313622	68	-92	160	315670	70	-93	163	313622 313622
															32	316783	-14	-59	45	315759	-22	-61	39	317807	-27	-55	28	315759 315759
					2	315759	315825	14	-98	112	315759	14	-99	113	128	316782	12	-83	85	315759	- /	- /8	100	317807	- /	- /9	104	315759 315759
															256	316783	11	-99	110	315759	10	-95	105	317807	9	-95	104	315759 315759
															32	316809	-52	-83	31	315785	-49	-74	25	317833	-54	-74	20	315785 315785
5	390204	-10	-30	20	3	315785	315825	_33	-98	65	315785	-33	-99	66	64	316809	-40	-90	50	315785	-40	-87	47	317833	-42	-92	50	315785 315785
	575204	10	50	20	,	5.5705	5.5025	35	70	00	5.5705	55	,,,	30	128	316809	-32	-96	64	315785	-32	-92	60	317833	-35	-97	62	315785 315785
						-					-	-	-		32	391262	-34	-98	19	390184	-34	- 78	04	391763	-34	-98	04	315785 315785 390239 380715
							21000-				21000-				64	316829	-71	-94	23	315805	-69	-90	21	317853	-71	-97	26	315805 315805
					4	515805	315825	-65	-98	53	315805	-71	-99	28	128	316829	-67	-94	27	315805	-68	-95	27	317853	-71	-98	27	315805 315805
						-					_				256	316829	-72	-99	27	315805	-71	-99	28	317853	-71	-99	28	315805 315805
															52	38/807		-0	17	385496	-20		15			-8	13	386783 386783
					5	315818	315825	-89	-98	9	390198	-10	-30	20	128	391221	-9	-27	18	390197	-11	-28		387519	63	46	17	390197 386773 390197 385471
															256	201221		20	20	200107		20				20		

					1	289255	339376	93	-88	181	289255	87	-88	175	32 64 128	290279 290279 290279	25 59 86	-36 -65 -86	61 124 172	289255 289255 289255	29 63 77	-29 -60 -78	58 123 155	291303 291303 291303	19 53 82	-22 -52 -83	41 105 165	289255 289255 289255	289255 289255 289255
															256 32	290279 340136	79 3	-87 -49	166 52	289255 339112	80 5	-82 -42	162 47	291303 341160	80 -5	-82	162	289255 339112	289255 339112
					2	339112	339376	47	-88	135	339112	49	-88	137	64 128 256	340136 340136	27 48 49	-64 -87	91 135	339112 339112 339117	24 39 47	-61 -75	85 114	341160 341160 341160	23 41 41	-61 -81	84 122	339112 339112	339112 339112
															32 64	340328 340328	-31 -16	-61 -73	30	339304 339304	-31 -20	-53 -68	22 48	341352 341352	-30 -19	-53	23	339304 339304	339304 339304
0	085	28	44	10	3	339304	339370	-8	-88	80	339304	-0	-88	82	128 256	340328 340328	-4 -6	-86	82	339304 339304	-8 -9	-80 -85	72	341352 341352	-9 -8	-86 -85	77	339304 339304	339304 339304
					4	339337	339376	-59	-88	29	339337	-54	-88	34	64 128	340361 340361 340361	-69 -57 -56	-81 -79 -85	22 29	339337 339337 339337	-56 -58 -55	-65 -77 -82	19 27	341385 341385 341385	-64 -60 -56	- 76 - 82 - 87	22 31	339337 339337 339337	339337 339337 339337
															256 32	340361 1024	-54 -6	-87 -15	33	339337 682	-56 26	-86 32	30 6	341385 382085	-56 16	-86 5	30 11	339337 0	339337 380037
					5	339359	339376	-74	-88	14	683	28	44	16	128 256	1024 1024 1024	-2 -2 -1	-18 -19 -20	16 17 19	683 683 683	32 26 28	42 41 44	10 15 16	2048 2048 2048		-18 -19 -19	16 18 18	0 0 0	0 0 0
					1	249741	251181	57	-91	148	249741	52	-91	143	32 64	250765 250765	27	-42 -60	69 91	249741 249741	4 29	-44 -67	48 96	251789 251789 251789	-3 18	-35 -52	32 70 121	249741 249741	249741 249741
															256	250765 252161	48	-90 -67	139	249741 249741 251137	45	-84 -60	129	251789 253185	46	-86	132	249741 249741 251137	249741 249741 251137
					2	251137	251181	-17	-91	74	251137	-15	-91	76	64 128 256	252161 252161 252161	-17 -16	-71 -89 -90	54 73 74	251137 251137 251137	-29 -18 -19	-68 -82 -87	39 64 68	253185 253185 253185	-28 -19 -18	-78 -88 -88	50 69 70	251137 251137 251137	251137 251137 251127
7	413835	12	-2	14	3	251152	251181	-41	-91	50	251152	-45	-91	46	32 64	252176 252176	-58 -48	-78	20 33	251152 251152	-55 -50	-70 -80	15 30	253200 253200	-58 -49	-76 -85	18 36	251152 251152	251152 251152
,	115055		-			201102	251101		,,	50	201102	15	,,	10	128 256 32	252176 252176 252184	-47 -46 -66	-87 -90 -78	40 44 12	251152 251152 251160	-44 -47 -66	-84 -89 -75	40 42 9	253200 253200 234572	-46 -47	-89 -89 7	43	251152 251152 251160	251152 251152 232524
					4	251160	251181	-61	-91	30	251160	-64	-91	27	64 128	252184 252184	-55 -65	-78 -90	23 25	251160 251160	-63 -61	-82 -86	19 25	253208 253208	-66 -65	-84 -91	18 26	251160 251160	251160 251160
															256 32 64	1024 1024	-04 -8 -4	-90 -14 -18	6 14	43872 236132	-04 -19 15	-91 -14 6	5	233208 234572 2048	-65 18 -2	-91 7 -19	26 11 17	0	251160 232524 0
					5	251175	251181	-82	-91	9	415827	12	-2	14	128 256 32	1024 1024 47016	-1 -1 49	-19 -19	18 18 79	323764 315630 45992	10 36 42	-1 24	11 12	2048 2048 48040	- 1	-20 -19	19 18 45	0 0 45992	0
					1	45992	79102	110	-85	195	45992	105	-85	190	64 128	47016 47016	57 102	-64 -86	121 188	45992 45992	78 91	-51 -72	129 163	48040 48040	66 98	-50	116	45992 45992	45992 45992
															256 32 64	47016 80086 80086	-1 2	-78 -41 -70	181 40 72	45992 79062 79062	97 -19 3	-76 -52 -67	173 33 70	48040 81110 81110	96 -17 -3	-76 -45 -63	172 28 60	45992 79062 79062	45992 79062 79062
					2	79062	79102	13	-85	98	79062	16	-85	101	128 256	80086 80086	16 15	-82 -82	98 97	79062 79062	10	-75 -80	85 91	81110 81110	11	-79 -80	90 91	79062 79062	79062 79062
8	4979	24	41	17	3	79079	79102	-39	-85	46	79079	-36	-85	49	64 128	80103 80103 80103	-41 -23 -39	-59 -57 -81	34 42	79079 79079 79079	-35 -44 -37	-48 -69 -77	25 40	81127 81127 81127	-52 -46 -38	-00 -79 -82	33 44	79079 79079 79079	79079 79079 79079
															256 32 64	80103 80113 80113	-36 -61 -60	-84 -72 -79	48	79079 79089 79089	-39 -62 -57	-82 -71 -76	43 9	81127 151740 81137	-39 -10 -61	-82 -21 -82	43	79079 79089 79089	79079 149692
					4	79089	79102	-61	-85	24	79089	-55	-85	30	128 256	80113 80113	-57 -55	-83 -84	26 29	79089 79089 79089	-54 -57	-79 -83	25 26	81137 81137	-56 -57	-84 -83	28	79089 79089	79089 79089 79089
					5	79099	79102	-80	-85	5	4979	24	41	17	32 64 128	6003 6003 6003	26 30 25	34 43 42	8 13 17	4979 4979 4979	28 26 23	36 38 39	8 12 16		12 25 24	40 41	11 15 17	4979 4979 4979	226837 4979 4979
															256 32 64	6003 100853 100853	54 24 42	-26 -48	50 90	4979 99829 99829	24 21 50	41 -29 -52	17 50 102	7027 101877 101877	24 19 42	41 -18 -48	17 37 90	4979 99829	4979 99829
					1	99829	321015	76	-80	156	99829	72	-80	152	128 256	100853 100853	73 70	-80	153 150	99829 99829	62 64	-68 -72	130 136	101877 101877	66 65	-73 -73	139 138	99829 99829 99829	99829 99829 99829
					2	320916	321015	23	-80	103	320916	23	-80	103	32 64 128	321940 321940 321940	7 23	-46 -59 -78	4 / 66 101	320916 320916 320916	-8 8 18	-43 -62 -72	35 70 90	322964 322964 322964	-13 4 19	-41 -62 -76	28 66 95	320916 320916 320916	320916 320916 320916
															256 32 64	321940 321980 321980	19 -31	-81 -56	100 25 44	320916 320956 320956	19 -34 -26	-75 -52	94 18 35	322964 323004 323004	18 -35 -24	-76 -56	94 21 47	320916 320956	320916 320956
9	7127	4	22	18	3	320956	321015	-13	-80	67	320956	-14	-80	66	128 256	321980 321980	-16 -14	-80	64 64	320956 320956	-18 -18	-72	54 58	323004 323004	-17 -18	-76	59 58	320956 320956	320956 320956 320956
					4	320979	321015	-46	-80	34	320979	-47	-80	33	32 64 128	322003 322003 322003	-42 -49 -50	-54 -69 -78	12 20 28	320979 320979 320979	-52 -49 -46	-62 -67 -74	10 18 28	323027 323027 323027	-54 -51 -49	-67 -75 -77	13 24 28	320979 320979 320979	320979 320979 320979
															256 32	322003 8150	-47 8	-79 16	32	320979	-49 4	-78	29	323027 113224	-49 -19	-78	29	320979 7126	320979 111176
					5	321001	321015	-69	-80	11	7127	4	22	18	128 256	8151 8151 1024	4	21 -17	14 17 18	7127 7127 7127	4 4 4	20 22	13 16 18	9175 9175 9175	4	20 22 22	15 18 18	7127 7127 0	7127 7127 7127
					1	6546	95399	72	-87	159	6546	70	-87	157	32 64 128	7570 7570 7570	23 46 70	-44 -65 -84	67 111 154	6546 6546 6546	18 40 60	-38 -59 -76	56 99 136	8594 8594 8594	13 36 65	-28 -51 -80	41 87 145	6546 6546 6546	6546 6546
															256 32	7570 96324 96324	68 -15	-86 -53	154 38	6546 95300 95200	63 -16	-80 -49	143 33 71	8594 97348 97248	63 -23	-79 -53	142 30 70	6546 95300	6546 95300
					2	95300	95399	20	-87	107	95300	20	-87	107	128 256	96324 96324 96324	19 17	-85 -85	104 102	95300 95300 95300	4 13 14	-78 -81	91 95	97348 97348 97348	16 14		98 96	95300 95300 95300	95300 95300 95300
10	72202	-3	12	15	3	95350	95399	-28	-87	59	95350	-24	-87	63	32 64 128	96374 96374 96374	-47 -31 -24	-74 -75 -86	27 44 62	95350 95350 95350	-39 -32 -26	-61 -75 -80	22 43 54	97398 97398 97398	-43 -34 -26	-65 -75 -84	22 41 58	95350 95350 95350	95350 95350 95350
															256 32	96374 96391	-26	-85	59 11	95350 95367	-26 -58	-85 -67	59 9	97398 97415	-26 -62	-85	59 13	95350 95367	95350 95367
					4	95367	95399	-55	-87	32	95367	-50	-87	37	64 128 256	96391 96391 96391	-52 -53 -51	- /8 -85 -87	26 32 36	95367 95367 95367	-56 -51 -52	- 75 -80 -85	29 33	97415 97415 97415	-57 -53 -52	-81 -85 -85	32	95367 95367 95367	95367 95367 95367
					5	95385	95399	-78	-87	9	72202	-3	12	15	32 64	430150 430150 430150	-8 -14 -18	-8 -13	0	2163 2162 2162	23 16 24	31 25 36	8 9 12	63081 150173 4211	20 11 25	31 -2 20	11 13 14	429126 429126 429126	61033 148125
									*0	·	tim	o .1	0.00		256	430150	-18	-17	1	2163	25	39	14	4211	25	39	14	429126	2163
			-						د . *) — ОТ	um 		uum ₁:+	iain uda			ion		$\frac{sal}{n^{-1}}$		58					_			
			-						*T	ער א –	$-\epsilon$	ן ה	ff	uue	i qt		IZ2		11 1	evel	.S					_			
									·L				rrel	ene			vee		all		5								
							GP	EV				dot	act	ad .			ed	sar	np or -	les	of	feet							
							OR	LI	- 50	ոու	ne (uet	ect	eu	acc	Jul	itti	IS IC		ero	01	iset							

Table 12: Continued

ERROR CALCULATIONS

ERRORS PER BITRATE

• **32KBPS**

Splice 1

32 - 0/30, 0%64 - 0/30, 0%128 - 0/30, 0%256 - 0/30, 0%Splice 2 32 - 0/30, 0%64 - 0/30, 0%128 - 0/30, 0%256 - 0/30, 0%Splice 3 32 - 7/30, 23.3333333333333333 64 – 4/30, 13.3333333333333333 128 – 1/30, 3.333333333333333333 256 - 0/30, 0%Splice 4 32 - 16/30, 53.3333333333333333 64 - 7/30, 23.333333333333333333128 - 4/30, 13.333333333333333333 256 - 3/30, 10%Splice 5 32 - 30/30, 100%64 - 30/30, 100% 128 - 30/30, 100% 256 - 30/30, 100%

ERRORS PER COMPRESSION TYPE

BY BITRATE

• AAC

Total Error = 51/200, 25.5% Mean Error # = 12.75 Standard Deviation = 2.046338193• MP3 Total Error = 52/200, 26% Mean Error # = 13 Standard Deviation = 2.449489743• WMA Total Error = 59/200, 29.5% Mean Error # = 14.75 Standard Deviation = 3.34477204

AAC

32 - 16/50, 32% 64 - 13/50, 26% 128 - 11/50, 22% 256 - 11/50, 22%

MP3

32 - 17/50, 34% 64 - 13/50, 26% 128 - 11/50, 22% 256 - 11/50, 22%

WMA

32 - 20/50, 40% 64 - 15/50, 30% 128 - 13/50, 26% 256 - 11/50, 22%

BY SPLICE VALUE

• AAC

Total Error = 51/200, 25.5% Mean Error # = 10.2 Standard Deviation = 15.184202316882• MP3 Total Error = 52/200, 26% Mean Error # = 10.4 Standard Deviation = 15.160474926598• WMA Total Error = 59/200, 29.5% Mean Error # = 11.8Standard Deviation = 14.891608375189

AAC

Splice 1 – 0/40, 0% Splice 2 – 0/40, 0% Splice 3 – 3/40, 7.5% Splice 4 – 8/40, 20% Splice 5 – 40/40, 100%

MP3

Splice 1 – 0/40, 0% Splice 2 – 0/40, 0% Splice 3 – 3/40, 7.5% Splice 4 – 9/40, 22.5% Splice 5 – 40/40, 100%

WMA

Splice 1 – 0/40, 0% Splice 2 – 0/40, 0% Splice 3 – 6/40, 15% Splice 4 – 13/40, 32.5% Splice 5 – 40/40, 100%

ERRORS PER SPLICE VALUE

• SPLICE 1

Mean Size Increase % = 1015.046348%Mean Size Increase # = 295.4Standard Deviation = 210.4087451

 $\begin{array}{l} 1\text{-}1-502/86, 583.7209302325581\%\\ 2\text{-}1-845/142, 595.0704225352113\%\\ 3\text{-}1-313/23, 1360.869565217391\%\\ 4\text{-}1-280/19, 1473.684210526316\%\\ 5\text{-}1-175/20, 875\%\\ 6\text{-}1-181/16, 1131.25\%\\ 7\text{-}1-148/14, 1057.142857142857\%\\ 8\text{-}1-195/17, 1147.058823529412\%\\ 9\text{-}1-156/18, 866.666666666666667\%\\ 10\text{-}1-159/15, 1060\%\\ \end{array}$

Total Error % = 0%Mean Error # = 0Standard Deviation = 0

 $\begin{array}{l} 1-1-0/13,\,0\%\\ 2-1-0/13,\,0\%\\ 3-1-0/13,\,0\%\\ 4-1-0/13,\,0\%\\ 5-1-0/13,\,0\%\\ 6-1-0/13,\,0\%\\ 7-1-0/13,\,0\%\\ 8-1-0/13,\,0\%\\ 9-1-0/13,\,0\%\\ 10-1-0/13,\,0\%\end{array}$

• SPLICE 2

Mean Size Increase % = 666.750872%Mean Size Increase # = 204.6Standard Deviation = 162.7858716

 $\begin{array}{l} 1-2-377/86, 438.3720930232558\%\\ 2-2-620/142, 436.6197183098592\%\\ 3-2-232/23, 1008.695652173913\%\\ 4-2-188/19, 989.4736842105263\%\\ 5-2-112/20, 560\%\\ 6-2-135/16, 843.75\%\end{array}$

7-2 - 74/14, 528.5714285714286% 8-2 - 98/17, 576.4705882352941% 9-2 - 103/18, 572.22222222222% 10-2 - 107/15, 713.333333333333%

Mean Error % = 0%Mean Error # = 0Standard Deviation = 0 1-2 - 0/13, 0%2-2 - 0/13, 0%3-2 - 0/13, 0%

4-2 - 0/13, 0% 5-2 - 0/13, 0% 6-2 - 0/13, 0% 7-2 - 0/13, 0% 8-2 - 0/13, 0% 9-2 - 0/13, 0%10-2 - 0/13, 0%

• SPLICE 3

Mean Size Increase % = 366.8902241% Mean Size Increase # = 110.5 Standard Deviation = 88.94858065 1-3 - 172/86, 200%

2-3 - 351/142, 247.1830985915493% 3-3 - 140/23, 608.695652173913% 4-3 - 75/19, 394.7368421052632% 5-3 - 65/20, 325% 6-3 - 80/16, 500% 7-3 - 50/14, 357.1428571428571% 8-3 - 46/17, 270.5882352941176% 9-3 - 67/18, 372.2222222222% 10-3 - 59/15, 393.3333333333%

Mean Error % = 9.230769231% Mean Error # = 1.2 Standard Deviation = 2.271563338

1-3 - 4/13, 30.76923076923077% 2-3 - 7/13, 53.84615384615385% 3-3 - 0/13, 0% 4-3 - 1/13, 7.692307692307692% 5-3 - 0/13, 0% 6-3 - 0/13, 0% 7-3 - 0/13, 0% 8-3 - 0/13, 0% 9-3 - 0/13, 0% 10-3 - 0/13, 0%

• SPLICE 4

Mean Size Increase % = 174.422025%Mean Size Increase # = 51.7Standard Deviation = 40.86575584

 $\begin{array}{l} 1-4-77/86, 89.53488372093023\%\\ 2-4-165/142, 116.1971830985915\%\\ 3-4-60/23, 260.8695652173913\%\\ 4-4-33/19, 173.6842105263158\%\\ 5-4-33/20, 165\%\\ 6-4-29/16, 181.25\%\\ 7-4-30/14, 214.2857142857143\%\\ 8-4-24/17, 141.1764705882353\%\\ 9-4-34/18, 188.888888888889\%\\ 10-4-32/15, 213.333333333333\%\\ \end{array}$

Mean Error % = 23.076923080% Mean Error # = 3 Standard Deviation = 3.660601044

 $\begin{array}{l} 1-4-12/13, 92.30769230769231\%\\ 2-4-7/13, 53.84615384615385\%\\ 3-4-2/13, 15.38461538461538\%\\ 4-4-4/13, 30.76923076923077\%\\ 5-4-3/13, 23.07692307692308\%\\ 6-4-0/13, 0\%\\ 7-4-1/13, 7.692307692307692\%\\ 8-4-1/13, 7.692307692307692\%\\ 9-4-0/13, 0\%\\ 10-4-0/13, 0\%\\ \end{array}$

• SPLICE 5

Mean Size Increase % = 61.9435%Mean Size Increase # = 22.2Standard Deviation = 26.28611801

 $\begin{array}{l} 1\text{-}5-32/86, 37.2093023255814\%\\ 2\text{-}5-98/142, 69.01408450704225\%\\ 3\text{-}5-20/23, 86.95652173913043\%\\ 4\text{-}5-15/19, 78.94736842105263\%\\ 5\text{-}5-9/20, 45\%\\ 6\text{-}5-14/16, 87.5\%\\ 7\text{-}5-9/14, 64.28571428571429\%\\ 8\text{-}5-5/17, 29.41176470588235\%\\ 9\text{-}5-11/18, 61.111111111111\%\\ 10\text{-}5-9/15, 60\%\\ \end{array}$

Mean Error % = 100%Mean Error # = 13Standard Deviation = 0

 $\begin{array}{l} 1-5-13/13,\ 100\%\\ 2-5-13/13,\ 100\%\\ 3-5-13/13,\ 100\%\\ 4-5-13/13,\ 100\%\\ 5-5-13/13,\ 100\%\\ 6-5-13/13,\ 100\%\\ 7-5-13/13,\ 100\%\\ 8-5-13/13,\ 100\%\\ 9-5-13/13,\ 100\%\\ 10-5-13/13,\ 100\%\\ \end{array}$