Biostats 101

Seminar 4: t-Tests and χ^2 Tests

Introduction

Outline
- Research Process
 - Point Estimates
 - Confidence Intervals
 - Hypothesis Testing
- t-Tests
 - Overview
 - Procedure
 - Example
- χ^2 Tests
 - Overview
 - Procedure
 - Example
- Conclusions

Statistics in the Research Process

Outline
- Research Process
 - Point Estimates
 - Confidence Intervals
 - Hypothesis Testing
- t-Tests
 - Overview
 - Procedure
 - Example
- χ^2 Tests
 - Overview
 - Procedure
 - Example
- Conclusions
t-Test

Types of t-Tests

- **1-sample t-test**
 \[H_0: \mu = \mu_0 \]
 \[H_1: \mu \neq \mu_0 \]
 \[t = \frac{\bar{X} - \mu_0}{s} \frac{1}{\sqrt{n}} \]

- **2-sample (independent) t-test**
 \[H_0: \mu_1 = \mu_2 \]
 \[H_1: \mu_1 \neq \mu_2 \]
 \[t = \frac{\bar{X}_1 - \bar{X}_2}{s_{\bar{X}_1, \bar{X}_2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]

- **Paired t-test**
 \[H_0: \Delta \mu = 0 \]
 \[H_1: \Delta \mu \neq 0 \]
 \[t = \frac{\bar{X}_{\Delta}}{s_{\bar{X}_{\Delta}}} \frac{1}{\sqrt{n}} \]

- **2-sample paired t-test**
 \[H_0: \Delta \mu = 0 \]
 \[H_1: \Delta \mu \neq 0 \]
 \[t = \frac{\bar{X}_{\Delta}}{s_{\bar{X}_{\Delta}}} \frac{1}{\sqrt{n}} \]

Example (Rosner, 2006)
- Population
 - 35-39 year old premenopausal women
- Intervention/Predictor
 - Use of oral contraceptives
 - \(n_{OC} = 8 \)
 - \(n_{non-OC} = 21 \)
- Outcome
 - Systolic blood pressure

t-Test Procedure

- **Null and Alternative Hypotheses**
 \[H_0: \mu_1 = \mu_2 \]
 \[H_1: \mu_1 \neq \mu_2 \]

- **Significance Level**
 \(\alpha = 0.05 \)

- **Test Statistic**
 \(t = \) varies

- **Critical value or p-value**
 - p-value: probability of observing t (or something more extreme) given \(H_0 \)
 - Decide whether the observed t is inconsistent with \(H_0 \)
 - Reject/fail to reject \(H_0 \)
t-Test

Types of t-Tests

- 1-sample t-test
 \[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \]
- 2-sample (independent) t-test
 \[t = \frac{\overline{\Delta} \pm t_{\alpha, df} \cdot s_{\Delta}}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
- Paired t-test
 \[t = \frac{\overline{\Delta} \pm t_{\alpha, df} \cdot s_{\Delta} / \sqrt{n}}{s_{\Delta} / \sqrt{n}} \]
- 2-sample paired t-test
 \[t = \frac{\overline{\Delta} \pm t_{\alpha, df} \cdot s_{\Delta} / \sqrt{n}}{s_{\Delta} / \sqrt{n}} \]

Hypotheses

- \(H_0: \mu_1 = \mu_2 \) or \(H_0: \mu_1 = \mu_2 = 0 \)
- \(H_1: \mu_1 \neq \mu_2 \) or \(H_1: \mu_1 \neq \mu_2 = 0 \)

Critical value

\[t_{\alpha, df} \]

Decisions

- Reject \(H_0 \) if \(|t| > t_{\alpha, df} \)
- Fail to reject \(H_0 \) if \(|t| < t_{\alpha, df} \)

Test Statistic

\[t = \frac{\overline{\Delta} \pm t_{\alpha, df} \cdot s_{\Delta}}{s_{\Delta} / \sqrt{n}} \]

Significance

\[p = P(\text{obtained} \ t \mid \text{null hypothesis is true}) \]

Example

Null and Alternative Hypotheses

\[H_0: \mu_1 \leq \mu_2 \]
\[H_1: \mu_1 > \mu_2 \]

Significance Level

\(\alpha = 0.05 \)

Test Statistic

\[t = 0.74 \]

Critical value or p-value

\(p = 0.466 \)
\(t = 0.74 < t_{0.05, 27} = 1.71 \)

Decision

- Reject \(H_0 \) if \(p < \alpha \)
- Fail to reject \(H_0 \) if \(p \geq \alpha \)

Statistical Intervals

\[\overline{\Delta} \pm t_{\alpha, df} \cdot s_{\Delta} / \sqrt{n} \]

Point Estimate

\[\mu \]

Excel

\[=T.DIST.2T(0.74,27) = 0.466 = p \]
\[=T.DIST.2T(0.74,27) \]

Conclusion

- The observed \(t \) value is consistent with \(H_0 \)

Test Results

- \(X_{OC} = 132.86 \) mm Hg
- \(S_{OC} = 15.34 \) mm Hg
- \(X_{HOC-OC} = 127.44 \) mm Hg
- \(S_{HOC-OC} = 18.23 \) mm Hg

Hypothesis

\[H_0: \mu_{HOC-OC} = 0 \]
\[H_1: \mu_{HOC-OC} > 0 \]

Research

- \(\mu \)
- \(\sigma \)
- \(n \)

Summary

- \(\bar{x} \pm \hat{\sigma} \cdot \sqrt{n} \)
- \(X \pm S \)
- \(\mu \pm \sigma \cdot \sqrt{n} \)
- \(\overline{\Delta} \pm \hat{s}_{\Delta} / \sqrt{n} \)

Graphics

- Box plot
- Normal distribution
- Confidence interval

2/25/2014
χ² Test

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>a+c</td>
<td>b+d</td>
</tr>
<tr>
<td></td>
<td>(x+y)(x+z)</td>
<td>(x+y)(x+z)</td>
</tr>
</tbody>
</table>

H0 Testing Procedure

- Null and Alternative Hypotheses
 - H0: p₁ = p₂
 - H₁: p₁ ≠ p₂
- Significance Level α = 0.05
- Test Statistic
 - χ² = \sum \frac{(O-E)^2}{E}
- Critical value or p-value
 - p-value: probability of observing χ² (or something more extreme) given H₀
- Decide whether the observed χ² is inconsistent with H₀
 - Reject/fail to reject H₀

Example (Fowler, 2006)

- Population: *Staphylococcus aureus* infection
- Intervention: Daptomycin (treatment), or Standard therapy (control)
- Outcome: Treatment success 42 days after treatment

Critical/ p-value

Decision

χ² Test Procedure

- Null and Alternative Hypotheses
 - H₀: p₁ = p₂
 - H₁: p₁ ≠ p₂
- Significance Level α = 0.05
- Test Statistic
 - χ² = \sum \frac{(O-E)^2}{E}
- Critical value or p-value
 - p-value: probability of observing χ² (or something more extreme) given H₀
- Decide whether the observed χ² is inconsistent with H₀
 - Reject/fail to reject H₀
χ² Test

χ² Test Procedure
- Null and Alternative Hypotheses
 H₀: p₁=p₂, p₃
 H₁: p₁≠p₂, p₃
- Significance Level
 α=0.05
- Test Statistic
 \(\chi^2 = \sum (o_i - e_i)^2 / e_i \)
- Critical value or p-value
 - Critical value or p-value
 - Decide whether the observed χ² is inconsistent with H₀

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>Success</td>
<td>No Success</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>Expected</td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>224</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² Test

χ² Test Procedure
- Null and Alternative Hypotheses
 H₀: p₁=p₂, p₃
 H₁: p₁≠p₂, p₃
- Significance Level
 α=0.05
- Test Statistic
 \(\chi^2 = \sum (o_i - e_i)^2 / e_i \)
- Critical value or p-value
 - Critical value or p-value
 - Decide whether the observed χ² is inconsistent with H₀

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>Success</td>
<td>No Success</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>Expected</td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>224</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² Test

χ² Test Procedure
- Null and Alternative Hypotheses
 H₀: p₁=p₂, p₃
 H₁: p₁≠p₂, p₃
- Significance Level
 α=0.05
- Test Statistic
 \(\chi^2 = \sum (o_i - e_i)^2 / e_i \)
- Critical value or p-value
 - Critical value or p-value
 - Decide whether the observed χ² is inconsistent with H₀

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>Success</td>
<td>No Success</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>Expected</td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>224</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² Test

χ² Test Procedure
- Null and Alternative Hypotheses
 H₀: p₁=p₂, p₃
 H₁: p₁≠p₂, p₃
- Significance Level
 α=0.05
- Test Statistic
 \(\chi^2 = \sum (o_i - e_i)^2 / e_i \)
- Critical value or p-value
 - Critical value or p-value
 - Decide whether the observed χ² is inconsistent with H₀

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>Success</td>
<td>No Success</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>Expected</td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>224</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² Test

χ² Test Procedure
- Null and Alternative Hypotheses
 H₀: p₁=p₂, p₃
 H₁: p₁≠p₂, p₃
- Significance Level
 α=0.05
- Test Statistic
 \(\chi^2 = \sum (o_i - e_i)^2 / e_i \)
- Critical value or p-value
 - Critical value or p-value
 - Decide whether the observed χ² is inconsistent with H₀

Observed and Expected Tables

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>Success</td>
<td>No Success</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>122</td>
</tr>
<tr>
<td>Expected</td>
<td>Disease</td>
<td>No Disease</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>224</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
χ² Test

χ² Test Procedure
- **Null and Alternative Hypotheses**
 \[H_0: p_1 = p_2 \]
 \[H_1: p_1 \neq p_2 \]
- **Significance Level**
 \[\alpha = 0.05 \]
- **Test Statistic**
 \[\chi^2 = 0.296 \]
- **Critical value or p-value**
 \[p = 0.586 \]
- **Decision**
 \[p \text{-value} > \alpha \rightarrow 0.586 > 0.05 \]
 Cannot reject \(H_0 \)

Conclusions
- t-test used when
 1. One or two group/category predictor
- Continuous, normally distributed outcome
- Tests means
- χ² test used when
- Predictor is categorical
- Outcome is categorical
- Tests proportions
- Same procedure for both tests
- Hypotheses change
- Test statistic changes (formula and distribution)

Biostats 101

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Testing and Chi-square Tests</td>
<td>Bruce Oakley, MD</td>
<td>1/28/14</td>
</tr>
<tr>
<td>2</td>
<td>T-tests and Chi-square Tests</td>
<td>Sam McNair, PhD</td>
<td>2/25/14</td>
</tr>
<tr>
<td>3</td>
<td>Power and Sample Size</td>
<td>Sam McNair, PhD</td>
<td>3/25/14</td>
</tr>
<tr>
<td>4</td>
<td>Basics of Linear Regression</td>
<td>Bruce Oakley, MD</td>
<td>4/29/14</td>
</tr>
<tr>
<td>5</td>
<td>Basics of logistic Regression</td>
<td>Sam McNair, PhD</td>
<td>5/27/14</td>
</tr>
<tr>
<td>6</td>
<td>Basics of Meta-Analysis</td>
<td>Sam McNair, PhD</td>
<td>6/24/14</td>
</tr>
</tbody>
</table>

For statistical help, go to: http://cctsi.ucdenver.edu/Research-Resources/Pages/Biostats101-Research-Design.aspx

Click on “Request a B.E.R.D. Consultation”
(B.E.R.D. = Biostatistics, Epidemiology, and Research Design)