NEUROSCIENCE GRADUATE TRAINING PROGRAM POLICIES AND INFORMATION

Table of Contents
1. Admission to the Program
2. Student Support
3. Student Advising
4. Training Program
5. Academic Standards for Neuroscience Graduate Students
6. Other Neuroscience Program Events and Related Activities
7. Neuroscience Program Promotion and Recruitment Activities
8. Information for New Students

Co-Directors: Drs. Abby Person and Nathan Schoppa
Program Administrator: Deanne Sylvester
Graduate Training Committee (GTC) Chair: Dr. Bruce Appel

Mailing Address:
Neuroscience Program, MS 8315, 12800 E. 19th Ave., Aurora, CO 80045
Phone: 303-724-3120

Campus Address:
RC1N, Room 7102, 12800 E. 19th Ave., Aurora, CO 80045

Web Address: ucdenver.edu/neuroscience
1. Admission to the Program. Students seeking admission into the program should have an undergraduate degree or its equivalent. Foreign students must also take the Test of English as a Foreign Language (TOEFL). A baccalaureate degree in biological science, chemistry, physics, or engineering is recommended. Applicants are strongly encouraged to take an undergraduate level biochemistry/organic chemistry course. There is no absolute requirement for grade point average above that required by the graduate school, but successful applicants generally have GPAs above 3.2 (A=4.0). Undergraduate research experience is strongly recommended. Students with deficiencies may be admitted on probation, but these must be rectified during the first year. It is the continuing policy and commitment of the Graduate School of the University of Colorado to provide equal opportunity for qualified students without discrimination with regard to race, color, sex, religion, age, national origin or disability and to welcome such students to make application for admission to its graduate programs.

2. Student Support. Students accepted in the Ph.D. program are provided full tuition, health insurance, and a stipend of $31,000 per year for living expenses (for the 2020-2021 academic year). Continued support is contingent upon satisfactory academic and research performance by the student. When a student enters a thesis lab, the thesis mentor assumes complete responsibility for the student’s stipend, tuition, fees, and associated research costs. Out of state tuition is paid only in the first year. All students must establish Colorado residency during and by the end of their first year in the program.

3. Graduate Training Committee (GTC). Every first-year student is assigned a member of the GTC as a mentor. First-year students are required to meet with their GTC mentors approximately every month to update them on their progress. GTC members provide feedback to first year students on choices of rotation and thesis labs. The students also need to rehearse their rotation talks with their GTC advisors. In subsequent years, each GTC mentor will regularly, but less frequently, meet with his/her student group, which includes students from various thesis years. The GTC committee regularly monitors student progress and helps them resolve any problems that arise. The GTC Chair also acts as a liaison between the students, advisors and thesis committees in order to address, proactively, any scientific or interpersonal issues that might arise during the student’s tenure.

4. Training Program. The goal of the Neuroscience Graduate Program (NSP) is to provide a broad and solid foundation of understanding in neuroscience, and to train critical thinkers, who identify important problems, generate experimentally testable hypotheses, and who draw significant conclusions from results of their ongoing research in a specific area of neuroscience. In addition, we aim to foster development of students who approach research in a responsible, ethical, and professional manner. After the initial period of coursework, students choose their specialty fields from a diverse list of topics. They proceed with research in their specialty areas until the generation and defense of a thesis leads to the award of a Ph.D. in Neuroscience.

4.1 Overview of courses and events year-by-year. The text below summarizes coursework and various events that occur during each year of a student’s tenure in NSP. More extensive descriptions of lab rotations, the two benchmark exams (preliminary and comprehensive), and the thesis research are provided in subsequent sections. Most of the year-by-year summary applies to students who enter directly into NSP. Deviations from this for students who enter into NSP through the Biomedical Sciences Program (BSP) and Medical Scientist Training Program (MSTP) are discussed at the end of this section.

In the brief course listings, we indicate with symbols which are *required versus *elective courses, including those *EQ electives that fulfill a 1-credit requirement in Quantitative Neuroscience (see Year 2: Spring Semester). The listings below also indicate the two “laboratory research” courses at UCAMC: NRSC 7650 and NRSC 8990. Students must sign up for one of these courses every semester (including the summer) while in graduate school. NRSC 7650 is generally the pre-comps course, while NRSC 8990 is post-comps, although there are exceptions to this rule (see descriptions for the summers after Year 1 and Year 2).

YEAR 1: FALL SEMESTER

*NSP Bootcamp: Prior to the beginning of the Fall semester, students attend a one-week bootcamp that provides intensive instruction in the computer programming platforms, MATLAB and Python. During the bootcamp, faculty interested in taking students into their labs will also present their work in short talks.

*IDPT 7806 Foundations in Biomedical Sciences (6 credits, Course Director variable). Biomedical survey in biochemistry, molecular biology, genetics and cell biology. This course typically runs from the start of the fall
NRSC 7501 Introduction to Neuroscience (1 credit, Course Director Dr. Abby Person). In-a-nutshell introduction to core neuroscience topics: Excitable cells, Glia, Synapses, Behavior. This course typically runs from the start of the fall semester through the end of September.

NRSC 7600 Cellular and Molecular Neurobiology (3 credits, Course Directors Drs. Chris Ford and William Sather). Electrophysiology of neurons and synapses; ion channel biophysics; control of gene expression in neurons; glial neurobiology; quantitative problem sets. This course typically runs from early-to-mid October until the end of the fall semester.

NRSC 7650 Research in Neuroscience (Lab rotations, 1 credit each, Course Director Dr. Nathan Schoppa). Students perform two lab rotations with NSP faculty in the fall, one fully in the fall and a second which spans into the start of the spring semester. Students should register for Sections 001 and 002 of the 7650 course, each for one credit. Each section corresponds to one rotation. Lab rotations are described extensively below (see Section 4.2).

NRSC 7662 Neuroscience Seminar (1 credit, Seminar Committee Chair Dr. Jason Aoto). Seminar series designed to present recent important findings in Neuroscience research. First year students are required to attend all seminars and lunches with visiting faculty. Final grade is based upon attendance and participation at these seminars.

YEAR 1: SPRING SEMESTER

NRSC 7610 Fundamentals of Neurobiology (3 credits, Course Directors Drs. Molly Huntsman and Diego Restrepo). Systems neuroscience spanning sensing, action, and cognition, includes “quantitative” workshops. This course typically starts near the beginning of January, a number of weeks prior to the official start of the spring semester. Students should thus plan their winter breaks accordingly.

NRSC 7615 Developmental Neurobiology (3 credits, Course Directors Drs. Emily Bates and Santos Franco). Core neurodevelopment concepts, determination, differentiation, migration and pathfinding.

NRSC 7661 Grant Writing Course (1 credit, Course Directors Drs. Dan Tollin and Sue Kinnamon). A practicum in how to read and write a grant proposal with emphasis on the NRSA pre and post-doctoral fellowship applications.

NRSC 7650 Research in Neuroscience (Lab rotation, 1 credit, Course Director Dr. Nathan Schoppa). Students perform one lab rotation fully in the spring semester (their third of the academic year). This is done by signing up for Section 001 of the 7650 course, for one credit.

NRSC 7662 Neuroscience Seminar (1 credit, Seminar Committee Chair Dr. Jason Aoto). See Year 1: Fall.

SUMMER TERM between Year 1 and Year 2

The Preliminary Exam for NSP, which is discussed below in Section 4.3, takes place in late May to early June. Official transfer of students to their thesis labs occurs on July 1. Thesis labs are chosen based on student experiences during the three lab rotations and consultation with GTC mentors. The chair of the GTC and the Program Administrator should be notified on the choice of mentor on or before June 15. Under exceptional circumstances, a student may be allowed to perform an additional rotation for the express purpose of enhancing the mentor selection process.

NRSC 8990 Doctoral Thesis (1 credit, Course Director Dr. Shawna Cox). All NSP students, including students just completing Year 1, sign up for this course. Students must register for 1 credit of this course in the summer in order to maintain student status, health insurance benefits, etc. While NRSC 7650 is the laboratory research course that is generally taken by pre-comps students, summer research by all students is conducted under the NRSC 8990 course heading.

YEAR 2: FALL SEMESTER

PHCL 7605 Ethics in Research (1 credit, Course Director Dr. Paula Hoffman). Course is designed to introduce issues around ethics of research, publication, and reviewing of manuscripts and grants.

BIOS 6606 Statistics for Basic Scientists (3 credits, Course Director Dr. Kathleen Torkko). This course provides an overview of applied statistics, probability, hypothesis testing, bootstrap methods, permutation
tests, nonparametric methods, regression analyses and analysis of variance. This course can be taken in the fall of second or third years. It does not have to be taken prior to the Comprehensive Exam.

NRSC 7650 Section OV3 Research in Neuroscience (1-5 credits; Course Director Dr. Nathan Schoppa). Laboratory research (pre-comps) with NSP faculty. Students sign up for a variable number of credits, ranging from 1-5. This variability reflects the fact that students must sign up for at least 5 total credits each fall and spring semester in order to maintain full-time student status. If taking courses other than **NRSC 7650**, students will sign up for fewer than 5 credits of **NRSC 7650**, such that the credits from all courses sum to 5. When registering for this iteration of **NRSC 7650**, students should indicate Section OV3.

YEAR 2: SPRING SEMESTER

Requirement in Quantitative Neuroscience: NSP students are required to take a minimum 1-credit course that provides training in quantitative methods applied to neuroscience. Students can choose from one of four elective quantitative EQ courses that satisfy this requirement. They should consult with their thesis mentors to determine the course most suitable for their thesis projects. At the present time, all of these courses are offered in the spring semester, although this can vary by year. Courses to fulfill the requirement in Quantitative Neuroscience are most commonly taken in Year 2, but can be taken in Years 2 or 3. They do not have to be taken prior to a student’s Comprehensive Exam.

EQ NRSC 7612: Nervous System Modeling with NEURON (1 credit, Director Dr. Alon Poleg-Polsky). Nervous system modeling with NEURON platform, including independent projects.

EQ ELEC 5375: Engineering Neuroscience (1 credit, Director Tim Lei, Department of Electrical Engineering, UC Denver). Mathematical formulation of neurobiological concepts and tools spanning equivalent circuit of membranes to dimensionality reduction methods. This course takes places on the UC Denver downtown campus.

EQ BIOE 5053: Optics and Microscopy in Biomedical Research (3 credits, Director Dr. Emily Gibson). Principles of optics and fluorescence for applied biological microscopy.

EQ MOLB 7950: Practical Computational Biology for Biologists: R (1 credit, Directors, Drs. S. Jagannathan and N. Mukherjee). Genomic bioinformatics computational analysis with R. It is recommended that this course be taken along with MOLB7900- Python-based analysis course.

NRSC 7650 Section OV3 Research in Neuroscience (1-5 credits; Course Director Dr. Nathan Schoppa). Laboratory research (pre-comps) with NSP faculty. The description of this course in **YEAR 2: FALL SEMESTER** applies for the spring as well.

SUMMER TERM between Year 2 and Year 3

The Comprehensive Exam, one of the benchmarks towards graduation, is taken in the summer between Year 2 and 3 or, more commonly, during the academic year of Year 3. This exam is discussed extensively below (see Section 4.4).

NRSC 8990 Doctoral Thesis (1 credit, Course Director Dr. Shawna Cox). All NSP students, including students just completing Year 2, must sign up for this course. See description of this course in the **SUMMER TERM** between Year 1 and Year 2 for more detail.

Students may also use this summer to take an elective course, **NRSC 7657 Workshop in Advanced Programming for Neuroscientists** (see list of elective courses below).

YEAR 3 and Beyond

In these years, students are expected to focus primarily on completing their thesis research (see Section 4.5). NSP however encourages students to take one elective course per academic year, in Year 3 through the completion of the Ph.D, if the course fits within the objectives of their thesis research. These are in addition to the required thesis hours.

BIOS6606 Statistics for Basic Scientists (3 credits, Course Director Dr. Kathleen Torkko). See description in Fall of Year 2. Required unless already taken in Year 2.
Required course in Quantitative Neuroscience: See course options in Spring of Year 2. Required unless already taken in Year 2.

Students must also sign up for either NRSC 7650 Section OV3 Research in Neuroscience (1-5 credits; Course Director Dr. Nathan Schoppa) or NRSC 8990 Doctoral Thesis (1-10 credits, Course Director Dr. Shawna Cox) each fall and spring semester, as well as the summer. The choice depends on whether students are pre- or post-comps at the start of the semester. The number of credits is dictated by the requirement that students must sign up for 5 total credits per fall/spring semester to maintain full-time student status. An additional requirement that impacts the credit number for NRSC 8990 is that students must have a minimum of 30 credits of 8990 by the time they obtain a PhD. In general, post-comps students sign up for 5 credits in the 8990 course (or fewer if they are taking another course), but the number can be greater than 5 for a student's last semester if he/she needs more credits in 8990 to reach 30. For every summer following Year 3 and beyond, students must sign up for one credit of NRSC 8990.

Elective Courses. The list below includes electives that have been offered recently, but this list is constantly evolving.

- NRSC7657 Workshop in Advanced Programming for Neuroscientists (1 credit, Directors Drs. Dan Denman and John Thompson). Hands-on workshop to extend programming fundamentals learned in coursework in Year 1 using individual projects. This course is offered in the summer and can be taken in the summer between Years 2 and 3 or a subsequent summer.

- NRSC7614 Biological Basis of Psychiatric and Neurological Disorders (1 credit, Director Dr. Jason Tregallis). Neurobiology of neurological, developmental, psychiatric and substance abuse disorders.

- NRSC7675 Neuroethics and Neuropolitics (1 credit, Directors Drs. Sukumar Vijayaraghavan and Gidon Felsen). Readings and discussions on intersection of neuroscience and society.

- NRSC 7618/OPHT6610 Biology of the Eye (1 credit, Director Dr. Joseph Brzezinski). Basic and translational research on visual system, including a wet lab anatomy session.

- NRSC 7670 Advanced Topics in Neuroscience (all 1-credit. Course Director Dr. Nathan Schoppa) - The offerings under this course number vary from semester to semester. Students are informed by the NSP Curriculum Committee prior to each semester what courses are being offered. Example recent topics have included: a) Neuroethology (Instructors, Drs. Tom Finger, John Thompson, and Abby Person); b) Neurobiology of visceral pain (Instructor, Dr. Anna Malykhina); and c) Communicating Neuroscience (Instructors, Drs. Emily Bates and Tom Finger).

Curriculum for BSP and MSTP Track Students. Students who enter into NSP through the BSP and MSTP tracks have somewhat differing requirements.

BSP students will take the Biomedical Sciences Core Course in the fall semester of the first year. They will be asked to take, in addition, a total of at least 5 credits of didactic Neuroscience courses before their Comprehensive Exam. The 5 credits can be obtained by taking any combination of the following courses:

- **NRSC 7501:** Introduction to Neuroscience (1 credit).
- **NRSC 7600:** Cellular and Molecular Neurobiology (3 credits, fall).
- **NRSC 7610:** Fundamentals of Neurobiology (3 credits, spring semester).
- **NRSC 7615:** Developmental Neurobiology (3 credits, spring semester).
- **NRSC 7670:** Advanced Topics in Neuroscience (1 credit).

BSP students should choose which of the above courses to take based on what they plan for their thesis research and gaps in prior studies. Students should consult with their thesis advisors to determine which courses are most suitable for their thesis research.

MSTP students must take at least 2 credits from the Neuroscience courses listed above prior to their Comprehensive Exam. Requirements for MSTP students are somewhat reduced compared to BSP students, since MSTP students will have taken the 3-credit Medical School Nervous System Block course prior to joining NSP. The Nervous System Block course overlaps significantly with the NRSC 7610 Fundamentals of Neurobiology course. Because of this overlap, MSTP students should not take the NRSC 7610 course to
fulfill the 2-credit requirement.

BSP students planning to enter into NSP should take the NSP Preliminary Exam with other NSP students, which is conducted in May/June at the end of Year 1 (see Section 4.3). Transfer into NSP is contingent on passing this exam. MSTP students must pass the MSTP-specific Preliminary Exam prior to entering into NSP.

BSP and MSTP students must also fulfill all upper-level course requirements of NSP students. Required courses include BIOS 6606 Statistics for Basic Scientists, PHCL 7605 Ethics in Research, and one of the courses that fulfill the NSP requirement in Quantitative Neuroscience (see Year 2: Spring Semester). In addition, students should register for the appropriate number of credits of Research in Neuroscience (NRSC 8990), depending on whether a student is pre- or post-comps. See description for YEAR 3 and Beyond for NSP students above. Regardless of whether a student is pre- or post-comps, students should sign up for 1 credit of NRSC 8990 in the summers. It should be noted that neither BIOS 6606 nor any course taken to fulfill the requirement in Quantitative Neuroscience can be applied to the 5 or 2-credit pre-comps course requirement.

4.2 Laboratory Rotations in the First Year. Rotations serve several important purposes. First, they enable the student to explore and compare several areas of neuroscience research and aid in the choice of a mentor and project for thesis work. Second, rotation seminars provide intense training in the craft and art of public presentation, an essential aspect of future career success. Third, they allow program faculty to evaluate the motivation and intellectual preparedness of students to undertake independent research.

Number and timing of rotations. Students must perform 3 rotations, each ~12 weeks in duration, before the start of their second year. Typical dates of the rotations are: Rotation 1, late August to mid-November; Rotation 2, mid-November to late February; Rotation 3, late February to mid-May.

Choice of Mentor/Laboratory. First and foremost, students should choose laboratories and projects that are reasonable possibilities for a student’s thesis work. Students should avoid rotations whose main goal is the acquisition of new techniques; there will be plenty of opportunity to learn methods informally among the Program laboratories as the need arises. They should talk to their GTC mentors prior to making rotation decisions. Students should be aware that mentors and their groups put considerable effort into supervision of rotating students. Thus, some faculty may be reluctant to take on a rotation student if they have extensive travel plans, teaching, grant writing, or if their funding is in jeopardy. In addition, the Program allows only a single neuroscience rotation student in a lab at any time. For these reasons, it is imperative that students arrange for rotations as far in advance as possible.

Limitations on the number of rotation students/lab. In order to ensure adequate supervision, a faculty member is allowed to take only one NSP student per rotation cycle.

Rotation initiation form. Students must fill out a rotation initiation form and have it signed by the faculty rotation advisor before the beginning of the rotation period. Forms are provided and received by the Program Administrator.

Rotation Seminar. At the end of the rotation the student will present a seminar. The purpose of the seminar is to provide intense training in the craft and art of public presentation, an essential aspect of future career success. Rotation seminars are typically 12 min in length, although the expected maximum duration can vary from year to year depending on the size of the first-year class. Each year, the GTC Chair will notify first-year students of the expected duration. The student will rehearse the seminar with their labs and with their GTC mentors prior to the public presentation. The dates for the post-rotational talks will be decided by the GTC and are posted on the NSP web site.

Students should consider the following elements when designing their talk: Introduction—a short statement of the question or problem addressed by the rotation. Background—describe the significance of the question in broad terms for a diverse audience. Describe previous work and its relationship to the project. Specific aims—what were the particular experimental goals proposed to address the hypothesis? Methods and Design—explain any unusual strategies or techniques employed. Results and Conclusions—the results should be presented in a straightforward and logical manner. Conclusions should be summarized briefly. Future directions—at the end of the talk, the student should provide a brief summary of results and how, in the students’ opinion they should be followed upon.
Several other specific suggestions for effective talks include: 1. Students should remember that they are addressing a general neuroscience audience and avoid the use of specialty-specific terminologies and jargon. 2. Avoid reading or memorizing your presentation, if at all possible. Wooden, canned deliveries are dull and very hard for audiences to follow. 3. Prepare and use simple, effective visual aids. Remember that effective communication of data and ideas is your goal! Keep text very brief and do not read directly from the screen (audiences are much faster at reading silently!). 4. Both faculty and students are encouraged to ask questions after rotation seminars. A few of these questions may be intended to probe your understanding of your research rather than illuminate an area of confusion. Consider audience questions carefully. Make sure that you understand the question before answering. Repeat the question or ask for a rephrasing if you need to. Take a moment to formulate a coherent answer. If, after contemplation you don’t know the answer, don’t be afraid to say so. We all get stumped from time to time!

Expectations for effort. While first year students have a substantial course load, the program expects that sufficient time will be devoted to the rotation project. For professionals in training, it is not appropriate to require a minimum number of hours for rotation work. Strong self-motivation is an essential characteristic for an independent scientist, and we expect our students to demonstrate this quality throughout their training. In this regard, students should expect to be in the lab beyond the normal working hours from time to time, i.e., in the evenings and on weekends. This commitment of time is especially important when long, complex experiments are being done. A major part of the mentor’s rotational assessment (as well as his/her willingness to accept a student) will be based on the degree and quality of lab effort.

The second and third lab rotation periods include the winter and spring breaks. Students should discuss specific expectations with their rotation advisors for effort during these breaks. The winter break in particular is quite long, running from mid-December to late January (according to the Graduate School calendar), and students should expect to be working in the lab during most of this period. Students should always discuss time off with their lab mentors in advance, both in their lab rotations and once they enter a thesis lab.

Rotation Grading and Evaluation in GAIA system. Final grades for rotations will be based on the evaluation of the lab rotation advisor. The rotation advisor also completes a report within the University’s GAIA system evaluating the talks. These reports are sent to the student, the Program Directors for NSP, and the chair of the GTC. It is also very important that students meet with their rotation advisors after their rotation talks to discuss strengths and weaknesses in performance during the rotation and suggestions for improvement.

The rotation talks will also be independently evaluated by the GTC, with written feedback provided. These evaluations from the GTC do not factor into the grading of the rotation but should be considered seriously by the students as they move forward. Students will be expected to show improvement to identified weaknesses in subsequent rotations and seminars. Failing a rotation (B minus or below) will be considered a serious academic deficiency that may require further action by the GTC (see Academic Standards).

4.3. Preliminary Exam. The Preliminary Exam, taken in the summer after Year 1, provides faculty an important tool to evaluate the students’ broad knowledge base obtained from coursework in Year 1, as well as their scientific writing capabilities. The exam committee is comprised of three faculty members, representing the three main first-year neuroscience courses (NRSC7600, 7610, and 7615).

Format of Preliminary Exam. The exam includes both written and oral components. The written exam is typically an exercise in which students write a Journal of Neuroscience Journal Club-style review of a recent scientific article chosen by NSP faculty. Students are provided the article in late May and are given 10-12 days to write the review. The oral exam, conducted a few days after the written review is turned in, lasts about 45 minutes. Questioning during the oral exam typically starts around the paper on which students have written their review, but examiners typically diverge into broader content from the first-year courses. The examiners may also alter the scope of questioning based on perceived strengths and weaknesses of the student.

Grading of Preliminary Exam. The exam is graded Pass/Fail. If deficiencies are noted during the exam, the student will develop a plan to address these weaknesses. In some cases, reexamination may be required. In all cases, problems noted during the exam should be addressed by the end of the fall semester of the second year.

4.4 Comprehensive Exam. At the beginning of the second year of study NSP students will begin preparing
for the Comprehensive Exam. It is highly recommended that students familiarize themselves on the Comprehensive Exam policies and deadlines, and discuss forms and timelines with the Program Administrator well ahead of the planned examination so all required paperwork can be completed on time. A student must be registered at the time he/she takes the Comprehensive Exam.

Timing of the Comprehensive Exam. Students are required to take the Comprehensive Examination for admission to candidacy for the Neuroscience Ph.D. before the end of their third year. Some recent students have taken the exam in the summer between Years 2 and 3, but it is most often taken during the fall or spring semesters of Year 3.

Paperwork for the exam. All students must submit the following forms to the NSP Program Administrator no later than one month prior to the examination date:

1. Exam Request Form
2. Application for Candidacy Form. Please list all courses chronologically as they appear on your transcript. The NRSC 7650 courses must be listed in section one of this form.

Official forms can be found under the Forms tab in the Resources page of the Graduate School website (https://graduateschool.ucdenver.edu/forms-resources/resources). When submitting the forms, students should have all required signatures.

Formation of Comprehensive Exam Committee. The Comprehensive Exam Committee shall consist of a minimum of five Graduate Faculty members. At least one of the members must be outside the Program's core training faculty. The majority of the members, including the chair, must be from the core training faculty of the Neuroscience Program. The student's dissertation advisor may be on the examination committee but cannot chair the committee.

Selection of committee members should be done at least ~2 months prior to when students would like to take the Comprehensive Exam. The student should discuss with his/her thesis advisor an appropriate group of faculty, then contact the faculty members to determine their interest. Often faculty like to meet with the student to discuss the project prior to committing to being on the committee. Once a student has a group of interested faculty, he/she should submit the faculty list to the chair of the GTC for approval. The GTC must approve the Thesis Committee composition prior to scheduling the examination.

Format of Comprehensive Exam. The examination will have as its focus a thesis research proposal written by the student using the format of an NIH NRSA grant application. Although preliminary data collected by the student is helpful, it is not essential for the proposal. The written proposal – the Specific Aims page plus the Research Strategy sections -- should not exceed seven pages and be provided to the Comprehensive Examination Committee at least two weeks prior to the examination.

The examination will consist of a 30-45 minute seminar by the student to the program, general questions from the audience, then a closed exam with the Comprehensive Examination Committee. The student must adequately demonstrate the scientific knowledge and ability to defend this proposal. The Comprehensive Exam "will test your mastery of a broad field of knowledge, not merely the formal course work completed." Sometimes a student consults with his or her committee members prior to the exam as to the subject areas they expect the student to have mastered.

Grading the Comprehensive Exam and Evaluation within GAIA. The exam is graded Pass/Pass-with-conditions/Fail. With the Pass-with-conditions grade, the Exam Committee outlines remedial actions to be taken by the student and a time-line. The Exam Committee also completes an evaluation of the student’s performance within the University’s GAIA system. Within this report, the Committee scores the student in a variety of different areas, including knowledge of concepts and the quality of the oral presentation. The Committee typically also provides constructive scientific feedback on the proposed project. These reports are made available to the student, his/her thesis advisor, the Program Directors for NSP, and the chair of the GTC.

4.5 Ph.D. Thesis. After passing the Comprehensive Exam, the student enters Ph.D. candidacy. During the following years, students perform research towards a thesis defense. Most of a student’s guidance during this period is provided by his/her thesis advisor.

Thesis Advisory Committee. In addition to a student’s thesis advisor, the Thesis Committee plays a vital role in guiding a student’s research. The make-up of the Thesis Committee is typically the same as the
Comprehensive Exam Committee, though occasionally one or two members are replaced. As with the Comprehensive Exam Committee, the Thesis Committee must include one faculty member who is outside the core training faculty, and the committee may also include the thesis advisor.

Thesis Committee meetings. A student meets once every 6 months with his/her Thesis Committee. Prior to each Thesis Committee meeting, students typically provide their committee with a report outlining progress since the prior meeting. The exact requirements of this report and when it should be submitted is determined by the chair of the Thesis Committee. At the meeting itself, students provide their committee a semi-formal presentation of their research progress. These presentations typically last 1-1.5 hours. Students should not expect committee members to remember the rationale for the project, and so the presentation should include background relevant to the project. Thesis committee meetings should begin with a short ~10-minute period in which the student and advisor take turns describing progress with the other party out of the room. This provides a mechanism for both parties to discuss potentially sensitive matters with the committee.

After the meeting, the chair of the Thesis Committee submits a written summary of the outcome of the meeting through the University’s GAIA system. These reports are then made available to the student, his/her thesis advisor, the Program Directors for NSP, and the chair of the GTC.

Thesis update talks. Once every academic year, each post-comps student in the Neuroscience Program gives a formal talk to the Program at large outlining progress of his/her thesis research. These talks should be relatively brief, ~20 minutes in duration, with 5 minutes of questioning afterwards. Typically, two such talks are scheduled back-to-back during the normal Tuesday noon-1 PM NSP seminar time. Each student is introduced by his/her GTC mentor.

Thesis Defense. Upon completion of a body of original research that constitutes a significant contribution of new knowledge to the field of Neuroscience, students will write a Ph.D. thesis containing this information, and defend this document at an oral examination scheduled by the Graduate School. A student will not be allowed to defend the thesis unless s/he has submitted for publication at least one first author research manuscript. The student will submit a detailed description of his/her thesis to the thesis committee six weeks prior to the anticipated date of defense. The committee will then have two weeks to let the student know if he/she can go ahead with the oral defense. Students must be registered for NRSC 8990 to defend.

All students must submit the following forms to the NSP Program Administrator no later than one month prior to the examination date:

1. Exam Request Form
2. Biosketch Form (Note: this is not the NIH Biosketch)

Official forms can be found under the Forms tab in the Resources page of the Graduate School website (https://graduateschool.ucdenver.edu/forms-resources/resources). When submitting the forms, students should have all required signatures. Deadlines for obtaining the Ph.D. in a specific semester are provided on the Graduation Deadlines Anschutz (2020-2021) information sheet that can be found under the Deadlines tab on the same Resources page. This information sheet also provides a link to useful information about how to prepare the correct forms and upload the thesis. A guide for correct formatting of the thesis is provided in the Format Guide for Theses and Dissertations document, under the Policies tab.

5. Academic Standards for NSP Students. Applicants to the Graduate Program in Neuroscience are highly screened and rigorously evaluated for their potential to become creative and independent scientists. This means that each student in the Program was admitted with the Faculty’s full confidence in their ability to complete training requirements for the Ph.D. Thus, the Program does not operate to weed out students during training. Rather, we regard any dismissal or withdrawal as a serious detriment to the success of our program, and a situation that we will do our best to avoid. However, it infrequently happens that a student will fail to satisfy the Program standards and expectation for academic performance. Given the importance and intensely competitive nature of biomedical research, as well as our commitment to the future of our students, such instances invoke serious concern from the Program. Students should be assured that in an initial instance of failure the Program will do its best to help the student to remediate failure. However, multiple deficiencies indicate a poor prognosis for future success and demand close examination of a student’s tenure in the Program.

The GTC is charged with maintaining the academic standards and with evaluating the ability of students
to continue with the training in cases of failure. The Academic Standards of the Program are described below, as well as the procedures used by the GTC to address performance deficiencies.

General Graduate School Standards. The minimal standards of the Graduate School must be satisfied. These are: 1. Maintenance of a 3.0 GPA at all times. Less than a 3.0 cumulative GPA puts the student on a two-semester probation. During this time, the student must raise the overall GPA to 3.0 while achieving a 3.0 GPA for each probationary term. Failure to satisfy this requirement may result in dismissal from the Program. 2. Passing grade on the Comprehensive Exam. A grade of “Fail” on either the Comprehensive or Dissertation Defense exams results in dismissal.

Additional Standards for NSP Students

1. Students must achieve grades of B or better in each required course that is offered by the Neuroscience Program. *Grades of B minus or lower are failing for Neuroscience courses.*

2. Students must achieve grades of B minus or better in all other courses (e.g., Biomedical Sciences Core Course).

3. A student must not receive more than one failing grade for all required courses during the entire training program.

4. Students must pass the preliminary and comprehensive exams.

5. Remedial and disciplinary actions related to coursework. Failure to satisfy these conditions will result in a thorough review of the student’s entire performance in the Program, with a recommendation for dismissal a possible outcome. A single failing grade (of B minus or below for a required Neuroscience course) may be remediated at the discretion of the GTC, in accordance with conditions developed in consultation with the course director. Usually this will consist of independent study by the student followed by a make-up exam. A grade lower than a C or the unavailability of satisfactory means of remediation will absolutely require the student to retake the course. In the case of remediation, no change of grade will be given. However, the student must achieve a passing grade (B or better for a required Neuroscience course) for any make-up exam. In addition, the course cannot be retaken if the student fails the make-up exam. Failure to remediate a course successfully, or to pass a course on the second attempt, will likely be cause for a recommendation of dismissal by the GTC to the Graduate School.

6. Remedial and disciplinary actions related to thesis research. Unsatisfactory progress in dissertation work is cause for serious concern for NSP. The Thesis Committee for each student, which meets with the student and mentor every six months, will assess progress. If the Thesis Committee deems progress inadequate, the student and thesis mentor will meet with the Program Directors, the Thesis Committee chair, and the GTC to ascertain whether the student is capable of continuing in the program. A recommendation of dismissal is a possible outcome of these deliberations. If the student is allowed to proceed further, an additional unsatisfactory assessment of thesis work will be cause for a mandatory recommendation for dismissal to the Graduate School without further review, subject only to appeal by the student (see below).

Further Conditions. All students are expected to complete their academic requirements according to the schedule as outlined in the Handbook. Unexcused inability to complete any requirement on time will be seriously considered by the GTC as a reason to recommend dismissal to the Graduate School.

In rare cases, the GTC may allow a student an additional opportunity to reverse deficiencies when otherwise they would be recommended for dismissal. In exchange for such consideration, the GTC may impose any additional academic requirements that they deem appropriate. Naturally, failure to satisfy these additional requirements will very likely result in a recommendation of dismissal to the Graduate School.

Continuing financial support by the Program is contingent on satisfactory academic progress as defined above. The Program and its faculty will normally support students on Graduate School probation or undertaking to correct academic deficiencies. However, support will automatically terminate 30 days after a recommendation of dismissal to the Graduate School.

Due Process. A student will have 7 days to appeal any decision of the GTC that affects them. Such appeals must be in writing and delivered to the Program Office. The GTC will respond to appeals within 7 days of receipt. Students will be given the opportunity to meet in person with the GTC to discuss their appeal if they so desire.

Further Appeals. Unchallenged decisions or decisions after appeal to the GTC regarding the correction of
academic deficiencies are final. Decisions regarding recommendation for dismissal to the Graduate School may be appealed to the Dean of Graduate Studies.

Illness or Personal Problems. Students are encouraged to bring any problems that might affect their academic performance to the attention of the Program Directors or a GTC member. This must be done as soon as possible, preferably before such problems result in academic difficulties.

6. Other Neuroscience Program Events and Related Activities

Neuroscience Seminar. NSP has a robust seminar series, with talks typically held at noon-1 PM on Tuesdays during the academic year. Speakers include Neuroscience students, Neuroscience faculty, and numerous invited guest speakers from other institutions. Students will be invited to luncheons or discussion sessions with select speakers and are encouraged to take advantage of these opportunities to interact with top scientists from around the world. *Participation in speaker lunches is required for first-year students.*

Neuroscience Annual Retreat. NSP holds an annual weekend retreat during the academic year to foster faculty-student interactions with lectures, poster sessions, and opportunities for informal discussions during meals and free time. The event provides an opportunity for faculty members to present brief overviews of the research being conducted in their labs, and for students to present posters showing their own research from lab rotations or thesis work. One visiting speaker from another institution is usually invited to give a lecture. NSP covers the cost of the retreat for all Neuroscience students.

Student Journal Club. There is a regular student run journal club. *All first years are required to attend and all senior students will attend at least ½ of the journal clubs.* When papers being discussed are related to the Tuesday seminars, the journal club will be held on the day of the seminar. The invited speaker will attend these journal clubs. This is an opportunity for students to not only discuss the work presented in the papers but also question the speaker on the genesis of the work presented.

Rocky Mountain Regional Neuroscience Group (RMRNG) and Front Range Neuroscience Group (FRNG). The RMRNG and FRNG are chapters of the Society for Neuroscience dedicated to promoting communication and interaction among area neuroscientists. The RMRNG is based in Denver and the FRNG is based in Fort Collins (CSU). You automatically are a member of the other group if you are a member of one. You do not have to be a member of the Society for Neuroscience in order to join the RMRNG or FRNG.

Program Outreach Efforts. The Neuroscience Program has a robust outreach program that includes visits to schools, bi-annual exhibition at the Denver Museum of Nature and Science etc.

7. Neuroscience Program Promotion and Recruitment Activities

Publications and Acknowledgments. All student publications, including abstracts, journal articles, and theses, should acknowledge the Neuroscience Program along with other University acknowledgments. Students supported by the Neuroscience training grant should acknowledge the grant number in all publications. This is our best form of advertisement for our Program. Since we want our Neuroscience Library to include copies of all theses by our students, please be sure and provide one bound copy of the final version of your thesis to the Neuroscience Program at the same time you turn it in to the Graduate School. The Neuroscience Program will cover the costs of the one bound copy required for the program.

After you leave the University, we want to keep up with your progress as a scientist. Please keep the Program informed as you continue with your postdoctoral work. From time to time, we may request that you send us your complete CV. This will help us document the success of our students for future grant proposals and renewals.

Participation in Recruitment Functions. During February/March each year, prospective student applicants visit our program for interviews. It is in the Program’s best interest to attract and retain the best of these prospective students. To do this we need the help of current students and Neuroscience faculty who can convince these individuals that our Program is the place to be! When asked, please be willing to spend some time with prospective students during dinners or other functions. NSP can flourish with your help.

8. Information for New Students
Program Contact Information

Neuroscience Program
MS 8513, 12800 E. 19th Ave
Aurora, CO 80045
(303)724-3120
www.ucdenver.edu/neuroscience

Housing. The Campus Student Services Office (Education II North, x. 42866, email: CampusStudentServices@CUAnschutz.edu) can provide apartment directories, rents, a computer search for available units, and roommate matching. They also have other resources available on campus life and student organizations. The link to their web site is https://www.ucdenver.edu/anschutz/studentresources/student-assistance/housing/Pages/home.aspx and on our Neuroscience web site under the Resources tab.

Colorado Residency. If you are a U.S. citizen and not already a Colorado resident, you will need to change your residence status prior to fall semester of your second year. The Neuroscience Program will only pay out-of-state tuition during the first year. Please stop by the Admissions and Records Office during the first few weeks of school in your first year to ask for instructions on changing your residency or you can check https://www.ucdenver.edu/anschutz/studentresources/Registrar/StudentServices/Residency/Pages/Residency-prospect.aspx webpage for instructions. Normally you must be able to establish physical presence in the state for a full year before being granted in-state status. See the information provided by Admissions and Records for details.

Payroll Paperwork. Before you can receive your stipend, you must fill out the appropriate paperwork with the Neuroscience Program and the Graduate School payroll liaison. Note: An original social security card is required before you can be entered in the University payroll system. If you do not have an original card, you must apply for one immediately after you arrive. Be sure to get a letter from the clerk in the social security office stating that you have applied for a new card. A copy of this letter must be given to the Payroll and Benefits office before you can be paid. When your new card arrives, bring your card to the payroll liaison so a photocopy of your card can be kept in your file.

Health Insurance. Every student who joins NSP can receive health insurance through the University Student Health Insurance Program, which is free of charge to students. In Year 1, health insurance fees are paid by the Graduate School, while, in subsequent years, the student’s thesis mentor pays for it. The Student Health Insurance coverage is effective until August 31 each year. For more information on the University Student plan and what it covers, contact Student Insurance, studentinsurance@cuanschutz.edu.

While students do not pay for health insurance obtained through the University Student Health Insurance Program, they are required to complete a number of administrative steps in order to receive it. First, students must be registered for at least 5 credits of courses each semester (and at least 1 credit in the summer) in order to be considered a full-time student and hence eligible for University Student Health Insurance coverage. Second, each student must actively sign up for the University Student Health Insurance Program once every year through the Student Insurance office. Before fall semester each year, you will receive a form to fill out, where you can select the University Student Health Insurance Program or waive it.

Students may waive the University Student Health Insurance Program but only if they have comparable coverage through another program. All students are required to be covered by health insurance. Students who waive the University plan must specifically do so when they receive the form from the Student Insurance office asking about coverage prior to the start of each fall semester (see above).

ID Cards. You will receive a University ID Card at Graduate School or Neuroscience Program orientation. You will need this card for library privileges and building access after-hours and weekends. For floor and building access please consult with your mentor and request access from the Director of Finance and Administration of the appropriate Department/floor.

Course Registration. Registration is completed online in your CU System student portal (accessed at https://passport.ucdenver.edu/login.php). You must register for at least 5 credits each semester to be considered a full-time student. You must register for at least 1 credit in the summer in your first and above years. The current year’s course book showing course numbers and details can be found at: https://www.ucdenver.edu/anschutz/studentresources/Registrar/CourseListings/Documents/2020-
Note: You are responsible for knowing registration and drop/add deadlines each semester, and making sure you have registered on time. The Academic Calendars can be found on the Graduate Schools website https://graduateschool.ucdenver.edu/forms-resources/resources Late registration results in a $60 fine. The Neuroscience Program will not pay any late charges assessed because of missed deadlines. You will be responsible for paying any of these charges yourself.

Tuition Bills. A few weeks following registration, you will receive a tuition bill via email. Please forward these bills to the Neuroscience office for payment as soon as you receive them. You will be personally responsible for any late charges if you do not bring your bill in before the payment deadline.

Parking. Most students either walk, bike, or take the bus. To find out where to park at the Anschutz Medical Campus, go to the Parking Office in Building 500 on the ground floor across from the Information Desk. Discount RTD bus passes are also sold there. There are bicycle racks located conveniently to most of the buildings; however, you need to supply your own lock. You may also look at the Parking and Transportation website located at http://www.ucdenver.edu/facilities/parking/.

******** END OF HANDBOOK ********

This handbook does not constitute a contract with the University of Colorado, School of Medicine, either expressed or implied, and the University reserves the right at any time to change, delete, or add to any of the provisions at its sole discretion. Furthermore, the provisions of this document are designed by the University to serve as guidelines rather than absolute rules, and exceptions may be made by the School of Medicine on the basis of particular circumstances.