The following courses, listed alphabetically by department, have been approved for graduate credit. Please see the Interdepartmental (IDPT) section for courses which are taught cooperatively by individual departments.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 6111</td>
<td>Human Gross Anatomy</td>
<td>8.0 cr.</td>
</tr>
<tr>
<td>ANAT 6205</td>
<td>Imaging and Modeling</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ANAT 6310</td>
<td>Neuroanatomy</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ANAT 6321</td>
<td>Human Histology</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ANAT 6330</td>
<td>Human Embryology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ANAT 6412</td>
<td>Foundations of Teaching</td>
<td>1 cr.</td>
</tr>
<tr>
<td>ANAT 6490</td>
<td>Advanced Teaching in Anatomical Sciences</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ANAT 6508</td>
<td>Human Physiology</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ANAT 6600</td>
<td>Experimental Design and Research Methods</td>
<td>1 cr.</td>
</tr>
<tr>
<td>ANAT 6750</td>
<td>Special Topics: Modern Human Anatomy</td>
<td>1.0-6.0 cr.</td>
</tr>
</tbody>
</table>

MODERN HUMAN ANATOMY

ANAT 6111 Human Gross Anatomy
(Spring) Prereq: Must be a degree-seeking student in MS Modern Human Anatomy program. The Human Gross Anatomy course examines the form and function of the human body at a macroscopic level. Systems-based and regional anatomy lectures are complemented by full-body cadaver dissection. Medical imaging labs provide the opportunity to learn ultrasound skills.

ANAT 6205 Imaging and Modeling
(Fall) Prereq: Only ANAT degree-seeking students.
This course covers major medical and scientific imaging modalities with an emphasis on 3D scientific and medical visualization. Students will also receive instruction in advanced digital image processing and 3D modeling using industry-standard software such as MATLAB and Maya.

ANAT 6310 Neuroanatomy
(Spring) Prereq: Restricted to ANAT students only.
Structure & Function in the Human Nervous System. Basic neuroanatomy & neural systems with workshop focus employing facilitated discussions & problem-oriented cases. Laboratory sessions will employ brain specimens, models & image sets. Team-based projects are in-depth exploration of topics with development of collaborative presentations.

ANAT 6321 Human Histology
(Fall) Histology is the study of the tissues. By exploring the human structure, function and organization at the histological level, students will gain important pattern recognition skills to integrate microscopic knowledge with macroscopic gross anatomy and other foundational anatomical sciences. (Will replace ANAT 6320)

ANAT 6330 Human Embryology
(Fall,) Prereq: Restricted to ANAT students only.
This graduate level, introductory human embryology course will emphasize developmental aspects of adult anatomy and congenital malformations. Educational value of three-or-four-dimensional models and other ancillary learning resources for human embryology will also be explored.

ANAT 6412 Foundations of Teaching
(Fall) This course will provide students with training, practice, and constructive feedback in effective teaching skills in order to be successful in the biomedical professions. Topics include learning objectives, the neurobiology of learning, assessments, and effective communication within and outside the classroom.

ANAT 6490 Advanced Teaching in Anatomical Sciences
(Fall, Spring) Instructor consent required.
This course offers a hands-on, supervised experience as an anatomical sciences educator. Readings and discussions will enhance your understanding of educational pedagogy. You will apply these skills as you develop and deliver lecture and lab content in a classroom setting.

ANAT 6508 Human Physiology
(Spring) This course is available to degree-seeking students in the Master of Science in Modern Human Anatomy program only. Requisite: Must be ANAT degree-seeking student
This course in human physiology is designed to provide an understanding of the functions of cells, tissues and organs in the human body and the overall integration of these organ systems. This course is available to degree-seeking students in the Master of Science in Modern Human Anatomy program only. Requisite: Must be ANAT degree-seeking student

ANAT 6600 Experimental Design and Research Methods
(Fall) This course in human physiology is designed to provide an understanding of the functions of cells, tissues and organs in the human body and the overall integration of these organ systems. This course is available to degree-seeking students in the Master of Science in Modern Human Anatomy program only. Requisite: Must be ANAT degree-seeking student

ANAT 6750 Special Topics: Modern Human Anatomy
(Fall, Spring, Summer) This course is offered in a variety of technical and thematic areas in modern human anatomy. The specific topics vary from year to year. Note: The course includes lectures, discussions and workshops.
ANAT 6840 Independent Study 1.0-6.0 cr.
(Fall, Spring, Summer)
This course enables the student to pursue an investigation in a modern human anatomical field of choice toward completion of a capstone project with relatively minor supervision from faculty advisors.

ANAT 6910 Teaching Practicum 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: ANAT 6412
Course restricted to ANAT majors
Hands-on teaching course in which students apply pedagogical theories to practice in a professional program as a teaching assistant, lecturer or other instructional position.

ANAT 6911 Advanced Teaching Practicum 1.0-4.0 cr.
(Fall, Spring, Summer) Prerequisite: ANAT degree-seeking student; ANAT 6412
Hands-on teaching course in which students apply pedagogical theories to practice in a professional program as a teaching assistant, lecturer or other instructional position.

ANAT 6950 MSMHACapstone Project 1.0-12.0cr.
(Fall, Spring, Summer) Prerequisite: Must be ANAT degree-seeking student.
The Capstone project is a scholarly and/or research-based pursuit of knowledge and content development in the area of anatomical sciences, modern imaging and modeling technologies, and educational science completed as part of the MS in Modern Human Anatomy.

BIOMEDICAL SCIENCES AND BIOTECHNOLOGY

BSBT 6061 Project Management for Biomedical Science 2.0 cr.
(Fall, Spring)
This course provides training in initiating, executing and closing a project, including the management of scope, time, cost, human resources, communication, risk and more. Highly interactive intensive course prepares students for Certified Project Management exam (internationally recognized certification).

BSBT 6062 Principles and Strategies of Effective Teaching 1.0 cr.
(Spring)
This course introduces students to research-based, student-centered pedagogies and instructional design techniques. Encourages students to view teaching as an intellectual endeavor. Learn about useful resources for future teaching and formally document pedagogical knowledge and skills for employability.

BSBT 6063 Speaking and Presenting for Scientists and Educators 1.0 cr.
(Fall, Spring)
This course will increase your effectiveness to deliver scientific, medical, or educational presentations in an audience-centered and impactful way, respond to audience questions, and facilitate audience engagement and discussion.

BSBT 6064 Scientific Writing 1.0 cr.
(Spring)
This course focuses on developing a framework for successful scientific writing practices, including how to effectively structure arguments, how to write grant proposals, and more.

BSBT 6065 Case Studies: Responsible Conduct of Research 1.0 cr.
(Fall)
This course will demonstrate expectations and regulations that permeate science. You'll understand consequences of violations to individuals and society. We'll explore misconduct through interactive video, written and video case studies, and other engaging activities.

BSBT 6067 Statistics for Biomedical Sciences 2.0 cr.
(Spring)
This course will teach you how and when to apply statistical procedures to answer scientific questions relevant to biomedicine, and how to critically assess statistical data for validity.

BSBT 6068 Laboratory Research in Structural Biology and Biochemistry 3.0-6.0 cr.
(Fall, Spring)
This course will allow graduate students to engage in laboratory research training in the biomedical sciences with focus on structural biology.

BSBT 6069 Microbiology or Immunology Thesis Research 3.0-6.0 cr.
(Fall, Spring)
This course will allow graduate students to engage in laboratory research training in the biomedical sciences with focus on immunology and microbiology.
BSBT 6070 Laboratory Research Mini-Rotations 1.0 cr.
(Spring)
This course will allow graduate students to learn in three different laboratories about research in immunology and microbiology.

BSBT 6071 Intro to R Programming 1.0 cr.
(Spring)
This course is an introduction to the statistical programming language R geared primarily to biomedical science students with little to no previous programming experience. Basic features of R as a programming language and as scientific computing platform. Basics of data cleaning, visualization, and analysis.

BSBT 6110 Introduction to Biocomputing 3.0 cr.
(Fall) Prerequisite: Undergraduate degree in science, technology, business, engineering or math.
This course provides students with hands-on experience in basic computation, database, and programming skills set as a pre-requisite for a higher-level data analysis course. The students will use example in the context of biomedical and genomic data set. Prerequisite: Undergraduate degree in science, technology, business, engineering or math.

BSBT 6111 Introduction to Biomedical Data Practices 1.0 cr.
(Fall)
This course provides students with advance knowledge and topics in every aspects of data science.

BSBT 6310 Practical Clinical Research Informatics 3.0 cr.
(Spring)
This course provides students with hands-on experience in clinical research informatics involving secondary use of electronic health record (EHR) data, clinical informatics databases, and basic clinical data science as preparation for more advanced informatics or data science coursework.

BSBT 6801 Biomedical Entrepreneurship 3.0 cr.
(Spring) Cross-listed with ENTP 6801 Prerequisite: An undergraduate degree in science, technology, business, engineering or math.
This course addresses the essential elements of bioscience and health innovation and entrepreneurship. Prerequisites: An undergraduate degree in science, technology, business, engineering or math.

BSBT 6802 The Regulatory Environment of Life Science Innovation 3.0 cr.
(Fall) Cross-listed with ENTP 6802
This course is designed to familiarize graduate-level engineering, business, law and life science students with the fundamentals of the life science technology commercialization, including drugs, devices, diagnostics, healthcare IT and platform applications.

BSBT 6939 Internship – Technology and Innovation 3.0- 6.0 cr.
(Fall, Spring, Summer) Prerequisite: Enrollment with permission only, contact inge.wefes@ucdenver.edu. Instructor Consent required.
The internship provides hands-on learning opportunities for graduate students in institutions related to technology/biotechnology, computer science, engineering, innovation and entrepreneurship.

CANB 7600 Cancer Biology 3.0 cr.
(Fall, Spring) Prereq: IDPT 7806, IDPT 7807, IDPT 7808, IDPT 7809 (BIOM Sci Core Courses)
This course integrates the examination of cancer at molecular, cellular, tissue and organismal levels. Course open to all graduate students from any program with an interest in mechanisms and models of cancer and will give broad appreciation for current issues/problems.

CANB 7602 Special Topics in Cancer Immunology 1.0 cr.
(Spring)
This interactive course aims to introduce important concepts, models and approaches in cancer immunology. The focuses are mechanisms relevant to the immune response in the context of cancer development and immunotherapy. Students are assessed via presentations, participation, and a paper.
CANB 7610 Pathobiology of Cancer Mini-Course
1.0 cr.
(Spring) Prerequisite: Students are required to take this course twice during their time in the CANB program. IDPT 7806, IDPT 7807, IDPT 7808, IDPT 7809.
Provide understanding of clinical issues associated with human cancer. Contains didactic and lab components. The latter will focus on pathology of human tumors at macroscopic/microscopic levels. Students will gain understanding of cancer diagnosis/epidemiology/treatment through student of specific tumor types.

CANB 7613 Research Seminars and Journal Club
1.0 cr.
(Fall, Spring)
Current research topics in experimental pathology, virology, and tumor biology. Graduate students and faculty presentations.

CANB 7620 Histophysiology
3.0 cr.
(Spring)
Discussions of cell interactions, tissue physiology, and renewal based upon the histologic cell types and structures present. Where pertinent, pathologic alterations will be introduced to facilitate identification of the important normal functions/structures.

CANB 7640 Bioinformatics
2.0 cr.
(Fall, Spring) Prerequisites: IDPT 7806, IDPT 7807, IDPT 7808, IDPT 7809; Corequisite: BIOS 6606
This course introduces basic concepts of bioinformatics needed to perform large-scale genomic data mining. A computer workshop will provide students with the relevant and minimal skills to analyze, access and visualize high-throughput data using open source programs and public databases.

CANB 7650 Research in Cancer Biology
1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in cancer biology.

CANB 7660 Advanced Topics: Cancer Biology
1.0 cr.
(Fall, Spring)
The specific topics covered in this course vary from year to year. For Fall 2011 the topic will be "Cancer cells and their environment: how the extracellular milieu influences tumor progression" offered by Dr. Schedin.

CANB 7680 Hypothesis Development & Experimental Design
3.0 cr.
(Fall, Spring) Prereq: CANB 7600, IDPT 7806, IDPT 7807, IDPT 7808, IDPT 7809
Students will discuss recent research papers and develop new hypotheses that extend the findings in the papers. Research proposals to test the hypothesis will be written and an oral defense of the proposal will be performed.

CANB 8990 Doctoral Thesis
1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in cancer biology.

CLSC 6060 Systems Analysis and Design
3.0 cr.
(Fall, Spring, Summer) Crosslisted: ISMG 6060.
Collaborative offering with Denver Campus, emphasizing information requirements analysis, logical system specification, detailed system design. Topics include structured system development methodologies, prototyping, file design, systems architecture, systems testing, software design strategies. Students use case tool to develop system specifications.

CLSC 6080 Database Management Systems
3.0 cr.
(Fall, Spring, Summer) Crosslisted: ISMG 6080.
Offered as a collaborative offering with the Denver Campus, this course focuses on the development and management of database systems to support business operations. Important subjects include semantic data modeling, normalization, SQL, fourth generation languages, and client-server database applications.

CLSC 6210 Research Seminars in Clinical Science
1.0 cr.
(Fall, Spring, Summer)
This course provides an overview of the types of clinical translational studies being conducted by senior CLSC doctoral students. The interactive seminar series structure allows for interdisciplinary scientific dialogue among students at various stages of training, mentors and faculty.

CLSC 6211 Immersion in Community Engagement
3.0 cr.
(Summer) Restrictions: Students need to contact the CLSC program prior to registering.
This course focuses on community-based participatory research, community engagement and understanding health disparities through a community immersion experience.
CLSC 6260 Conducting Clinical Trials for Investigators 2.0 cr.
(Summer)
Course is for investigators conducting clinical trials. Course covers good clinical practices/regulations that surround setting up and running clinical trials. Clinical studies and popular press articles highlighting what can go wrong in clinical trials will be reviewed and discussed.

CLSC 6270 Critical Appraisal Seminars in Clinical Science 1.0 cr.
(Fall)
This course provides an overview of the approaches for critically appraising common study designs published in the clinical and translational sciences literature, as well as other sources of information.

CLSC 6300 Scientific Grant Review Process: CCTSIProposals MS 1.0 cr.
(Fall, Spring) Prereq: BIOS 6601, BIOS 6602 (or BIOS 6611, BIOS 6612)
Students will understand and participate in the process of scientific review of human subject research protocols submitted to the University of Colorado Denver Clinical Translational Research Centers at University Hospital and The Children’s Hospital.

CLSC 6560 Designs and Mixed Methods in Implementation Research 2.0 cr.
(Fall)
This course provides an in-depth examination of study designs, comparative effectiveness research, and qualitative, quantitative and mixed methods approaches to dissemination and implementation research. The focus is application to health care and public health settings.

CLSC 6585 Power for Multilevel & Longitudinal Studies 2 cr.
(Spring) Prerequisites: BIOS 6601 and BIOS 6602 or equivalent applied statistic courses.
Course covers power and sample size methods for longitudinal and multilevel study designs. Software used for this course is free, open-source, web-tablet and smart phone-based (www.glimmpse.SampleSizeShop.org). This is a three-day intensive and interactive course with online discussion the two weeks following the intensive.

CLSC 6590 Navigating the Clinical Research Regulatory Maze 1 cr.
(Fall, Spring, Summer) Prereq: For students with no clinical research experience, it is recommended they take “Getting Started: your introduction to Clinical Research” a 3 hr. lecture as one of their optional lectures, preferably before the course starts or within first 2 months of the course.

CLSC 6650 Guided Research Tutorial - Masters 1.0-3.0 cr.
(Fall, Spring, Summer).
An independent study course developed by the student and the appropriate faculty member based on the area of study. Students meet regularly with the selected course instructor, the student and course instructor will develop a course plan prior to registration.

CLSC 6653 Key Concepts in Neurodevelopmental Disabilities I 2.0 cr.
(Fall) Prerequisite: A degree in health care profession or related field or instructor consent.
Course represents part one of two-part interdisciplinary course series focused on systems, options for diagnosis/assessment and alternatives for service provision related to children/youth/young adults with neurodevelopmental and related disabilities and their families to address this population’s special health care needs.

CLSC 6654 Key Concepts in Neurodevelopmental Disabilities II 2.0 cr.
(Spring) Prerequisite: A degree in health care profession or related field or consent of instructor, and completion of CLSC 6653.
This course represents part two of a two-part interdisciplinary course series focused on service provision, intervention strategies and service provision related to children/youth/young adults with neurodevelopmental and related disabilities and their families to address this population's special health care needs.

CLSC 6661 Leadership Dialogues I 2.0 cr.
(Fall, Spring, Summer) Prereq: A degree in health care profession or related field or instructor consent.
This interdisciplinary leadership course focuses on leadership strategies needed for providing family-centered, culturally competent, community-based services for children with special needs and their families.

CLSC 6662 Leadership Dialogues II 1.0 cr.
(Fall, Spring) Prereq: a degree in health care profession or related field or instructor consent. CLSC 6661
This interdisciplinary leadership course focuses becoming change agents to better provide family-centered, culturally competent, community-based services for children with special needs and their families.

CLSC 6663 Intervention for Individuals with Developmental Disabilities 3.0 cr.
(Fall, Spring, Summer) Prereq: Degree in health care profession or related field or consent of instructor.
This interdisciplinary course reviews evidence-based practices in intervention for children with autism and other neurodevelopmental disorders, presented through lectures, critical readings of the literature, case discussions, and case presentations.
CLSC 6664 Leadership Dialogues III 1.0 cr.
(Fall) Prereq: Degree in health care profession or related field or consent of instructor. Restrictions: Nursing only.
This interdisciplinary leadership course focuses on leadership strategies needed for providing family-centered, culturally competent, community-based services for children with special needs and their families. (Nursing only)

CLSC 6665 Leadership Dialogues IV 1.0 cr.
(Spring) Prereq: Degree in health care profession or related field or consent of instructor and CLSC 6664. (Nursing only)
Leadership Dialogues IV builds upon skills addressed in Leadership Dialogues III with the addition of content that integrates critical and systems thinking and ethical decision making with the leadership and team concepts and skills developed in LD III. (Nursing only)

CLSC 6668 Screening/Assessment for Children/Youth with Autism & Neurodevelopmental Disabilities 3.0 cr.
(Fall, Spring, Summer). Prereq: Degree in health care profession or related field or consent of instructor.
This interdisciplinary course presents best practices in screening/assessment for autism, focusing on: identification of symptoms of autism; differentiation of autism from other disorders; recognition of symptoms; examination of culture on clinical presentation; and approaches to share observations.

CLSC 6699 Masters Research Project: Publishable Paper 1.0-6.0 cr.
(Fall, Spring, Summer). Prereq: Consent of program. BIOS 6601 and 6602 OR BIOS 6611 and BIOS 6612, CLSC 7150, EPID 6630.
During course students working with his/her research mentor and research project committee to plan, execute, write Final Research Project in form of a publishable paper. In addition, students prepare for Final Research Project Examination. This is a capstone course.

CLSC 6750 Designing for Dissemination and Sustainability 2.0 cr.
(Summer)
This course is one of three that focuses on dissemination and implementation research. This course reviews the organization and financing of interventions for health care systems and public health systems. The role of ethics, evidence, and health equity are examined.

CLSC 6770 D&I Grant Funding 2.0 cr.
(Summer) Prereq: Completion of CLSC 7653 Dissemination and Implementation Research in Health
This course provides an in-depth examination of issues in submitting successful grant proposals in Dissemination & Implementation research. The course will build upon good general practices in grant and manuscript preparation and submission

CLSC 6800 Introduction to Health Information Technology 3.0 cr.
(Spring)
Course intended as overview to the dynamic environment of healthcare informatics. Goal of course is to prepare healthcare professionals to better utilize/manage the emerging communication technologies. A brief introduction to e-health, telehealth, electronic medical records, telecommunications, and bio-informatics is provided.

CLSC 6820 Management of Healthcare Information Technology 3.0 cr.
(Fall). Crosslisted: HLTH 6072.
This course will provide an introduction to management of information technology in healthcare. A description of information processing, the origin, content and evolution of healthcare information systems and the methodologies deployed to acquire and manage information requirements will be discussed.

CLSC 6850. Advanced Research Topics in Dissemination and Implementation Science 1.0 cr.
(Fall, Spring). Prereq: CLSC 7653 or instructor permission
Hybrid - Provides an overview of intermediate and advanced dissemination and implementation (D&I) science research methods in a small group discussion format. This interactive seminar series structure allows for interdisciplinary scientific dialogue among students at various stages.

CLSC 6950 Masters Research Project: Thesis 1.0-6.0 cr.
(Fall, Spring, Summer) Prereq: Consent of program. BIOS 6601, BIOS 6602, CLSC 7150, EPID 6630.
During this course students plan, execute and write the Final Research Project in the form of a Masters thesis. In addition, students will prepare for the Final Research Project Examination. This is a capstone course.

CLSC 7101 Grant Writing I 1.0 cr.
(Spring) Prereq: BIOS 6601 and EPID 6630. Restrictions: CLSC students unless written approval of Course Director
The purpose of this course is to develop and improve your skills in writing successful grant applications and participating in the critique and review process of grants.

CLSC 7102 Grant Writing II 1.0 cr.
(Spring) Prereq: BIOS 6601, EPID 6630, CLSC 7101. Restrictions: CLSC students, unless written approval of Course Director.
The purpose of this course is to develop and improve your skills in writing successful grant applications and participating in the critique and review process of grants.
CLSC 7150 Ethics and Responsible Conduct of Research 1.0 cr.
(Fall, Spring, Summer)
Course provides overview of the field of ethics in clinical research. Topics include historical background, current regulations, IRB requirements on human subjects protection issues. Students will learn how to develop approaches to conduct ethical human subjects research in an optimal manner.

CLSC 7202 Clinical Outcomes and Applications 3.0 cr.
(Fall)
This course focuses on research methodologies in clinical care, costs, health systems, policy, and health outcomes, as well as an overview of major issues in clinical outcomes research. Students are provided with both theory and application through case studies.

CLSC 7300 Scientific Grant Review Process: CCTS1 Proposals 1.0 cr.
(Fall, Spring) Prereq: BIOS 6601 BIOS 6602 or BIOS 6611 and BIOS 6612.
Students will understand and participate in the process of scientific review of human subject research protocols submitted to the University of Colorado Denver Clinical Translational Research Centers at University Hospital and the Children's Hospital.

CLSC 7650 Guided Research Tutorial- Doctoral 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: Consent of program, approved course plan. This course is closed registration.
This is an independent study course developed by student and appropriate faculty member based on the area of study. Students meet regularly with selected course instructor. Student and course instructor will develop course plan prior to registration of the course.

CLSC 7653 Dissemination and Implementation Research in Health 2.0 cr.
(Spring) Prereq: EPID 6630 or Course Director permission
Introduces dissemination and implementation (D&I) research and practice in the context of health (i.e., translational research in health).

CLSC 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prerequisite: Program consent. BIOS 6601 or BIOS 6611, BIOS 6602 OR BIOS 6680 and HSMP 6617, CLSC 7150, EPID 6630, BIOS 6648 or EPID 6626 or HSMP 6670. Restrictions: Only CLSC PhD students or collaborative CLSC and CSPH Health Services Research Students.
This course involves the student working with his/her research mentor and research project committee develop, design and execute a clinical science doctoral study as well as to write up the project as a thesis.

CPBS 7001 Computer Science for Biologists 5.0 cr.
(Spring)
Introduction to fundamental concepts of computer science, the central ideas of computing, and practices of computational thinking; designed for Basic Science PhD programs. It will engage students in activities that allow them to competently apply CS tools to their field.

CPBS 7605 Ethics in Bioinformatics 1.0 cr.
(Fall, Spring)
Offered every other year.
Discussions of professional conduct, social implications of research and questions raised by biomedical research, with an emphasis on topics relevant to computational biologists. Active student participation is required.

CPBS 7606 Statistics for the Basic Sciences 3.0 cr.
(Fall, Spring)
Cross-listed: BIOS 6606.
This course provides an overview of fundamental concepts in statistics such as hypothesis testing and estimation and it provides an overview of statistical methods (for example, regression and analysis of variance) that apply to many areas of science.

CPBS 7620 Advanced Genome Analysis 2.0 cr.
(Spring) Crosslisted Course: HMGP 7620, STBB 7620, and MICB 7620.
Introduction to genomics emphasizing gaining familiarity with: analysis, utilization of genomic data. Topics: sequencing, mapping genomes, transcriptomics, human genome, evolution, genomic disorders, bioinformatics, statistics, population variation, epigenomics, proteomics, metagenomics, microbiome analysis, functional genomics, ethics.

CPBS 7630 Computational Methods for Data Challenges in Biomed 3.0 cr.
(Fall)
Prereq: CPBS 7711 & CPBS 7712
Covers three computational data modules: Bioinformatics, Clinical Informatics, and Public Health Informatics. Cases are from three biomedical big data initiatives; the Grand Opportunity Exome Sequencing Project (GO-ESP), The Cancer Genome Atlas (TCGA), and Library of Integrated Network-Based Cellular Signature (LINCS).
CPBS 7650 Research in Computational Bioscience 1.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor
Research work in Computational Bioscience.

CPBS 7655 Statistical Methods in Genetic Association Studies 3.0 cr.
(Fall) Cross-listed: BIOS 6655. Prereq: BIOS 6612 or permission of instructor.
This course is designed to give an introduction to statistical methods in genetic association studies. Topics include an introduction to population genetics topics relevant to genetic association studies, design strategies and analysis methods for case-control and family data.

CPBS 7659 Statistical Methods in Genomics 3.0 cr.
(Spring) Prereq: BIOS 6611 or equivalent graduate level statistics course with consent of instructor. Crosslisted Course: BIOS 6659 (sponsoring department) / BIOS 7659
This course will give an introduction to statistical methods for analyzing molecular sequences and genomic data. Topics include hidden Markov models for sequence alignment, molecular evolution and gene expression data analysis.

CPBS 7660 Analysis of Genomics Data Using R and Bioconductor 2.0 cr.
(Fall, Spring, Summer) Pre/Coreq: BIOS 6602 or 6612, or consent of instructor.
This course provides students with hands on experience in solving real life biological problems using the statistical software R and Bioconductor. Students will work and communicate with participating researchers and clinicians on their case studies of genomics data.

CPBS 7711 Methods and Tools in Biomedical Informatics 4.0 cr.
(Fall) Prereq: Permission of instructor. Crosslisted: PHCL 7611 (non-sponsor).
An introduction to the theory and practice of bioinformatics and computational biology. Topics include: the analysis of macromolecular sequences, structures, gene expression arrays, proteomics, and management of the biological literature.

CPBS 7712 Research Methods in Biomedical Informatics 4.0 cr.
(Spring) Prereq: Permission of Instructor Crosslisted: PHCL 7612 (non-sponsor)
The CPBS faculty members will present lectures on the research currently being conducted in their laboratories. Students will plan, execute and report on their own research project. This course is beginning transition from well-educated students to independent researchers.

CPBS 7785 Independent Study in Computational Bioscience 1-3 cr.
(Spring, Summer, Fall) Prereq: Permission of Instructor.
This course is listed for the benefit of the advanced student who desires to pursue one or more topics in considerable depth. Supervision by a full-time faculty member is necessary.

CPBS 7791 Readings in Computational Bioscience 1.0 cr.
(Spring, Summer, Fall) Prereq: Permission of instructor.
A seminar style course in which students read and present recent publications from the primary computational bioscience literature.

CPBS 7792 Special Topics in Computational Bioscience 1-3 cr.
(Spring, Summer, Fall) Prereq: Permission of Instructor.
Topic varies by semester. Designed to give students a chance to evaluate critically some practical or theoretical problem under faculty supervision and to present results of their thinking to fellow students and instructors for critical evaluation.

CPBS 8990 Doctoral Thesis 1-10 cr.
(Fall, Summer, Fall) Prereq: Permission of instructor.
Doctoral thesis work in Computational Bioscience.

CELL BIOLOGY, STEM CELLS & DEVELOPMENT

CSDV 7000 Cells, Stem Cells, and Development: Advanced Topics Discussion 1.0 cr.
(Fall, Spring) Restrictions: Students in the CSD program only, 2nd year and beyond.
This course is a student-led paper discussion focusing on advanced topics pertaining to cell biology, stem cells, and developmental biology. Students will select, present, and discuss primary articles on diverse topics within these fields.

CSDV 7605 Stem Cells and Development: An Integrated Approach 3-4 cr.
(Spring) Prereq: IDPT 7806
Integrative introductory course incorporating the related fields of Cell Biology/Developmental Biology/Stem Cells. Through lectures, contemporary literature discussions, student presentations, enrollees will gain a sophisticated understanding of the biological concepts/experimental approaches underlying current understanding of cell, developmental, and stem cell biology.
CSDV 7606 Critical Analysis of Research in Cell Biology, Stem Cells & Development 3 cr.
(Spring) Prereq: IDPT 7806 & 7810; Corequisite: CSDV 7605
First-year students will learn to critically evaluate scientific literature in preparation for writing and critiquing research grant proposals. Primary literature will focus on cell and developmental biology related to CSDV 7605. Each session concludes with written mini-proposals and peer critiques.

CSDV 7650 Research: CSDV 1-5 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor
Research work in Cell Biology, Stem Cells and Development.

CSDV 7670 Advanced Topics: CSDV 1 cr.
(Fall, Spring, Summer) Prereq: IDPT 7806, 7807, 7808, 7809.

CSDV 7850 Independent Study: CSDV 1-5 cr.
(Fall, Spring, Summer) Prereq: IDPT 7806, 7807, 7808, 7809 (BIOM Science Core Courses), and CSDV 7605 Independent Study is to allow students to take professional school course for credit or to gain a defined expertise with faculty mentor other than thesis advisor. Consent of faculty member offering the independent study and Program Director required.

CSDV 8990 Doctoral Thesis 1-10 cr.
(Fall, Spring, Summer) Prereq: Consent of the instructor
Doctoral Thesis work in Cell Biology, Stem Cells and Development.

GENETIC COUNSELING

GENC 6101 Psychosocial Aspects of Genetic Counseling I 2.0 cr.
(Fall) Coreqs: GENC 6105, GENC 6110. Restrictions: Matriculated student in Genetic Counseling M.S. Program This is the first course in a two-semester sequence addressing basic psychosocial and counseling theories, approaches, and resources necessary for the provision of genetic counseling to clients and their families in prenatal, pediatric and adult clinical settings.

GENC 6102 Psychosocial Aspects of Genetic Counseling II 2 cr.
(Spring) Prereq: GENC 6101 Coreqs: GENC 6105, GENC 6110. Restrictions: Matriculated student in Genetic Counseling M.S. Program
This is the second course in a two-semester sequence addressing basic psychosocial and counseling theories, approaches, and resources necessary for the provision of genetic counseling to clients and their families in prenatal, pediatric and adult clinical settings.

GENC 6105 Basic Interviewing Skills 1.0 cr.
(Fall) Coreqs: GENC 6101, GENC 6110. Restrictions: Matriculation as genetic counseling M.S. student.
This course covers fundamental theories and principles of effective patient/client interviewing in genetic counseling practice. Lectures are combined with hands-on role plays and interviews so that students may gain applied experience and receive feedback to foster skills development throughout course.

GENC 6110 Topics in Medical Genetics I 3.0 cr.
(Fall) Course Restrictions: Matriculated student in Genetic Counseling M.S. Program.
First course in a two-course sequence regarding principles of clinical genetics and genetic counseling, and development of clinical skills used in various medical genetics settings. Fall semester focuses on principles important in pediatric and general genetics settings.

GENC 6111 Topics in Medical Genetics II 2.0 cr.
(Spring) Prereq: GENC 6110. Restrictions: Matriculated student in Genetic Counseling M.S. Program
Second course in two-course sequence regarding principles of clinical genetics and genetic counseling used in various medical genetics settings, and development of clinical skills. Spring semester focuses on prenatal and adult genetics clinic settings.

GENC 6120 Clinical Cytogenetics and Molecular Genetics 3.0 cr.
(Fall) Coreq: GENC 6121 Laboratory in Clinical Cytogenetics & Molecular Genetics. Restrictions: Matriculation into M.S. Genetic Counseling Program or Permission of Instructors.
This course provides integrated instruction regarding human cytogenetic and molecular genetic principles, techniques, and diagnostic testing approaches used in clinical evaluation and risk assessment for genetic disorders/predispositions in prenatal and postnatal patient populations.

GENC 6121 Laboratory in Clinical Cytogenetics and Molecular Genetics 2.0 cr.
(Fall) Coreq: GENC 6120 Clinical Cytogenetics & Molecular Genetics. Restrictions: Matriculation into M.S. Genetic Counseling program or Permission of Instructors.
Course provides introduction to specific methodologies and interpretation of studies used in diagnostic cytogenetics and molecular genetics laboratories. Principles discussed in the co-requisite clinical cytogenetics and molecular genetics course will be applied through demonstrations, hands-on experiments, discussion of illustrative cases.

GENC 6122 Seminar in Clinical Cytogenetics and Molecular Genetics 1.0 cr.
(Spring) Prereq: GENC 6120, GENC 6121. Restrictions: Matriculation into M.S. Genetic counseling Program or Permission of Instructors.
Course requires students to apply theories/principles of cytogenetics and molecular genetics to analysis of cases that present in daily operations of diagnostic laboratories and formal critique of current research literature. Additionally, students present formal seminar integrating cytogenetic/molecular genetic principles.

GENC 6125 Embryogenetics
(Fall) Prereq: Matriculated student in M.S. Genetic Counseling program (GENC)
Providing practical knowledge for genetic counseling this course on human embryology is focused on major developmental stages and organ systems with an emphasis on molecular genetic pathways and associated syndromes that arise due to their disruption.

GENC 6130 Cancer Genetics and Genetic Counseling
(Spring) Prereq: GENC 6110, GENC 6120. Restrictions: Matriculation in MS Genetic Counseling Program.
Course in providing genetic counseling services to clients with or at risk for hereditary cancer predisposition. Topics include clinical oncology, epidemiology, molecular biology of cancer, risk assessment, genetic testing, ethical/legal issues, clinical research considerations, psychosocial impact/support, specific genetic counseling approaches.

GENC 6140 Human Inborn Errors of Metabolism
(Spring) Restrictions: Matriculated student in Genetic Counseling M.S. Program or instructor permission.
Course provides systematic review of major metabolic disorders, including their clinical phenotypes, diagnosis, and management. Physiological and laboratory testing principles important to understanding these disorders will be reviewed. Psychosocial impact of metabolic disorders and genetic counseling approaches will be discussed.

GENC 6150 Congenital Malformations and Disorders of the Newborn
(Spring) Prereq: GENC 6110. Coreq: GENC 6111. Restrictions: Matriculated student in Genetic Counseling M.S. Program or instructor permission.
This survey course covers common major malformations and non-metabolic genetic disorders identified by newborn screening programs. Clinical phenotypes, diagnosis, management and etiology are addressed. Psychosocial impact of these conditions and genetic counseling approaches will be discussed.

GENC 6170 Introduction to Clinical Research for Genetic Counseling Students
(Fall) Restrictions: Matriculated student in Genetic Counseling M.S. Program or instructor permission.
An introduction to clinical research including an overview of ethical principles, study methods and designs, practical execution, data analysis and presentation of results. Possible roles of a genetic counselor in the conduct of clinical research will be a course focus.

GENC 6201 Advanced Psychosocial Genetic Counseling
(Fall) Prereq: GENC 6101 and GENC 6102. Course Restrictions: Matriculated second year student in Genetic Counseling M.S. Program
This course examines advanced genetic counseling techniques as they relate to psychosocial theories, specific client characteristics and the client/counselor dynamic. Critical discussion of core topics and readings and case analysis will be used for instruction.

GENC 6210 Professional Issues in Genetic Counseling I
(Fall) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Second year student in Genetic Counseling M.S. Program.
A course in a two-course sequence regarding professional practice issues of master’s level genetic counselors. The fall semester course focuses on professional standards, professional ethics, legal principles and health systems and policy issues relevant to genetic counselors.

GENC 6211 Professional Issues in Genetic Counseling II
(Spring) Prereq: GENC 6210. Restrictions: Second year student in Genetic Counseling M.S. Program.
Second course in a two-course sequence regarding professional practice issues of master’s level genetic counselors. The Spring semester course focuses on disability issues, cultural competency, public health genetics, research methods in genetic counseling, and professional roles.

GENC 6250 Risk Calculation in Genetic Counseling
(Fall) Prereq: GENC 6110. GENC 6120. Restrictions: Matriculation in M.S. Genetic Counseling Program.
This course covers pedigree analysis and risk calculation principles used by genetic counselors in clinical practice.

GENC 6610 Topic in Medical Genetics I
(Fall)

GENC 6910 Applied General Genetics Clinic
(Fall, Spring, Summer) Prereq: GENC 6101. GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for Genetic Counseling M.S. students through a general genetics clinic serving a variety of referral indications. Students will learn and practice case management, history taking, risk assessment, counseling, and client advocacy skills.
GENC 6911 Applied Prenatal Genetics Clinic 3.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for genetic counseling students through a prenatal diagnosis and genetics clinic. Students will learn/practice history taking, risk assessment, patient education and genetic counseling, case management, as well as observe prenatal diagnosis and ART procedures.

GENC 6912 Applied Metabolic Genetics Clinic 3.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for genetic counseling students through a genetics clinic for inborn errors of metabolism. Students will work with patients referred for diagnostic evaluation, medical/nutritional management of specific conditions, follow-up of positive newborn metabolic screening results.

GENC 6913 Applied Regional & Specialties Genetics Clinics 1.0-2.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for genetic counseling students through regional outreach genetics clinics and specialty/multidisciplinary clinics serving patients with various genetic conditions.

GENC 6914 Applied Hereditary Cancer Clinic 1.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6110, PEDS 6601, PEDS 6602. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for genetic counseling students through a hereditary cancer clinic for individuals seeking genetic counseling and testing for genetic cancer predisposition syndromes.

GENC 6915 Applied Adult Medical Genetics Clinic 1.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is a clinical rotation for genetic counseling students through a medical genetics clinic and clinical research settings providing diagnosis, management, risk assessment and genetic counseling for adults.

GENC 6919 Applied Medical Genetics Clinic – Clinical Elective 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Restrictions: Matriculation as M.S. Genetic Counseling Student.
This is an elective clinical rotation for genetic counseling students desiring to arrange training in settings outside of core required rotations or an additional, advanced rotation.

GENC 6920 Applied Medical Genetics – Laboratory Genetic Counseling Elective 1.0 cr.
(Fall, Spring, Summer) Prereq: GENC 6120, GENC 6121, GENC 6122. Restrictions: Matriculated student in GENC program who has completed required prerequisite courses listed; Permission of instructor.
This elective rotation for students desiring an advanced, applied training experience with genetic counselors based in a genetics diagnostic laboratory.

GENC 6940 Capstone Genetic Counseling 1.0-2.0 cr.
(Fall, Spring, Summer) Restrictions: Matriculated student in GENC program who has completed at least two semesters of required coursework; Permission of instructor.

GENC 6950 Masters Thesis 1.0-6.0 cr.
(Fall, Spring, Summer). Restrictions: Matriculated student in Genetic Counseling M.S. Program Masters thesis research to be arranged with prior approval of the Graduate Program in Genetic Counseling.

HEALTH HUMANITIES & ETHICS

HEHE 5250 Media, Medicine & Society 3.0 cr.
(Fall, Spring)
This interdisciplinary course will explore the interconnections and intersections between medicine and media, investigating a significant collaborative enterprise that characterizes American culture.

HEHE 5250 Addressing Health Stigma in Social Contexts 3.0 cr.
(Fall, Spring, Summer)
This interdisciplinary course will equip students with the tools needed to understand health stigma, to construct an explanation as to why it is so common and to explain what, if anything, should be done to address such stigma.

HEHE 5350 Narrative Principles and Practices in Healthcare 3.0 cr.
(Fall, Spring, Summer)
This course introduces students to the intellectual and clinical discipline of narrative work in healthcare. Students will explore the theoretical foundations of narrative in healthcare and participate in structured workshops to improve close reading of texts and writing skills.
HEHE 5450 Addressing Health Stigma in Social Contexts 3.0 cr.
(Fall, Spring, Summer)
This interdisciplinary course will equip students with the tools needed to understand health stigma, to construct an explanation as to why it is so common and to explain what, if anything, should be done to address such stigma.

HEHE 5550 Independent Study in Health Humanities & Health 1.0-3.0 cr.
(Fall, Spring, Summer)
This independent study will permit students to pursue specialized topics and/or previously studied topics in Health Humanities and health ethics in greater depth and with more flexible scheduling.

HEHE 5650 Ethics, Medicine & Holocaust 3.0 cr.
(Fall, Spring)
German health professionals – especially physicians, but also nurses, dentists, pharmacists, midwives and public health practitioners – developed and led some of the most heinous activities of the Third Reich. Why? And what are the legacies of this history for medicine and society today?

HEHE 5750 Pain, Paradoxes & Human Condition 3.0 cr.
(Fall, Spring)
This course explores the lived experiences of pain, its paradoxes, and the extent to which it is a key feature of the human condition. Analyses will be drawn from history, religious studies, philosophy, literature, poetry, public health, medicine, and law.

HMGP 7600 Survey of Human Genetics 3.0 cr.
(Spring)
Survey of human genetics, including Mendelian and other types of inheritance, chromosomes and cytogenetics, molecular and biochemical basis of genetic disease, quantitative genetics and gene mapping, developmental and cancer genetics, clinical genetics, and genetic screening and prenatal diagnosis.

HMGP 7610 Topics in Human Genetics 1.0-3.0 cr.
(Fall, Spring) Prereq: Graduate standing.
Two-semester course based on weekly HMGP seminar series. Students meet with speakers and discuss seminar or related topics and arranged readings. Grade based on class participation and required paper and presentation. Required for 1st and 2nd year HMGP students.

HMGP 7630 Independent Study in Human Medical Genetics 1.0-2.0 cr.
(Fall, Spring, Summer) Restriction: Consent of the faculty member offering the independent study and Program Director required.
Independent study is intended to permit students to carry out directed reading and discussion with a specific faculty member to fill a specific need, and to gain defined expertise with a faculty member other than their thesis advisor.

HMGP 7650 Research in Human Medical Genetics 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor.
Research work in human medical genetics.

HMGP 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor.
Doctoral thesis work in human medical genetics.

IDPT 5600 Topics in Biomedical Science and Research 4.0 cr.
(Summer)
Research internship for undergraduate fellows in Graduate Experiences for Multicultural Students (GEMS) program.

IDPT 6006 Obesity and Cardiovascular Disease 1.0 cr.
(Fall, Spring) Course will span two semesters, Fall and then Spring.
The course will cover how obesity relates to cardiovascular disease including basic and clinical mechanisms on the pathophysiology of vascular biology, insulin resistance, risk factors, and outcomes, and how therapeutic interventions modify cardiovascular disease risk.

IDPT 6939 Internship – Technology and Innovation 3.0-6.0 cr.
(Fall, Spring, Summer) Prerequisite: Instructor Consent required.
The internship provides hands-on learning opportunities for graduate students in institutions related to technology/biotechnology, computer science, engineering, innovation, and entrepreneurship.
IDPT 7160 Philosophical Foundations of Research Ethics 2.0 cr.
(Spring) Crosslisted: CLSC 7160.
This course will examine the philosophical basis for current research ethics practices, address current ethical issues and controversies in biomedical research and provide students with knowledge and analytical skills to address the ethical dimensions of biomedical research.

IDPT 7200 Scientific Writing for Doctoral Students 2.0 cr.
(Spring) Restrictions: Must have passed preliminary examination; permission of instructor.
Scientific writing course for students engaged in research. Focuses on critical thinking, analytical writing, and oral presentation. Taught as a writing workshop, the course emphasizes effective communication with both professional and non-technical audiences.

IDPT 7301 Introduction to Life Science Technology Commercialization 1.0-3.0 cr.
(Fall, Spring)
Course designed to familiarize graduate level engineering, business, law, science students with fundamentals of life science technology commercialization including drugs, devices, diagnostics, healthcare IT and platform applications. Three consecutive 5-week classes, each 1 credit. Open to all graduate level students.

IDPT 7304 The Legal and Regulatory Environment of Life Science Innovation 3.0 cr.
(Fall)
This course is designed to familiarize graduate level engineering, business, law and science students with the fundamentals of life science technology commercialization including drugs, devices, diagnostics, healthcare IT and platform applications.

IDPT 7420 Introduction to Laboratory Animal Research 1.0 cr.
(Summer)
Provides basic knowledge on the use of laboratory animals, animal welfare and animal models. Includes general concepts on animal biology and husbandry for most common laboratory species and incorporates essential principles of anesthesia, analgesia, surgery and peri operative care.

IDPT 7450 MSTP Seminar 1.0 cr.
(Fall, Spring)
Designed to expose MSTP and physician scientist students to research programs and opportunities in biomedical sciences at the Anschutz Medical campus and selected departments of the UC Boulder campus.

IDPT 7646 Tissue Biology and Disease Mechanism 3.0 cr.
(Fall) Prerequisite: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815
This course provides an overview of organ systems and disease through 1) a survey of the major systems, including the cellular and molecular mechanisms underlying their function and repair, integrated with 2) common diseases, current therapies, and their mechanistic basis.

IDPT 7650 Research in Biomedical Sciences 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research rotation for students in the biomedical sciences Ph.D. program.

IDPT 7651 MSTP Summer Research Rotation 1.0-3.0 cr.
(Summer) Prereq: Acceptance into the MST Program and permission of MSTP Director.
This course is an 8-10 week laboratory rotation experience in an MSTP training laboratory.

IDPT 7652 MSTP Advanced Topics 1.0-5.0 cr.
(Fall, Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815; permission of instructor.
This course is designed for students in the MSTP and consists of in-depth small group (1-7 students) sessions that provide in-depth didactic and/or paper readings on subjects related to research rotations or thesis projects.

IDPT 7655 Thesis Years – Foundations of Doctoring 1.0-5.0 cr.
(Fall, Spring, Summer) Prereq: All Phase I and II SOM courses. Restrictions: Permission of Instructor.
This course intended for MD or MD-PhD students who have successfully completed all coursework for Phases I and II of SOM curriculum, are on leave of absence from SOM and wish to maintain clinical exposure and training during the leave.

IDPT 7805 Case Studies: Molecules to Medicine 3.2 cr.
(Fall) Crosslisted: IDPT 5002 Prereq: IDPT 7811, 7812, 7813, 7814, 7815 (Core Courses)
Clinical cases will be presented/discussed by faculty and students to provide clinical context for basic science principles taught in the graduate core courses (IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815).

IDPT 7806 Core I: Foundations in Biomedical Sciences 6.0 cr.
(Fall)
Course will focus on the fundamental principles of Biomedical Sciences. Lectures and discussions will primarily address the basics of molecular biology, genetics, cell biology and energetic principles. Note: This course consists of lectures and recitation/discussion. It was formerly IDPT 7921.
IDPT 7810 Core Topics in Biomedical Science
(Fall)
1.0-6.0 cr.
Sections focus on different core topics in biomedical science, and will address subject areas such as protein structure and function, neurobiology, embryology, stem cell research, and cancer biology. Students can enroll in multiple Core Topic Courses topics in one semester.

IDPT 7850 Independent Study in Bioethics, Medical Humanities or Health Law
(Fall, Spring, Summer)
Course Restrictions: Permission of the instructor. Repeatable for credit within the degree program, but not within the same term. Max credits -6.
Course is designed to meet the needs of students interested in conducting advanced studies of issues and topics in bioethics, medical humanities, or health law. Students will work under the direction of the course director on a specific research topic.

IDPT 8890 Clinical Experience for CTSIPhD Students
(Fall, summer)
Prereq: IDPT 7805 and IDPT 7646, EPID 6630, BIOS 6601or equivalent. Course Restrictions: PhD Grad Students
Each student will identify a clinician mentor who will develop/direct a clinical experience tailored to student's thesis research. It may include participation in relevant clinical conference, a direct clinical experience, clinical research, preparation of clinical research protocol.

IMMU 7602 Special Topics in Cancer Immunology
(Spring)
1.0 cr.
This interactive course aims to introduce important concepts, models and approaches in cancer immunology. The focuses are mechanisms relevant to the immune response in the context of cancer development and immunotherapy. Students are assessed via presentations, participation, and a paper.

IMMU 7603 Special Topics – Immunologic Basis of Human Disease
(Spring)
Prereq: IMMU 7662
1.0 cr.
Perform translational studies, as they either test hypotheses established in mouse models or lead to new testable hypotheses that will advance understanding of pathogenesis of human disease. Greater understanding of disease pathogenesis will allow for development of new treatment options.

IMMU 7604 Special Topics in Signal Transduction in the Immune System
(Spring)
Prereq: IMMU 7662
1.0 cr.
In-depth course, designed primarily for immunology graduate students in their second year, who have completed IMMU 7602. The course covers selected topics (8 in all) encompassing wide range of topics in signal transduction through receptors important in the immune system.

IMMU 7605 Workshop in Scientific Writing
(Spring)
Prereq: IMMU and MICB students have priority
1.0 cr.
This workshop will consist of one session weekly for students to be critiqued on writing assignments designed to provide basic training in writing grant proposals and manuscripts.

IMMU 7607 Science as a Profession
(Fall)
1.0 cr.
This course discusses ethical issues, conflicts of interest, and regulations for working with humans or animals. It also includes instruction on writing papers and grants, giving effective presentations and advice on finding jobs in academia and industry.

IMMU 7630 Overview of Immunology
(Fall)
2.0 cr.
An overview course in immunology for non-Immunology-program graduate students. The focus is human relevance and the practical use of immunology in a variety of fields. Students gain experience applying immunological knowledge to their own area of interest.

IMMU 7650 Research in Immunology
(Fall, Spring, Summer)
Prereq: Consent of instructor.
Research work in immunology.
1.0-5.0 cr.

IMMU 7662 Immunology
(Spring)
6.0 cr.
This course covers the basic principles of the immune system. Included are discussions on (i) the innate and adaptive immune responses, (ii) the molecular and cellular basis of immune specificity and (ii) aspects of clinical immunology.
IMMU 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor
Doctoral thesis work in immunology.

INTEGRATED PHYSIOLOGY

IPHY 6001 Human Physiology 4.0 cr.
(Spring) Course restrictions: B.A. or B.S. including Biology, Chemistry and Physics
This course in Physiology is designed to provide an understanding of the functions of cells, tissues, and organs in the human body and the overall integration of organ functions in the body as a whole.

IPHY 7650 Research in Physiology & Biophysics 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor.
Research work in Physiology and Biophysics.

IPHY 7652 Special Topics in Reproductive Science 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor.
This course provides instruction in a specialized area of Reproductive Science. Course content and the extent of the course varies from year to year.

IPHY 7651 Reading & Evaluating the Clinical Literature 2.0 cr.
(Fall) Prereq: Successful completion of the first year of PhD courses or two years of MSTP training.
Interactive seminar introduces key concepts in clinical study design, basic statistics, & clinical research assessment. Become familiar with clinical study types; rigorously assess the literature; and appreciate how to incorporate clinical data in bench research. Requires presentations, manuscript review, and discussion.

IPHY 7801 Molecular Mechanisms of Reproductive Endocrinology and Metabolism 3.0 cr.
(Spring) Prereq: Core courses IDPT 7811, 7812, 7813, 7814, 7815. Restrictions: CU-AMC Graduate students; others by permission of the Course Director.
Endocrine systems will be covered from the molecule to the systems level. Pituitary secretions actions/ regulation, regulation of water, ion, calcium balance, regulation of metabolism including insulin secretion/action will be discussed, the context of normal physiology, the mechanisms of endocrine dysfunction.

IPHY 7840 Advanced Topics in Cell Signaling 1.0 cr.
(Fall, Spring, Summer) Prereq: Consent of Instructor.
Students select topics of interest in the area of cell signaling and receive one-on-one instruction from expert faculty. Each one-credit topic will be taught for 5 weeks. Course work will include reading and discussing papers as well as practical exercises.

IPHY 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq:
Doctoral thesis work in physiology.

MICROBIOLOGY

MICB 7620 Advanced Genome Analysis 2.0 cr.
(Spring) Cross-listed Course: CPBS 7620, STBB 7620, and HMG 7620.
Introduction to genomics emphasizing gaining familiarity with: analysis, utilization of genomic data. Topics: sequencing, mapping genomes, transcriptomics, human genome, evolution, genomic disorders, bioinformatics, statistics, population variation, epigenomics, proteomics, metagenomics, microbiome analysis, functional genomics, ethics.

MICB 7650 Research in Microbiology 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in microbiology.

MICB 7701 Molecular Virology and Pathogenesis 3.0 cr.
(Spring) Prereq: MICB 7706, MICB 7705 are desirable but not required. Restrictions: Permission of Instructor.
Topics in this course include viral structure and genome organization, replication and expression of viral genomes, mechanism of action of tumor viruses, molecular aspects of virus-host cell interactions, animal models of infectious diseases and pathogenesis of human viruses.

MICB 7702 Molecular Mechanisms of Bacterial Disease 3.0 cr.
(Spring) Restrictions: Permission of the instructor.
Course focuses on molecular processes that bacteria utilize to cause disease in humans. The course content will use specific examples from pathogenic bacteria to illustrate common virulence mechanisms utilized to initiate, maintain and survive interactions with host cells.
MICB 7704 **Host Response to Infectious Disease** 1.0 cr.
(Spring) Prereq: Prerequisite: Biomedical Core Courses.
This interactive graduate course, which provides an overview and specific examples of the host response to infectious disease. Current research and future directions in the field are discussed. Students are assessed via presentations, participation, and an exam.

MICB 7705 **Medical Microbiology** 4.0 cr.
The course will focus on Microbiology. Infectious Diseases. Course content will focus on: pathogenicenic bacteria, viruses, fungi, parasites; emphasis on microbial virulence determinants, host-pathogen interactions emphasizing host immune responses, signs, symptoms of disease presentation, epidemiology, and diagnosis of infectious diseases.

MICB 7950 **Informatics & Statistics for MolBio** 4.0 cr.
(Fall) Prereq: Consent of instructor
This is a computational biology class aimed at biology PhD students. Topics covered include: basic practices for coding in python; analysis of standard high-throughput genomic data to study the regulation of gene expression; introduction to modeling gene expression; data visualization; how to communicate computational analysis/results.

MICB 8990 **Doctoral Thesis** 1.0-10.0 cr.
(Fall, Spring, Summer)
Doctoral thesis work in microbiology.

MOLECULAR BIOLOGY

MOLB 7650 **Research in Molecular Biology** 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in molecular biology.

MOLB 7661 **Molecular Biology Seminar** 1.0 cr.
(Fall, Spring)
Seminar series provides a forum for the presentation of scientific experiments and information in molecular biology by faculty, postdoctoral fellows, graduate students and invited outside guest speakers.

MOLB 7800 **Advanced Topics in Molecular Biology** 3.0-4.0 cr.
(Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815. Restrictions: Permission of instructor.
Course offered in 4 blocks of 1 hour of credit each.
Course intended to teach graduate students to critically evaluate scientific literature. Course divided into 4 blocks, topics include nucleic acid, chromatin structure, DNA replication, RNA transcription, RNA processing, cell cycle control, genetics of model organisms. Instructors choose papers, students; presentations.

MOLB 7801 **Rigor and Reproducibility in Biomedical Research** 1.0 cr.
(Spring). Instructor consent required.
Course will integrate the concepts of rigor, repeatability and reproducibility by combining both wet and dry lab components focused on teaching these concepts and laboratory skills. We will seek to make these concepts routine considerations during the design and execution of any type of experiment.

MOLB 7900 **Practical Comp: Bio: Python** 2.0 cr.
(Spring) Prereq: Consent of instructor.
This is a computational biology class aimed at biology PhD students. Topics covered include: basic practices for coding in python; analysis of standard high-throughput genomic data to study the regulation of gene expression; introduction to modeling gene expression; data visualization; how to communicate computational analysis/results.

MOLB 7910 **Practical Comp: Bio: R** 2.0 cr.
(Spring) Prereq: Consent of instructor
This is a computational biology class aimed at biology PhD students. Topics covered include: basic practices for coding in python; analysis of standard high-throughput genomic data to study the regulation of gene expression; introduction to modeling gene expression; data visualization; how to communicate computational analysis/results.

MOLB 8990 **Doctoral Thesis** 1.0-10.0 cr.
(Fall, Spring, Summer)
Doctoral thesis work in molecular biology. Prerequisite: Consent of Instructor
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 7501</td>
<td>Introduction to Neuroscience</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Fall) Introduction to study of the nervous system from the level of the brain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to an understanding of how neurons are specialized for communication and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information processing. This course is a prerequisite for NRSC 7600 series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>courses.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7600</td>
<td>Cellular & Molecular Neurobiology</td>
<td>3.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Fall) A comprehensive, in-depth, discussion-based course intended for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>candidates for the PhD in Neuroscience. Topics include ion channel structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and function, ionic basis of the resting and action potential, and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biochemistry and physiology of direct and indirect synaptic transmission.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7610</td>
<td>Fundamentals of Neurobiology</td>
<td>3.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) This course will provide basic knowledge on the structure and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>function of the nervous system. The lectures will be supplemented by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>discussion of primary research literature in neurobiology.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7612</td>
<td>Nervous System Modeling with NEURON</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) The objective of this course is to introduce students to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biophysically accurate modeling of single neurons and neuronal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>networks with NEURON simulation environment. Students will implement NEURON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in a project of their choice, possibly related to their primary 'wet'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>research.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7614</td>
<td>Biological Basis of Psychiatric & Neurological Disorders</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) This elective, for basic sciences graduate students and medical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>students, provides a survey of current clinical and molecular aspects of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>human neuropsychiatric disorders. Both movement disorders and DSMIV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diagnoses will be covered. Contact Course Director for a list of topics.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7615</td>
<td>Developmental Neurobiology</td>
<td>3.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) This course will cover fundamental principles regarding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>development of the nervous system. The format of the course will consist of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lecture plus reading of primary literature.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7616</td>
<td>Introduction to Biomedical Photonics</td>
<td>3.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) The course introduces several principles of applying optical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>techniques to biomedical applications. Current development of biophotonic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>research, such as microscopy, optical coherence tomography, optical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spectroscopic techniques in tissues, will be discussed.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7618</td>
<td>Biology of the Eye</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) Crosslisted with OPHT 6610 (for medical students). The objective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of this course is to familiarize students with the core concepts and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>challenges in ophthalmology and vision research. The course integrates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cutting-edge basic science with translational research and clinical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>advances.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7650</td>
<td>Research in Neuroscience</td>
<td>1.0-10.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Fall, Spring, Summer) Prereq: Consent of instructor. Research work in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neuroscience.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7657</td>
<td>MATLAB for Neuroscientists</td>
<td>2 cr.</td>
</tr>
<tr>
<td></td>
<td>(Summer) MATLAB is an accessible programming environment that is widely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>used by scientists and engineers and offers powerful tools for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acquisition and data analysis. Students will develop their own MATLAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>programs that are relevant to their particular line of research.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7661</td>
<td>Grant Proposal Writing Workshop</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring) Students with adequate neuroscience background. Course is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>practical workshop in grant-writing culminating in a mock review panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>including course participants. Students will examine various proposal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>types/formats, then write their own proposal in the format of NRSA fellowship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>application.</td>
<td></td>
</tr>
<tr>
<td>NRSC 7662</td>
<td>Survey of Neuroscience</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td></td>
<td>(Spring, Fall) Designed to expose first year graduate students to current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>topics in neuroscience.</td>
<td></td>
</tr>
</tbody>
</table>
NRSC 7670 Advanced Topics in Neuroscience 1.0-2.0 cr.
(Fall, Spring, Summer) Prereq: NRSC 7600 or permission from instructor.
The course will consist of discussion of manuscripts relevant to a specific topic in neuroscience.

NRSC 7674 Quantitative Neuroscience 3.0 cr.
(Fall) Prereq: See Instructor. Note: This course is taught Downtown according to the Downtown calendar.
In this course, mathematical models and data processing strategies will be introduced as well as other cutting-edge research techniques to help students understand how these techniques can be applied to solve modern neuroscience problems.

NRSC 7675 Neuroscience, Ethics, and Philosophy 1.0 cr.
(Fall) Prereq: Successful completion of 1st year Graduate Courses.
Elective course provides overview of issues at the intersection of philosophy/ethics/neuroscience. Format involves lecture, student presentations, and relies heavily on student discussion. Topics focus on arguments relevant to the philosophy of mind along with their implications for the individual/society.

NRSC 7800 Teaching Neuroscience 1.0-3.0 cr.
Prereq: NRSC 7610 Course Restrictions: Second year students in neuroscience or above.
Students will be guided in developing two class sessions in systems neuroscience to be presented in the Systems Neuroscience course, NRSC 7610. Each session will include a practice presentation and post-mortem critique. Note: Meets 1-3 hours a week for 15 weeks depending on credits signed up for.

NRSC 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor
Doctoral thesis work in neuroscience.

PALLIATIVE CARE

PALC 6110 Basic Pain Assessment & Management:IDT Care 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
This course reviews basic pain pathophysiology, assessment, non-pharmacological interventions, and non-opioid and opioid pharmacological pain management. Integrated with IDT topics related to pain such as psychological, social & spiritual distress and ethical standards of practice.

PALC 6111 Basic Pain Management AHP 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Offered Jointly with PALC 6110; reviews basic pain pathophysiology, assessment, non-pharmacological interventions, and non-opioid % opioid pharmacological pain management. Integrated with IDP topics such as psychological, social & spiritual distress and ethical standards. Some coursework tailored to AHP students.

PALC 6120 Advanced Concepts in Pain Management 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
This course focuses on methadone, opioid infusions, interventional pain management, and other complex modalities. This class focuses on ethics and psychosocial issues including pain in the face of addiction and public policy around opioids and REMS. Prerequisites: PALC 6110 and 6510

PALC 6210 IDT Care for Non-Pain Symptoms: Part A 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Course covers the assessment and management of eight common non-pain symptoms (e.g. anorexia, asthenia, constipation and nausea/vomiting). Integrated with IDT topics related to symptom assessment/management such as psychological, social & spiritual distress and ethical standards of practice.

PALC 6211 IDT Care for Non-Pain: Part A AHP 3.0 cr.
(Fall, Spring, Summer)
Offered jointly with PALC 6210; assessment/management of eight common non-pain symptoms (e.g. anorexia, asthenia, constipation and nausea/vomiting). Integrated with IDT topics such as psychological, social & spiritual distress, and ethical standards related to practice. Some coursework tailored to AHP students.

PALC 6220 IDT Care for Non-Pain Symptoms: Part B 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
This course covers the assessment and management of eight different common non-pain symptoms (e.g. dyspnea, cough, and insomnia). Integrated with IDT topics related to symptom assessment/management such as psychological, social & spiritual distress and ethical standards of practice.

PALC 6221 IDT Care for Non-Pain Symptoms: Part B (AHP) 3.0 cr.
(Fall, Spring, Summer)
Offered jointly with PALC 6220; covers assessment & management of eight common non-pain symptoms (e.g. dyspnea, cough, and insomnia). Integrated with IDT topics such as psychological, social & spiritual distress and ethical standards. Some coursework tailored to AHP students.
PALC 6310 Advanced Illness in Special Settings: Part A 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Assessment\management of 8 chronic illnesses (cardiopulmonary, end stage liver and renal diseases) emphasis on early PC combined with disease focused therapy. Attention: prognostication and transitions into palliative/hospice care or discontinuing treatments including bioethical review and IDT support.

PALC 6320 PALC Advanced Illness in Special Settings: Part B 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Assessment/management of cancer and HIV as chronic illness with emphasis on early palliative care combined with disease focused therapy. Attention to prognostication, transition into palliative/hospice care. Paired with Spiritual Care review of challenging spiritual issues, hope, miracles and rituals.

PALC 6330 Advanced Illness in Special Settings: Part C 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Assessment/management of neurodegenerative disorders as chronic illness with emphasis on early palliative care combined with disease focused therapy. Attention to prognostication and transitions into palliative/hospice care. Paired with bioethical review and comfort care for the imminently dying.

PALC 6410 Death & Dying: Unique Role of the AHP 3.0 cr.
(Fall, Spring, Summer) AHP students only
This course focuses on methadone, opioid infusions, interventional pain management, and other complex Modalities. This class focuses on ethics and psychosocial issues including pain in the face of addiction and public policy Around opioids and REMS.

(Fall, Spring, Summer) Requirement: Restricted to PALC MS or certificate students
Online course on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

(Fall, Spring, Summer) Requirement: Restricted to PALC MS or certificate students
On-campus intensive (physical presence required) on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

PALC 6521 Communication Skill Refinement: IDT Collaboration: Online 2.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Online course on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

PALC 6522 Communication Skill Refinement: IDT Collaboration: Intensive 1.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
On-campus intensive (physical presence required) on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

PALC 6531 Palliative Care Integrated in Your Community – Bringing it all Together: Online 2.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Online course on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

PALC 6532 Palliative Care Integrated in Your Community – Bringing it all Together: Intensive 1.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
On-campus intensive (physical presence required) on palliative care topics including: models of care, early palliative care integration, whole person assessment, meaning of illness, and demonstration of advanced communications skills. Special focus on treatment plans with simulated patients/families.

PALC 6910 Systems Topics: Preparation to Capstone 3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
Palliative Care Research, Quality Improvement, Health Care Policy and Advocacy and Palliative Care Program development including institutional needs assessment and program planning. Instruction to become a PC Educator, development of professional resilience and role of medical humanities.
PALC 6911 Systems-Level Thinking: Capstone Overview 1.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
MS Palliative Care Capstone Project. Students will design, implement, evaluate, and present the result of a research, QI, education, advocacy, or medical humanities project during year 2 with mentorship from faculty. Results presented at final on-campus course (PALC 6530). Prerequisites: PALC 6910 and PALC 6520

PALC 6912 Capstone Project Preparation: Literature Review 1.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
MS Palliative Care Capstone Project. Students will design, implement, evaluate, and present the result of a research, QI, education, advocacy, or medical humanities project during year 2 with mentorship from faculty. Results presented at final on-campus course (PALC 6530). Prerequisites: PALC 6910 and PALC 6520

PALC 6913 Capstone Project Preparation: Proposal 1.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6510
MS Palliative Care Capstone Project. Students will design, implement, evaluate, and present the result of a research, QI, education, advocacy, or medical humanities project during year 2 with mentorship from faculty. Results presented at final on-campus course (PALC 6530). Prerequisites: PALC 6910 and PALC 6520

PALC 6950 Capstone Project 1.0-3.0 cr.
(Fall, Spring, Summer) Prerequisites: PALC 6910 and PALC 6520
MS Palliative Care Capstone Project. Students will design, implement, evaluate, and present the result of a research, QI, education, advocacy, or medical humanities project during year 2 with mentorship from faculty. Results presented at final on-campus course (PALC 6530). Prerequisites: PALC 6910 and PALC 6520

PALC 6960 Masters Thesis in Palliative Care 1.0-3.0 cr.
(Fall, Spring, Summer) Prerequisite: PALC 6910 and 6520
Masters thesis work in Palliative Care. Final results presented at final on-campus course (PALC 6530). Prerequisites: PALC 6910 and 6520

PHCL 7600 Frontiers in Pharmacology 1.0 cr.
(Fall)
The course is intended to introduce students to cutting-edge pharmacology research and to the range of research opportunities available within the Pharmacology Training Program. Pharmacology Department faculty presentations will focus on cellular signaling, molecular mechanisms of drug actions, structure-based drug design.

PHCL 7613 Pharmacology Journal Club 1.0 cr.
(Fall, Spring)
The overall goal of the course is to teach the students to read and discuss current literature in their field and to gain a comprehensive view of the directions that lead to high-impact research. Students will present and discuss papers.

PHCL 7605 Responsible Conduct of Research 1.0 cr.
(Fall)
The Department of Pharmacology in the University of Colorado School of Medicine organizes and offers an interactive course during the fall semester entitled "Responsible Conduct of Research". The course is designed to inform students, trainees and faculty to the NIH requirements for ethical and responsible research.

PHCL 7606 Receptors and Cell Signaling 3.0 cr.
(Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.
This elective course presents an in-depth treatment of the role of receptors and signal transduction systems in the regulation of cell functions through faculty-presented lectures and student-led discussions of current literature.

PHCL 7609 Statistical Methods in Pharmacology 3.0 cr.
(Fall) Crosslisted: BIOS 6606. Restrictions: Restricted to Pharmacology PhD Students.
Introduction to basic statistical methods utilized to analyze scientific data. The goal of course is to provide students in the biological/health sciences with the knowledge/skills necessary to analyze/interpret data which is essential for communicating scientific results.

PHCL 7610 Survey of Bioinformatics Methods 2.0 cr.
(Fall) Crosslisted: CPBS 7710.
What is Bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, and what computational analyses are possible?

PHCL 7611 Bioinformatics I 4.0 cr.
(Fall) Crosslisted: CPBS 7711 Prereq: Bioinformatics PhD students or consent of instructor.
What is Bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, what computational analyses are possible and computational techniques for solving inference problems in molecular biology?
PHCL 7612 Bioinformatics II 4.0 cr.
(Spring) Crosslisted: CPBS 7712. Prereq: CPBS 7711
Inference problems and computational techniques for molecular biology, with emphasis on machine learning approaches. Use of computational induction techniques focused on information extraction from biomedical literature, inference of biochemical networks from high-throughput data, and prediction of protein function.

PHCL 7614 Membrane Biophysics 2.0 cr.
(Spring) Crosslisted: NRSC 7614. Prereq: NRSC 7600 or equivalent. Restrictions: 2nd year students with approval of instructor.
Lectures and homework on ionic mechanisms underlying cellular excitability, especially in the central nervous system. Descriptive mathematics, pharmacology and molecular biology will be stressed. An introductory application to real-life problems using the NEURON simulation environment will be taught.

PHCL 7615 Grant Proposals in Pharmacology 1.0 cr.
(Fall) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815.
We will learn principles of good grantsmanship and hone our skills in homework assignments and discussions. Our goal is to enable a better learning experience during comps proposal writing, by gaining the tools for optimized self-assessment.

PHCL 7620 Principles of Pharmacology 6.0 cr.
(Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815, Restrictions: Consent of course directors.
Lectures are provided in the general areas of pharmacokinetics, receptor theory, structure-activity relationships, drug metabolism, basic pharmacological mechanisms with a particular emphasis on systems such as the nervous system and cardiovascular system, as well as cancer and microbial chemotherapy.

PHCL 7622 Principles of Pharmacology for MSTP Students 1.0 cr.
(Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815, PHCL 6000. Restrictions: Consent of course directors.
Lectures are provided in the general areas of pharmacokinetics, receptor theory, structure-activity relationships, drug metabolism, and basic pharmacological mechanisms with a particular emphasis on systems such as the nervous system and cardiovascular system, as well as cancer and microbial chemotherapy.

PHCL 7650 Research in Pharmacology 1.0-5.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in pharmacology.

PHCL 7801 Rigor and Reproducibility in Biomedical Research 1.0 cr.
(Spring) Instructor consent required.
All Pharmacology Program students are required to enroll in this course. The focus of the course will be on several important areas: Cell line and animal authentication by genotyping and Quality control of Antibodies.

PHSC 7305 Hands On Proteomics Workshop 1.0 cr.
(Fall, Spring, Summer) Prerequisite: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815 and Instructor permission.
4-day intensive hands-on workshop designed to provide comprehensive view of proteomics. Appropriate for individuals with little/no experience in mass spectrometry and/or high performance liquid chromatography. Participants learn introductory proteomics science and applicable protocols/technologies through extensive hands-on experience.

PHSC 7310 Fundamentals of Pharmaceutical Sciences 3.0 cr.
(Fall) Crosslisted TXCL 7310
Core course explores key aspects of Pharmaceutical Sciences. Major themes will focus on macromolecular interactions, pharmaceutics, pharmacokinetics, pharmacodynamics, apoptosis, signal transduction and immunology. Critical thinking and problem solving skills will be emphasized via lectures, discussions, and computer-based data analyses.
PHSC 7320 **Physical Pharmacy & Pharmaceutical Sciences**
(Spring) Crosslisted TXCL 7320
This course is designed to provide students with a thorough overview of physical chemical principles vital to Pharmaceutical Sciences; a course for someone whose research efforts will involve pharmaceutical development and/or the evaluation of drugs.

Recent Course Proposal:
PHSC 7326 **Clinical Pharmacokinetics and Pharmacodynamics Journal Club**
(Fall)
This course will be comprised of discussions and presentations of contemporary journal articles, or research in progress, related to clinical pharmacokinetics and pharmacodynamics.

PHSC 7330 **Development of Drugs and Biologics**
(Fall) Cross listed with TXCL 7330
A survey course designed to introduce students to pharmacokinetic and pharmacodynamics principals used in drug research and development by faculty of the Skaggs School of Pharmacy, Department of Pharmaceutical Sciences. The Phoenix Winnonlin Computer software, is used to complete homework.

PHSC 7341 **Computational Design in Drug Delivery**
(Fall)
This course covers the theory and application of computational modeling to drug design and development. Students will be trained in multiple computational techniques and will perform an independent drug design project to be presented at the end of the course.

PHSC 7345 **Nanotechnology and Drug Delivery**
(Spring) Restriction: Student should be enrolled in a graduate or equivalent program. Crosslisted: BIOE 7345.
Course presents physicochemical and biological principles of drug delivery including drug delivery system design for various applications. In addition, it will address principles of nanotechnology related to the design of nanosize delivery systems intended for drug delivery, imaging and diagnosis.

PHSC 7350 **Proteins**
(Spring) Crosslisted: BMST 7350.
Chemical and physical basis for protein structure, folding, function and stability; role of molecular dynamics, use of molecular simulations in investigations of protein-ligand and protein interactions; methods and principles of protein/peptide purification and enzyme catalysis, including electron transfer and mutagenesis.

PHSC 7400 **Ethical Issues in Toxicology & Pharmaceutical Sciences**
(Fall) Crosslisted: TXCL 7400.
The purpose of this course is to expose students to ethical issues in the fields of toxicology and pharmaceutical sciences. Emphasis will be placed on research conduct, animal use, and other timely issues relevant in these fields.

PHSC 7452 **Introduction to Clinical Pharmacology**
(Spring, Fall) Requisite: Permission of Course Director.
The course provides students with a foundational knowledge of clinical pharmacology, including pharmacokinetics, drug metabolism, assessment of drug effects, optimizing patient therapy and drug discovery and development. It is grounded in weekly topical lectures, supplemented by readings, discussion and assignments.

PHSC 7565 **Applied Statistics for Pharm Science and Toxicology**
(Fall) Prerequisite: Pharmaceutical Sciences and Toxicology graduate students
Students will learn several basic statistical techniques for analyzing data including when and how to use them, the appropriate assumptions for these methods, and how to clearly articulate their statistical results in the context of toxicology and pharmaceutical sciences studies.

PHSC 7568 **Seminar in the Pharmaceutical Sciences**
(Fall, Spring)
Discusses current literature and research in the pharmaceutical sciences. Requisites: Required for 1st through 3rd year Pharmaceutical Sciences grad students in conjunction with attendance at all Seminars in the Dept. of Pharmaceutical Sciences. (DOPS) Grad Program Seminar Series.

PHSC 7570 **Special Topics in Outcomes Research**
(Fall, Spring) Prereq: Graduate Standing & Consent of instructor.
This course involves identification, analysis and discussion of contemporary issues in the field of pharmaceutical outcomes research. Format and topics vary depending on the focus of the course for each semester.
PHSC 7608 Molecular Interactions 3.0 cr.
(Spring) Cross listed with STBB 7609
Provides chemical/physical basis for protein structure, folding, function & stability; presents methods/principles of protein/peptide purification & enzyme catalysis including electron transfer & mutagenesis. The role of molecular dynamics & use of molecular simulations in the investigations of protein-ligand/protein-protein interactions.

PHSC 7609 Biophysics & Spectroscopy 3.0 cr.
(Spring) Cross listed with STBB 7609
This course will teach fundamentals of modern molecular spectroscopies and biophysical techniques as applied to biomolecules and the structural/dynamic information they afford.

PHSC 7611 Applied Cost-Effectiveness Modeling 4.0 cr.
(Fall) Prereq: HSMP 6609 Cost Benefit/Cost Effectiveness Analysis. Restrictions: Successful completion of HSMP 6609 or permission of primary instructor.
This is an applied course in cost-effectiveness analysis. This course will apply the theory and methods learned in HSMP 6609 to develop competency in conducting cost-effectiveness analysis in health and medicine. Students will complete their own cost-effectiveness model.

PHSC 7613 Methods in Pharmaceutical and Drug Policy Analysis 3.0 cr.
(Spring) Prerequisite: BIOS 6601 or 6611
The aim of this course is to provide insight into current pharmaceutical policy making and give students a better understanding of the methods available for analysis on health care policy interventions with a focus on using claims data.

PHSC 7615 Pharmacoepidemiology 2.0-4.0 cr.
(Fall) Crosslisted: EPID 7615. Prereq: EPID 6630, 2-course biostatistics series (either BIOS 6601-6602 or BIOS 6611-6612) Consent of instructor to determine level of credit to be taken.
This course builds upon fundamental concepts and methods of epidemiology, applied to the study of pharmaceuticals. Topics include: the FDA approved process, mechanisms of adverse drug effects, methods and data systems for studying drug-effect relationships, and evaluating published pharmacoepidemiology studies.

PHSC 7620 Applied Pharmaceutical Outcomes Research Methods 2.0 cr.
(Spring) Prereq Passed PHRD 6065 or EPID 6626 and BIOS 6601/6611 or special permission of primary instructor. Crosslisted with PHRD 7810.
Students completing this course will be able to identify and write a clinical research question; identify variables for analyses; complete intermediate statistical analyses to answer their research question; write-up their study as a scientific manuscript; and present their research orally.

PHSC 7621 Database Research Methods 2.0 cr.
(Fall) Restrictions: Currently enrolled in a graduate-level program of study.
This course, the first of a two-course sequence, will cover theoretical and methodological foundations of database research. Topics will include observational research methods, data management and analysis considerations, and an overview of databases available for use in health services research.

PHSC 7650 Research Rotation in the Pharmaceutical Sciences 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in pharmaceutical sciences.

PHSC 7651 Pharmaceutical Biotechnology 3.0 cr.
(Fall) Crosslisted: CU Boulder CHEN 5900.
Course covers role of bioengineering in development of pharmaceutical biotechnology products. In particular, the student will learn to apply solution thermodynamics as well as mass and heat transfer concepts to the stabilization/formulation of macromolecules and production of drug delivery systems.

PHSC 7653 Protein Formulation 2.0 cr.
(Spring)
This course will provide instruction in rational design of stable therapeutic protein formulations with emphasis on the practical and mechanistic aspects of developing aqueous solution and freeze-dried formulations. Students will read papers from the literature and participate in critical discussions.

PHSC 7658 Advanced Topics in Pharmaceutical Sciences 1.0-5.0 cr.
(Fall, Spring) Restriction: Permission from instructor
Considers special topic of current interest in pharmaceutical sciences. Course may be repeated for credit with instructor’s approval.

PHSC 7660 Liposome-based Drug Delivery 2.0 cr.
(Spring)
This literature-based course introduces the basic physicochemical characteristics of liposomes, and then rigorously discusses how these properties are exploited for intravenous drug delivery. The readings include literature from the early days of liposomes up to formulations used in current clinical trials. While focusing on lipid-based delivery systems, the
fundamental barriers (e.g., stability in blood, targeting, drug loading, clearance) are relevant to all delivery systems. Because many current clinical trials strive to deliver nucleic acids, the latter portion of the course discusses how traditional liposomes have been modified for this application.

PHSC 7665 Pharmacokinetic Principles & Applications 3.0 cr.
(Spring) Cross-listed with TXCL 7665
A survey course to introduce students to pharmacokinetic and pharmacodynamics principles used in drug research and development. Taught by faculty from the School of Pharmacy, Department of Pharmaceutical Sciences. Phoenix Winnonlin Computer software will be used in the course.

PHSC 7911 Pharmaceutical Outcomes Research Practicum 2.0 cr.
(Fall, Spring) Prereq: EPID 6630, 2-course biostatistics series (either BIOS 6601-6602, or BIOS 6611-6612), completion of preliminary exams. Restrictions: Consent of instructor to determine completion of prerequisite coursework and readiness for practicum.

This course focuses on team-based research in pharmaceutical outcomes, building on prior didactic courses. Specific attention is given to the procedures, methods, and measurement specific to conducting successful empirical pharmaceutical outcomes research. Research topics will vary.

PHSC 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in pharmaceutical sciences.

PHYSIOLOGY & BIOPHYSICS

PHSL 6001 Human Physiology 4.0 cr.
(Spring) Restrictions: BA or BS including Biology, Chemistry, Physics. Crosslisted: DSBS 5508
This course in Physiology is designed to provide an understanding of the functions of cells, tissues and organs in the human body and the overall integration of organ functions in the body as a whole.

PHSL 7650 Research in Physiology and Biophysics 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in Physiology and Biophysics

PHSL 7840 Advanced Topics in Cell Signaling 1.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Each one-credit topic will be taught for 5 weeks. Course work will include reading and discussing papers, as well as practical exercises.

PHSL 8990 Doctoral Thesis 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in physiology.

REHABILITATION SCIENCE

RHSC 7000 Foundations in Rehabilitation Science 2.0 cr.
(Fall) Restriction: Instructor permission required for students not enrolled in RHSC Program.
This course provides an overview of the field of Rehabilitation Science and an introduction to disableness frameworks with an emphasis on biopsychosocial models of the enabling-disabling process across the life span.

RHSC 7001 Rehabilitation Science Seminar 1.0 cr.
(Fall, Spring) Prereq: RHSC 7000 or Instructor Permission. Restriction: Instructor permission required for students not enrolled in RHSC Program.
Students will attend contemporary research seminars presented by established scientists and will participate in group discussions to assess the implications of seminar topics on the full spectrum of disableness constructs in Rehabilitation Science ranging from pathophysiology to community participation.

RHSC 7002 Professional Skills in Academia 2.0 cr.
(Spring) Restriction: Instructor permission required for students not enrolled in RHSC Program.
This course provides an overview of instructional methods and professional skills for academic educators and scientists. Topics include instructional methods for graduate education, and development of professional skills in communication, management, networking, and promotion for academic careers in Rehabilitation Science.

RHSC 7500 Neurophysiology of Pain 2.0 cr.
(Fall) Prerequisites: Non-degree students must have instructor permission. Prerequisite: NRSC 5100 or NRSC 7600.
This course will review neurophysiologic mechanisms involved in normal and pathologic processing of nociceptive stimuli, and their effects on human movement. Contemporary, evidence-based methods of pain assessment and management will be discussed for research and clinical applications.
RHSC 7910 **Research Practicum in Rehabilitation Science I** 3.0 cr.
(Fall, Spring, Summer) Prereq: Instructor Permission. Restriction: Instructor permission required for students not enrolled in RHSC Program.
This research practicum exposes students to a variety of experimental tools and techniques available to Rehabilitation scientists. Mentored practicum experiences are selected by each student with permission from the faculty mentor(s).

RHSC 7911 **Research Practicum in Rehabilitation Science II** 3.0 cr.
(Fall, Spring, Summer) Prereq: Instructor Permission. Restriction: Instructor permission required for students not enrolled in RHSC Program.
This research practicum exposes students to a variety of experimental tools and techniques available to Rehabilitation scientists. Mentored practicum experiences are selected by each student with permission from the faculty mentor(s).

RHSC 8900 **Independent Study in Rehabilitation Science** 1.0-3.0 cr.
(Fall, Spring, Summer) Prereq: Instructor Permission. Restriction: Instructor permission required for students not enrolled in RHSC Program.
This course is designed for the advanced student to pursue one or more Rehabilitation Science topics in considerable depth. Faculty supervision is required.

RHSC 8990 **Doctoral Thesis** 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Instructor Permission. Restriction: Enrollment in RHSC Program.
Doctoral thesis work in Rehabilitation Science.

REPRODUCTIVE SCIENCES

RPSC 8990 **Doctoral Thesis** 1.0-10.0 cr.
(Fall, Spring, Summer) Prereq: Consent of the Instructor
Doctoral thesis work in Reproductive Science

STRUCTURAL BIOLOGY AND BIOPHYSICS

STBB 7608 **Molecular Interactions** 3.0 cr.
(Spring) Cross-listed with PHSC 7608.
Provides chemical/physical basis for protein structure, folding, function & stability; presents methods/principles of protein/peptide purification & enzyme catalysis including electron transfer & mutagenesis. The role of molecular dynamics & use of molecular simulations in the investigations of protein-ligand/protein-protein interactions.

STBB 7609 **Biophysics & Spectroscopy** 3.0 cr.
(Spring) Cross-listed with PHSC 7609.
This course will teach fundamentals of modern molecular spectroscopies and biophysical techniques as applied to biomolecules and the structural/dynamic information they afford.

STBB 7620 **Advanced Genome Analysis** 2.0 cr.
(Spring) Crosslisted Course: HMGP 7620, CPBS 7620, and MICB 7620microbiome analysis, functional genomics, ethics. Introduction to genomics emphasizing gaining familiarity with: analysis, utilization of genomic data. Topics: sequencing, mapping genomes, transcriptomics, human genome, evolution, genomic disorders, bioinformatics, statistics, population variation, epigenomics, proteomics, metagenomics,

STBB 7621 **Genome Analysis Workshop** 3.0 cr.
(Spring) Cross listed with MOLB 7621
A tutorial of skills needed to process genomics data sets and visualize their results. Taught experimentalists with practical goals (e.g. to interpret the results of an experiment and gain biologically meaningful insight). Course is designed to closely mirror HMGP 7620.

STBB 7631 **Molecular Structure A** 1.5 cr.
(Fall) Gain an in-depth understanding of the underlying principles of an NMR experiment, so that student can turn NMR theory into NMR practice for their research.

STBB 7632 **Molecular Structure B** 1.5 cr.
(Fall) Understand the theory and practice of structural determination using x-ray crystallography.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>STBB 7633</td>
<td>Molecular Structure C</td>
<td>1.5 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>The purpose of this course is to provide students with a concise understanding of biological mass spectrometry and its application to study and characterize various classes of biomolecules in state of the art research. Course is 7.5 weeks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 7634</td>
<td>Molecular Structure D</td>
<td>1.5 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>The course will provide an introduction to conceptual and practical aspects of macromolecular cryo-electron Microscopy (cryo-EM). A combination of lectures and hands-on experiences will give students a working understanding of cryo-EM and its application for structural analysis of biological macromolecules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 7650</td>
<td>Research in STBB</td>
<td>1.0-10.0 cr.</td>
<td>Fall, Spring, Summer</td>
</tr>
<tr>
<td></td>
<td>Research work in Structural Biology and Biochemistry. 2 laboratory hours per week per credit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 7660</td>
<td>Structure Seminar</td>
<td>1.0 cr.</td>
<td>Fall, Spring</td>
</tr>
<tr>
<td></td>
<td>Seminar series provides a forum for the presentation of scientific experiments and information in structural biology by faculty, postdoctoral fellows and graduate students.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 7670</td>
<td>Independent Study in Structural Biology and Biochem</td>
<td>1.0-3.0 cr.</td>
<td>Fall, Spring, Summer</td>
</tr>
<tr>
<td></td>
<td>This course is listed for the benefit of the advanced student who desires to pursue one or more topics in Structural Biology and Biochemistry in considerable depth. Supervision by a full-time faculty member is necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 7807</td>
<td>STBB CoreCourse II</td>
<td>2.0 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Provide first year students enrolled in the core course the opportunity to obtain or review backgroun material in the fields of structural biology and biophysics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STBB 8990</td>
<td>Doctoral Thesis</td>
<td>1.0-10.0 cr.</td>
<td>Fall, Spring, Summer</td>
</tr>
<tr>
<td></td>
<td>Doctoral thesis work in Structural Biology and Biochemistry.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOXICOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXCL 7310</td>
<td>Fundamentals of Pharmaceutical Sciences</td>
<td>3.0 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>This core course explores key aspects of Pharmaceutical Sciences. Major themes will focus on macromolecular interactions, pharmaceutics, pharmacokinetics, pharmacodynamics, apoptosis, signal transduction and immunology. Critical thinking and problem solving skills will be emphasized via lectures discussions, and computer-based data analyses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7321</td>
<td>Careers in Toxicology</td>
<td>1.0 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Toxicology graduate students</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course presents first year Toxicology Ph.D. students with potential career paths within the broad category of toxicological sciences. It also provides the opportunity for them to interact with professionals in their chosen field of study.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7322</td>
<td>Molecular and Target Organ Toxicology</td>
<td>3.0 cr.</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Prereq: Need discussion with and consent of Instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course is designed to provide a foundation in molecular mechanisms of toxicity. Biochemical mechanisms underlying toxicity will be analyzed and integrated with discussions of reactive metabolites, oxidative stress, signal transduction, cell death and organ specific toxicity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7323</td>
<td>Environmental and Target Organ Toxicology</td>
<td>2.0 cr.</td>
<td>(Spring) Prereq: Need discussion with and consent of Instructor.</td>
</tr>
<tr>
<td></td>
<td>The course is designed to provide a fundamental understanding of environmental-related toxicants (e.g. solvents, pesticides, metals, radiation) with emphases on the molecular mechanisms underlying their organ specific toxicity and on risk assessment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7325</td>
<td>Current Topics in Toxicology Research</td>
<td>1.0 cr.</td>
<td>(Fall, Spring)</td>
</tr>
<tr>
<td></td>
<td>This is a mandatory 1-credit hour course for Toxicology program graduate students. Each student is expected to lead one discussion per year, papers discussed will be authored by the upcoming Toxicology seminar series speaker. Grade given after Spring semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7330</td>
<td>Development of Drugs and Biologics</td>
<td>3.0 cr.</td>
<td>(Fall) Cross listed with PHSC 7330</td>
</tr>
<tr>
<td></td>
<td>A survey course designed to introduce students to pharmacokinetic and pharmacodynamics principals used in drug research and development by faculty of the Skaggs School of Pharmacy, Department of Pharmaceutical Sciences. The Phoenix Winnonlin Computer software, is used to complete homework.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>TXCL 7340</td>
<td>Ocular Physiology, Pathophysiology & Pharmacology</td>
<td>1.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Summer)</td>
<td>This interactive course will survey major diseases of the vision system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lectures will cover the physiological basis for disease and current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment options being used in the clinic, with emphasis on opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for new strategies to treat and prevent disease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7400</td>
<td>Ethical Issues in Toxicology and Pharmaceutical Sciences</td>
<td>1.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Fall)</td>
<td>The purpose of this course is to expose students to ethical issues in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fields of Toxicology and Pharmaceutical Sciences. Emphasis will be placed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on research conduct, animal use, and other timely issues relevant in these</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7452</td>
<td>Introduction to Clinical Pharmacology</td>
<td>3.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Fall, Spring)</td>
<td>Prereq: Permission of Course Director. Crosslisted with PHSC 7452.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The course provides students with a foundational knowledge of clinical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pharmacology, including pharmacokinetics, drug metabolism, assessment of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drug effects, optimizing patient therapy and drug discovery and development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is grounded in weekly topical lectures, supplemented by readings,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discussion and assignments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7475</td>
<td>Advanced Topics in Toxicology</td>
<td>1.0-6.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Fall)</td>
<td>Prereq: Permission of instructor/Program Director.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Considers special topic of current interest in toxicology. Course may be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>repeated for credit with instructor's consent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7564</td>
<td>Environmental Risk Assessment and Applied Toxicology</td>
<td>2.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Spring)</td>
<td>Provides students with experience in risk assessment, environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>toxicology for public health and regulatory decision making. Topics include</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>comprehensive human health risk assessments, baseline/probabilistic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>statistics, ecological risk assessment activities associated with emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>action, medical monitoring, role toxicology plays in courtroom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7575</td>
<td>Drug Development for the Toxicologist</td>
<td>2.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Spring)</td>
<td>Prerequisites TXCL 7322</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of drug development process. Course will provide understanding of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regulatory obligations required for submitting an N.D.A. as well as</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discussions related to additional corporate roles including activities for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in vivo study conduct & due diligence review for licensing opportunities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7650</td>
<td>Research Rotation in Toxicology</td>
<td>1.0-5.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Fall, Spring, Summer)</td>
<td>Research work in toxicology.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 7665</td>
<td>Pharmacokinetic Principles & Applications</td>
<td>3.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Spring)</td>
<td>Cross-listed with PHSC 7665</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A survey course to introduce students to pharmacokinetic and pharmacodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>principles used in drug research and development. Taught by faculty from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the School of Pharmacy, Department of Pharmaceutical Sciences. Phoenix</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winnonlin Computer software will be used in the course.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCL 8990</td>
<td>Doctoral Thesis</td>
<td>1.0-10.0 cr.</td>
<td></td>
</tr>
<tr>
<td>(Fall, Spring, Summer)</td>
<td>Prereq: Consent of the instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral thesis work in toxicology.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>