GRADUATE SCHOOL

The following courses, listed alphabetically by department, have been approved for graduate credit. Please see the Interdepartmental (IDPT) section for courses which are taught cooperatively by individual departments.

Please note that the previous core courses of IDPT 7801, IDPT 7802 and IDPT 7803 have been replaced with the five core courses, IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.

BIOCHEMISTRY AND MOLECULAR GENETICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMGN 7650</td>
<td>Research in Biochemistry and Molecular Genetics</td>
<td>Variable cr.</td>
<td>Dr. P. Megee – (Fall, Spring, Summer)</td>
<td>Prereq: Consent of instructor. Research work in biochemistry and molecular genetics.</td>
</tr>
<tr>
<td>BMGN 7660</td>
<td>Biochemistry Seminar</td>
<td>1.0 cr.</td>
<td>Dr. P. Megee – (Fall, Spring)</td>
<td>Seminar series provides a forum for the presentation of scientific experiments and information in biochemistry by faculty, postdoctoral fellows graduate students, and invited outside guest speakers.</td>
</tr>
<tr>
<td>BMGN 8990</td>
<td>Doctoral Thesis</td>
<td>Variable cr.</td>
<td>Dr. P. Megee – (Spring, Summer, Fall)</td>
<td>Prereq: Consent of instructor. Doctoral thesis work in biochemistry and molecular genetics.</td>
</tr>
</tbody>
</table>

BIOMOLECULAR STRUCTURE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMST 7350</td>
<td>Proteins</td>
<td>3.0 cr.</td>
<td>Dr. R. Hodges – (Spring)</td>
<td>Crosslisted: PHSC 7350. Provide chemical/physical basis for protein structure, folding, function and stability. Presents methods/principles of protein/peptide purification and enzyme catalysis including electron transfer and mutagenesis. The role of molecular dynamics and use of molecular simulations in the investigations of protein-ligand/protein-protein interactions.</td>
</tr>
<tr>
<td>BMST 7354</td>
<td>Structural Analysis of Bio-molecules I</td>
<td>2.0 cr.</td>
<td>Dr. R. Hodges – (Spring)</td>
<td>Crosslisted: PHSC 7354. Describes fundamentals of spectroscopic methods used to study protein structure/function. These techniques include optical methods (CD spectroscopy, fluorescence and absorbance) vibrational methods (IR and EST), analytical ultracentrifugation, mass spectrometry, calorimetry, light scattering and Biacore analysis. Taught alternate years.</td>
</tr>
<tr>
<td>BMST 7450</td>
<td>Protein Chemistry II</td>
<td>2.0 cr.</td>
<td>Dr. R. Hodges – (Spring)</td>
<td>Crosslisted: PHSC 7450. Protein Chemistry II presents methods and principles of protein/peptide purification and enzyme catalysis, including electron transfer and mutagenesis. The investigation of protein and enzyme structure/function, the role of molecular dynamics and use of molecular simulations in investigations of protein-ligand/protein-protein interactions will also be presented.</td>
</tr>
<tr>
<td>BMST 7454</td>
<td>Structural Analysis of Biomolecules II</td>
<td>2.0 cr.</td>
<td>Dr. R. Hodges – (Spring)</td>
<td>Crosslisted: PHSC 7454. Methods and strategies for determination of the primary and 3-dimensional structures of biologically important molecules. Crystallography, nuclear magnetic resonance spectroscopy and mass spectrometry will be taught in structural determination of proteins, nucleic acids complex carbohydrates, and lipid molecules.</td>
</tr>
<tr>
<td>BMST 7650</td>
<td>Research in Biomolecular Structure</td>
<td>Variable cr.</td>
<td>Dr. R. Hodges – (Fall, Spring, Summer)</td>
<td>Prereq: Consent of instructor. Research work in Biomolecular Structure.</td>
</tr>
<tr>
<td>BMST 7660</td>
<td>Biomolecular Structure Seminar</td>
<td>1.0 cr.</td>
<td>Dr. R. Hodges – (Fall, Spring)</td>
<td>Seminar series provides a forum for the presentation of scientific experiments and information in structural biology by faculty, postdoctoral fellows and graduate students.</td>
</tr>
<tr>
<td>BMST 8990</td>
<td>Doctoral Thesis</td>
<td>Variable cr.</td>
<td>Dr. R. Hodges – (Fall, Spring, Summer)</td>
<td>Doctoral thesis work in Biomolecular Structure.</td>
</tr>
</tbody>
</table>

CANCER BIOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANB 7600</td>
<td>Cancer Biology</td>
<td>3.0 cr.</td>
<td>Dr. S. Nordeen – (Spring)</td>
<td>Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.</td>
</tr>
</tbody>
</table>

CANB 7600 Cancer Biology

Dr. S. Nordeen – (Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.
This course integrates the examination of cancer at molecular, cellular, tissue and organismal levels. Course open to all graduate students from any program with an interest in mechanisms and models of cancer and will give broad appreciation for current issues/problems.

CANB 7613 Research Seminars and Journal Club
1.0 cr.
Dr. R. Evans - (Fall, Spring)
Current research topics in experimental pathology, virology, and tumor biology. Graduate students and faculty presentations.

CANB 7620 Histophysiology
3.0 cr.
Dr. D. Orlicky - (Spring)
Discussions of cell interactions, tissue physiology, and renewal based upon the histologic cell types and structures present. Where pertinent, pathologic alterations will be introduced to facilitate identification of the important normal functions/structures.

CANB 7650 Research in Cancer Biology
Variable cr.
Dr. S. K. Nordeen - (Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in cancer biology.

CANB 7680 Hypothesis Development & Experimental Design
Variable cr.
Dr. S. Thorburn - (Spring) Prereq: CANB 7600, IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 Coreq: IDPT 7815
Students will discuss recent research papers and develop new hypotheses that extend the findings in the papers. Research proposals to test the hypothesis will be written and an oral defense of the proposal will be performed.

CANB 8990 Doctoral Thesis
Variable cr.
Dr. S. Nordeen - (Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in cancer biology.

CAND 6940 Candidate for Degree
1.0 cr.
F. Osterberg - (Fall, Spring, Summer) Prereq: Consent of instructor.

CLINICAL SCIENCE

CLSC 6040 Introduction to Database & Web Design Programming
2.0 cr.
J. Huggins, MSW, MSCIS - (Fall, Spring)
This course is designed to provide 3 primary tools. First, an introduction to using MS Access as a database tool. Second, an introduction to designing web pages using Adobe Dreamweaver. Finally, connecting the database to the web.

CLSC 6060 Systems Analysis and Design
3.0 cr.
Dr. J. Karimi - (Fall, Spring, Summer) Crosslisted: CU Denver ISMG 6040. Offered as a collaborative offering with UC Denver.
Course emphasizes information requirements analysis, logical system specification, detailed system design. Topics include structured system development methodologies, prototyping, file design, systems architecture, systems testing and software design strategies. Students will normally use a case tool to develop system specifications.

CLSC 6080 Database Management Systems
3.0 cr.
Dr. W. Zhiping - (Fall, Spring, Summer) Crosslisted: CU Denver ISMG 6080. Offered as a collaborative offering with UC Denver.
Course focuses on the development and management of database systems to support business operations. Important subjects include semantic data modeling, normalization, SQL, fourth generation languages, and client-server database applications.

CLSC 6120 Data Communications
3.0 cr.
Dr. B. Ghosh - (Fall, Spring, Summer) Crosslisted: CU Denver ISMG 6120 Prereq: Knowledge of computer programming. Offered as a collaborative offering with UC Denver.
Course introduces the basic concepts of data transmission, principles governing the design and administration of both wide and local area networks, and technical issues pertaining to client server computing and open system interconnection.

CLSC 6251 Assistive Technology: Advanced Practices in AT Assessment
3.0 cr.
Dr. C. Bodine - (Fall, Spring, Summer)
Students will learn to use family-centered, trans-disciplinary methods of assistive technology assessment for individuals with low-incidence disabilities. Observations, videotaped learning activities, and supervised assessment sessions will facilitate understanding of best practice in this field.

CLSC 6260 Conducting Clinical Trials for Investigators
2.0 cr.
Dr. Y Kellar-Guenther - (Summer)
Course is for investigators conducting clinical trials. Course covers good clinical practices/regulations that surround setting up and running clinical trials. Clinical studies and popular press articles highlighting what can go wrong in clinical trials will be reviewed and discussed.

CLSC 6261 Assistive Technology: Implementation for Low Incidence Disabilities 3.0 cr.
Dr. C. Bodine - (Spring, Summer, Fall)
This course provides an overview of low incidence populations (including intellectual, hearing, and vision impairments), relevant research, and implementation strategies in early childhood and classroom settings. Emphasis is on implementation techniques, and working with trans-disciplinary teams, supporting agencies, and families.

CLSC 6271 Assistive Technology: Advanced Fieldwork Experience in AT 2.0 cr.
Dr. C. Bodine - (Fall, Spring, Summer)
Students participate in fieldwork experiences offering individually-tailored opportunities to engage in AT assessments, implementation of AT in various settings, family-centered Individual Educational Planning meetings, report-writing, outcomes-measurement, data-collection, practice, research-based methodologies. Peer-reviewed submission must be coordinated before grade assigned for course.

CLSC 6281 Assistive Technology: Engineering and Biotechnology: Principles & Emerging Technologies 3.0 cr.
Dr. C. Bodine - Course brings together engineers, AT students in other health-care related areas. The students develop an understanding of engineering principles, technical design process, emerging technologies relevant to assistive technology in the context of support for children with low-incidence disabilities.

CLSC 6300 Scientific Grant Review Process: GCRC Proposals 1.0 cr.
Dr. R. Eckel - (Fall, Spring) Prereq: BIOM 6601, BIOM 6602 (or BIOM 6611-BIOM 6612) & CLSC 7500.
- Intended for second year students. Students will understand and participate in the process of scientific review of human subject research protocols submitted to the University of Colorado Health Science Center's GCRCs (both Adult and Pediatric GCRCs).

CLSC 6500 Introduction to Clinical Research 1.0 cr.
Dr. L. Cicutto - (Fall)
This course provides an introduction to the general field of Clinical Research. It is designed for individuals who are interested in learning the fundamentals of how to prepare a scientific research proposal.

CLSC 6550 Applications of Biostatistics to Clinical Research Questions 1.0 cr.
Dr. L. Cicutto - (Fall, Spring)
Introduction to allow clinician-scientists to be critical consumers of medical literature by improving their ability to discuss statistical issues about their own research and research of others. Familiarity will be gained with commonly used statistical methods and statistical terms.

CLSC 6600 Statistics for the Basic Sciences 3 cr.
Dr. L. Cicutto - (Fall, Spring) Prereq: BIOM 6601, BIOM 6602, (or BIOM 6611-BIOM 6612) & CLSC 7500.
This course provides an overview of fundamental concepts in statistics such as hypothesis testing and estimation, and it provides an overview of statistical methods (for example, regression and analysis of variance) that apply to many areas of science.

CLSC 6606 Statistics for the Basic Sciences - CLSC Supplement 1 cr.
Dr. L. Cicutto - (Spring) Prereq: CLSC 6606 (BIOS 6606) Course Restrictions: Enrollment in CLSC graduate program or permission of the instructor.
This course provides an overview of epidemiology, logistic regression, and survival analysis, techniques that apply to many areas of clinical research.

CLSC 6650 Guided Research Tutorial – General Variable cr.
Dr. L. Cicutto - (Fall, Spring, Summer). Students perform research projects during rotations under the direction of a mentor. Required of graduate students in the Clinical Sciences program.

CLSC 6653 Key Concepts in Neurodevelopmental Disabilities I 2.0 cr.
Dr. L. Cicutto - (Spring, Fall) Prereq: A degree in health care profession or related field or instructor consent.
This course represents part one of two-part interdisciplinary course series focused on systems, options for diagnosis/assessment and alternatives for service provision related to children/youth/young adults with neurodevelopmental and related disabilities and their families to address this population's special health care needs.

CLSC 6654 Key Concepts in Neurodevelopmental Disabilities II 2.0 cr.
Dr. L. Cicutto - (Spring, Summer, Fall) Prereq: A degree in health care profession or related field or instructor consent, and completion of CLSC 6653.
This course represents part two of a two-part interdisciplinary course series focused on service provision, intervention strategies and service provision related to children/youth/young adults with neurodevelopmental and related disabilities and their families to address this population's special health care needs.

CLSC 6657 Cultural Factors in Healthcare 1.0 cr.
C. Mestas, M.A. - (Fall, Spring, Summer) Prereq: A degree in health care profession or related field or instructor consent.
This course will introduce the subject of cultural/social determinants of maternal and child health in the present society, including worldviews on health perspectives (wellness versus illness), and address the impact of emerging demographic changes on systems of care.

CLSC 6658 Interdisciplinary Approach to Promoting Early Parent Child Relationships - 2.0 cr.
Part I: Theory
Dr. C. Robinson - (Fall) Prereq: A degree in health care profession or related field or instructor consent.
Part one of a two-part course series that will examine the theory and research relevant to the assessment of early parent-child relationships as well as the clinical application for interventions across disciplines that are intended to promote/improve child health outcomes.

CLSC 6659 Interdisciplinary Approach to Promoting Early Parent Child Relationships - 3.0 cr.
Part II: Measurement
Dr. C. Robinson - (Spring) Prereq: A degree in health care profession or related field or instructor consent. Completion of CLSC 6658.
Part two of a two-part course that will examine research relevant to assessment of early parent/child relationships, identify intervention strategies by analyzing observational findings, as well as evaluate effectiveness of interventions across disciplines intended to promote/improve child health outcomes.

CLSC 6661 Leadership Dialogues I - 2.0 cr.
Dr. C. Robinson - (Fall) Prereq: A degree in health care profession or related field or instructor consent.
This interdisciplinary leadership course focuses on leadership strategies needed for providing family-centered, culturally competent, community-based services for children with special needs and their families.

CLSC 6662 Leadership Dialogues II - 2.0 cr.
Dr. C. Robinson - (Spring) Prereq: A degree in health care profession or related field or instructor consent.
CLSC 6661.
Leadership Dialogues II builds upon the skills addressed in Leadership Dialogues I with the addition of content that integrates critical and systems thinking and ethical decision making with the leadership and team concepts and skills developed in Leadership Dialogues I.

CLSC 6663 Evidence-based Interventions for Youth with Autism and Other Neurodevelopmental Disorders - 3.0 cr.
Dr. S. Hepburn - (Fall, Spring, Summer) Prereq: Degree in health care profession or related field or consent of instructor.
This interdisciplinary course reviews evidence-based practices in intervention for children with autism and other neurodevelopmental disorders, presented through lectures, critical readings of the literature, case discussions and case presentations.

CLSC 6664 Leadership Dialogues III - 1.0 cr.
Dr. C. Robinson - (Fall) Prereq: Degree in health care profession or related field or consent of instructor.
This interdisciplinary leadership course focuses on leadership strategies needed for providing family-centered, culturally competent, community-based services for children with special needs and their families. (Nursing only)

CLSC 6665 Leadership Dialogues IV - 1.0 cr.
Dr. C. Robinson - (Spring) Prereq: Degree in health care profession or related field or consent of instructor and CLSC6664.
Leadership Dialogues IV builds upon skills addressed in Leadership Dialogues III with the addition of content that integrates critical and systems thinking and ethical decision making with the leadership and team concepts and skills developed in LD III. (Nursing only)

CLSC 6666 Trans-disciplinary Model of Early Intervention Service Delivery - 3.0 cr.
Dr. C. Robinson - (Fall, Spring, Summer) Prereq: Degree in health care profession or related field or consent of instructor.
This course provides instruction about the ENRICH model of community-based, family-driven, trans-disciplinary service delivery and will target service coordination/collaboration throughout Part C supports and services, best practice implementation of intervention strategies, and techniques for transferring out of Part C.

CLSC 6668 Screening/Assessment for Children/Youth with Autism and neurodevelopmental Disabilities - Variable cr.
Dr. S. Hepburn - (Fall, Spring, Summer)
This interdisciplinary course presents best practices in screening/assessment for autism, focusing on: identification of symptoms of autism; differentiation of autism from other disorders; recognition of symptoms; examination of culture

CLSC 6699 Masters Research Project: Publishable Paper - Variable cr.
Dr. L. Cicutto - (Fall, Spring, Summer) Prereq: Consent of program BIOS 6601, BIOS 6602, BIOS 6648 or EPID 6626, CLSC 7101, CLSC 7150, EPID 6630.
During this course students plan, execute and write the Final Research Project in the form of a publishable paper. In addition, students will prepare for the Final Research Project Examination. This is a capstone course.

CLSC 6700 Evidence Based Medicine/Health Care - 2.0 cr.
of research according to NIH standards.

CLSC 6800 Introduction to Health Information Technology 3.0 cr.
Dr. D. Lezotte - (Spring) Crosslisted: UC Denver: HLTH 6071.
 Course intended as overview to the dynamic environment of healthcare informatics. Goal of course is to prepare healthcare professionals to better utilize/manage the emerging communication technologies. A brief introduction to e-health, telehealth, electronic medical records, tele-communications, and bio-informatics is provided.

CLSC 6820 Fundamentals of Health Information Technology Management 3.0 cr.
Dr. D. Lezotte - (Fall). Crosslisted: UC Denver HLTH 6072.
 This course will provide an introduction to management of information technology in healthcare. A description of information processing, the origin, content and evolution of healthcare information systems and the methodologies deployed to acquire and manage information requirements will be discussed.

CLSC 6830 Practicum in Developmental Disabilities Variable cr.
Dr. C. Robinson - (Spring, Summer, Fall) Prereq: Consent of instructor.
 Practicum in developmental disabilities individually designed to give students and post-graduates observational experiences in clinical, teaching, or research service settings and systems for persons with developmental disabilities of all ages.

CLSC 6831 Practicum in Developmental Disabilities II 3.0 cr.
Dr. C. Robinson - (Spring) Prereq: Instructor consent and CLSC 6830.
 Practicum in developmental disabilities individually designed to give students and post graduates hands-on experiences in clinical, teaching, or research service settings and systems for persons with developmental disabilities of all ages.

CLSC 6890 Introduction to Telehealth/Telemedicine 2.0 cr.
Dr. J. Grigsby - (Summer)
 This course will examine different Telemedicine/Telehealth options currently available. A primary goal will be for students to evaluate how clinical outcomes and health care education (e.g., patient education and health care provider education) can be improved using new technologies.

CLSC 6950 Masters Thesis Variable cr.
Dr. L. Cicutto - (Fall, Spring, Summer)
 Masters thesis work in clinical science.

CLSC 7101 Grant Writing I 1.0 cr.
Dr. L. Cicutto - (Fall, Spring, Summer) Prereq: BIOS 6601-6602, CLSC 7150 or CLSC 7151, PRMD 6626 or BIOS 6648.
 This first grant writing course prepares students for subsequent grant submission. Strategies for preparation (including hypothesis generation, experimental design, statistical considerations, potential problems) will be discussed. At end of class, a grant submission will normally occur before grade is assigned.

CLSC 7102 Grant Writing II 1.0 cr.
Dr. L. Cicutto – (Fall, Spring, Summer) Prereq: CLSC 7101.
 Continuation of CLSC 7101. Course prepares students for subsequent grant submission. Strategies for preparation (including hypothesis generation, experimental design, statistical considerations, potential problems) will be discussed. At course end, a K08, R23, or equivalent grant application will be completed for submission.

CLSC 7150 Ethics and Regulation in Human Subjects Review 1.0 cr.
Dr. A. Prochazka - (Fall, Spring, Summer)
 Course provides overview of the field of ethics in clinical research. Students will learn historical background, current regulations, IRB requirements related to human subjects protection issues. This course requires attendance at IRB sessions for CLSC PhD and Certificate students enrolled.

CLSC 7151 Lectures in Ethics and Regulation in Human Subjects Review 1.0 cr.
Dr. A. Prochazka - (Fall, Spring, Summer)
 Course will provide overview of the field of ethics in clinical research. It is designed for non-Clinical Science degree students, certificate students, investigators who will be conducting research involving human subjects. Topics include historical background, current regulations, and IRB requirements.

CLSC 7155 Advanced Bioethics 1.0 cr.
Dr. A. Prochazka - (Fall, Spring, Summer) Prereq: CLSC 7150 or CLSC 7151, COMIRB 101 or PHSC 7339, instructor consent.
 This course will provide an in-depth understanding of advanced bioethics - where the frontiers for ethical clinical decision-making currently exist – and also provide a broad-based overview of all aspects of responsible conduct of research according to NIH standards.
CLSC 7200 Clinical Outcomes Assessment 2.0 cr.
Dr. L. Cicuttio - (Fall, Spring, Summer).
Course provides overview of field of clinical outcomes assessment, prepares student to identify patient risk factors which may influence outcomes, to select outcomes appropriate to use in situation based on critical appraisal of literature in context of research project's goals/objectives.

CLSC 7300 Scientific Grant Review Process: Doctoral 1.0 cr.
Dr. R. Eckel - (Fall, Spring) Prereq: BIOS 6601 and BIOS 6602, or BIOS 6611 and BIOS 6612.
Students will understand and participate in the process of scientific review of human subject research protocols submitted to the University of Colorado Denver Clinical Translational Research Centers at University Hospital and The Children's Hospital.

CLSC 7400 Theory and Application of Techniques for the Study of Human Metabolism In Vivo 2.0 cr.
Dr. T. Horton - (Fall) Prereqs: CLSC 7150/7151, CLSC 6500 and CLSC 6500/6501, BIOM 6648.
This advanced clinical investigation course will critically review lab-based techniques and experimental approaches used to study nutrient metabolism in vivo. Students will learn the theory, appropriate application and limitations of these technique/approaches.

CLSC 7450 Biopharmaceutics and Applied Pharmacokinetics 2.0 cr.
Dr. L. Cicuttio - (Summer). Prereq: Undergrad Biochemistry BIOM 6602.
This advanced pharmacokinetics course will provide working knowledge of drug administration, distribution, metabolism and excretion as well as provide practical clinical working examples of pharmacokinetics (drug clearance and distribution).

CLSC 7500 Practical Application of Molecular and Cell Biology Techniques for the Clinical Investigator 3.0 cr.
Dr. A. Bradford – (Summer)
Designed to teach clinical investigators basic molecular and cellular biology techniques. Format will be hands-on with lectures designed to illustrate significance and clinical application of techniques. Weekly special topics lectures will cover cutting-edge technologies and their application.

CLSC 7650 Guided Research Tutorial – Doctoral Variable cr.
Dr. L. Cicuttio - (Fall, Spring, Summer) Prereq: Consent of program, approved course plan. This course is closed registration.
This is an independent study course developed by student and appropriate faculty member based on the area of study. Students meet regularly with selected course instructor. Student and course instructor will develop course plan prior to registration of the course.

CLSC 7700 Evidence Based Medicine/Health Care 2.0 cr.
Dr. L. Cicuttio - (Spring)
Course designed to provide introduction to field of clinical science related to evidence based medicine/health care. Students will learn to critically appraise literature, evaluate diagnostic test performance/alternative therapies, use/design clinical pathways, implement evidence based medicine findings in clinical practice settings.

CLSC 7890 Research in Clinical Sciences for Doctoral Students Variable cr.
Dr. L. Cicuttio - (Fall, Spring, Summer)
Research in clinical science field planned to have direct relevance to PhD dissertation project with doctoral student working under mentor faculty member's guidance/direction. Class work may be associated with preparing for written component of PhD or oral comprehensive exam component.

CLSC 8990 Doctoral Thesis Variable cr.
Dr. L. Cicuttio - (Fall, Spring, Summer) Prereq: Consent of Instructor
Doctoral thesis work in clinical science.

COMPUTATIONAL BIOSCIENCE

CPBS 7410 Introduction to Bayesian Statistics 3.0 cr.
Dr. M. Fitzgerald - (Fall) Prereq: MATH 3800 or MATH 4810 and 4820 or equivalent. Some computer programming experience. Permission of instructor. Crosslisted Course: CU-Denver, MATH 5396
Introduction to Bayesian Statistical Methods. Covers prior and posterior distributions, conjugate models, single and multi-parameter models, hierarchical models, mixture models, numerical methods for evaluating posterior distributions, Monte Carlo methods and Markov chain Monte Carlo simulations.

CPBS 7601 Selected Topics in Biomedical Science for Bioinformatics Students I 3.0 cr.
Dr. D. Lezotte (Fall) Prereq: Permission of Bioinformatics Faculty.
Selected topics in structural, cellular and molecular biology chosen from lectures offered in the Biomedical core courses.

CPBS 7602 Selected Topics in Biomedical Science for Bioinformatics Students II 3.0 cr.
Dr. D. Lezotte (Fall) Prereq: Permission of Bioinformatics Faculty.
Selected topics in structural, cellular and molecular biology chosen from lectures offered in the Biomedical core courses.

CPBS 7603 Selected Topics in Biomedical Science for Bioinformatics Students III
Dr. D. Lezotte (Fall) Prereq: Permission of Bioinformatics Faculty.
Selected topics in structural, cellular and molecular biology chosen from lectures offered in the Biomedical core courses.

CPBS 7605 Ethics in Bioinformatics
Dr. L. Hunter (Fall) Discussions of professional conduct, social implications of research and questions raised by biomedical research, with an emphasis on topics relevant to computational biologists. Active student participation is required.

CPBS 7606 Statistics for the Basic Sciences
Dr. D. Everett (Fall, Spring) Cross-listed: BIOS 6606.
This course provides an overview of fundamental concepts in statistics such as hypothesis testing and estimation and it provides an overview of statistical methods (for example, regression and analysis of variance) that apply to many areas of science.

CPBS 7655 Statistical Methods in Genetic Association Studies
Dr. T. Fingerlin (Fall) Cross-listed: BIOS 6655. Preq: BIOS 6612 or permission of instructor.
This course is designed to give an introduction to statistical methods in genetic association studies. Topics include an introduction to population genetics topics relevant to genetic association studies, design strategies and analysis methods for case-control and family data.

CPBS 7659 Statistical Methods in Bioinformatics
Dr. K. Kechris (Fall) Preq: BIOS 6611 or equivalent. Cross-listed: BIOS 6659.
This course will give an introduction to statistical methods for analyzing molecular sequences and genomic data. Topics include hidden Markov models for sequence alignment, molecular evolution and gene expression data analysis.

CPBS 7660 Statistical Analysis for Microarray Technologies
Dr. T. Phang (Fall) Preq: BIOS 6611 or equivalent. Cross-listed: BIOS 6660.
This course provides microarray data using the statistical software, R, and its packages from the Bioconductor consortium, including its usages in various biological contexts, including SNP Exon and etc.

CPBS 7710 Survey of Bioinformatics Methods
Dr. L. Hunter (Fall) Prereq: Instructor’s Permission. Restrictions: No Bioinformatics PhD students can take this course for credit.
What is bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, and what computational analyses are possible?

CPBS 7711 Bioinformatics I
Dr. L. Hunter (Fall) Prereq: Bioinformatics PhD student or consent of instructor. Cross-listed: PHCL 7611.
What is bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, what computational analyses are possible and computational techniques for solving inference problems in molecular biology?

CPBS 7712 Bioinformatics II
Dr. L. Hunter (Spring) Prereq: CPBS 7711
Inference problems and computational techniques for molecular biology with emphasis on machine learning approaches. Use of computational induction techniques focused on information extraction from biomedical literature, inference of biochemical networks from high-throughput data, and prediction of protein function.

CPBS 7785 Independent Study in Bioinformatics
Dr. L. Hunger (Spring, Summer, Fall) Prereq: Consent of instructor.
This course is for the advanced student who desires to pursue one or more bioinformatics-related topics in considerable depth. Supervision by a full-time faculty member is necessary.

CPBS 7791 Readings in Bioinformatics
Dr. L. Hunter (Spring, Summer, Fall) Prereq: Consent of instructor.
A seminar course in which students read and present recent publications from the primary bioinformatics literature.

CPBS 7792 Special Topics in Bioinformatics
Dr. L. Hunter (Spring, Summer, Fall) Prereq: Consent of instructor.
Special topics course with focus on new emerging Bioinformatics and Computational Biology problems and techniques.

CPBS 8990 Doctoral Thesis
1-10 cr.
Dr. D. Lezotte (Spring, Summer, Fall) Prereq: Consent of instructor.
 Doctoral thesis work in Bioinformatics.

CELL BIOLOGY, STEM CELLS & DEVELOPMENT

CSDV 7605 Stem Cells and Development: an Integrated Approach 4.0 cr.
Dr. D. Clouthier – (Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815
 Integrative introductory course, incorporating related fields of Cell Biology/Developmental Biology/Stem Cells/Regenerative Medicine. Through lectures, discussions of current literature, student presentations; enrollees will gain a sophisticated understanding of basic cell biological concepts/experimental approaches underlying our current understanding of developmental/stem cell biology

CSDV 7650 Research: CSDV Variable cr.
Dr. L. Barlow – (Fall, Spring, Summer) Prereq: Consent of Instructor
 Research work in Cell Biology, Stem Cells and Development.

CSDV 7670 Advanced topics in Cell Biology, Stem Cells and Development 1.0 cr
Dr. L Barlow – (Fall, Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815
 Topics covered in course vary from year to year. First topic offering: “Cell Signaling and its regulation in cancer” by Drs. Reyland and Schedin. Second topic offering is “Neural stem cells in development and disease” by Drs. Artinger & Barlow.

CSDV 7850 Independent Study in Cell Biology, Stem Cells and Development Variable cr.
Dr. L. Barlow – (Fall, Spring, Summer) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815, CSDV 7605
 Independent Study is to allow students to take professional school course for credit or to gain a defined expertise with faculty mentor other than thesis advisor. Consent of faculty member offering the independent study and Program Director required.

CSDV 8990 Doctoral Thesis Variable cr.
Dr. L. Barlow – (Fall, Spring, Summer) Prereq: Consent of the instructor
 Doctoral Thesis work in Cell Biology, Stem Cells and Development.

GENETIC COUNSELING

GENC 6101 Psychosocial Aspects of Genetic Counseling I 2.0 cr.
C. Walton, M.S. – (Fall) Coreqs: GENC 6105, GENC 6110. Course Restrictions: Matriculated student in Genetic Counseling M.S. Program
 This is the first course in a two-semester sequence addressing basic psychosocial and counseling theories, approaches, and resources necessary for the provision of genetic counseling to clients and their families in prenatal, pediatric and adult clinical settings.

GENC 6102 Psychosocial Aspects of Genetic Counseling II 2 cr.
C. Walton, M.S. – (Spring) Prereq: GENC 6101 Coreqs: GENC 6105, GENC 6110. Course Restrictions: Matriculated student in Genetic Counseling M.S. Program
 This is the second course in a two-semester sequence addressing basic psychosocial and counseling theories, approaches, and resources necessary for the provision of genetic counseling to clients and their families in prenatal, pediatric and adult clinical settings.

GENC 6105 Basic Interviewing Skills 1.0 cr.
C. Walton, M.S. – (Fall) Coreqs: GENC 6101, GENC 6110. Course Restrictions: Matriculation as genetic counseling M.S. student.
 This course covers fundamental theories and principles of effective patient/client interviewing in genetic counseling practice. Lectures are combined with hands-on role plays and interviews so that students may gain applied experience and receive feedback to foster skills development throughout course.

GENC 6110 Topics in Medical Genetics I 3.0 cr.
C. Walton, M.S. – (Fall) Course Restrictions: Matriculation as genetic counseling M.S. student.
 First course in a two-course sequence regarding principles of clinical genetics and genetic counseling, and development of clinical skills used in various medical genetics settings. Fall semester focuses on principles important in pediatric and general genetics settings.

GENC 6111 Topics in Medical Genetics II 2.0 cr.
C. Walton, M.S. – (Spring) Prereq: GENC 6110. Course Restrictions: Matriculated student in Genetic Counseling M.S. Program
 Second course in two-course sequence regarding principles of clinical genetics and genetic counseling used in various medical genetics settings, and development of clinical skills. Spring semester focuses on prenatal and adult genetics clinic settings.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENC 6120</td>
<td>Clinical Cytogenetics and Molecular Genetics</td>
<td>3.0 cr.</td>
<td>Coreq: GENC 6121 Laboratory in Clinical Cytogenetics & Molecular Genetics. Course Restrictions: Matriculation into M.S. Genetic Counseling Program or Permission of Instructors. This course provides integrated instruction regarding human cytogenetic and molecular genetic principles, techniques, and diagnostic testing approaches used in clinical evaluation and risk assessment for genetic disorders/predispositions in prenatal and postnatal patient populations.</td>
</tr>
<tr>
<td>GENC 6121</td>
<td>Laboratory in Clinical Cytogenetics and Molecular Genetics</td>
<td>2.0 cr.</td>
<td>Coreq: GENC 6120 Clinical Cytogenetics & Molecular Genetics. Course Restrictions: Matriculation into M.S. Genetic Counseling program or Permission of Instructors. Course provides introduction to specific methodologies and interpretation of studies used in diagnostic cytogenetics and molecular genetics laboratories. Principles discussed in the co-requisite clinical cytogenetics and molecular genetics course will be applied through demonstrations, hands-on experiments, discussion of illustrative cases.</td>
</tr>
<tr>
<td>GENC 6122</td>
<td>Seminar in Clinical Cytogenetics and Molecular Genetics</td>
<td>1.0 cr.</td>
<td>Coreq: GENC 6120, GENC 6121. Course Restrictions: Matriculation into M.S. Genetic Counseling Program or Permission of Instructors. Course requires students to apply theories/principles of cytogenetics and molecular genetics to analysis of cases that present in daily operations of diagnostic laboratories and formal critique of current research literature. Additionally, students present formal seminar integrating cytogenetic/molecular genetic principles.</td>
</tr>
<tr>
<td>GENC 6130</td>
<td>Cancer Genetics and Genetic Counseling</td>
<td>2.0 cr.</td>
<td>Prereq: GENC 6110, GENC 6120. Course Restrictions: Matriculation in MS Genetic Counseling Program. Course in providing genetic counseling services to clients with or at risk for hereditary cancer predisposition. Topics include clinical oncology, epidemiology, molecular biology of cancer, risk assessment, genetic testing, ethical/legal issues, clinical research considerations, psychosocial impact/support, specific genetic counseling approaches.</td>
</tr>
<tr>
<td>GENC 6140</td>
<td>Human Inborn Errors of Metabolism</td>
<td>2.0 cr.</td>
<td>Prereq: GENC 6110. Coreq: GENC 6111. Course Restrictions: Matriculated student in Genetic Counseling M.S. Program or instructor permission. Course provides systematic review of major metabolic disorders, including their clinical phenotypes, diagnosis, and management. Physiological and laboratory testing principles important to understanding these disorders will be reviewed. Psychosocial impact of metabolic disorders and genetic counseling approaches will be discussed.</td>
</tr>
<tr>
<td>GENC 6150</td>
<td>Congenital Malformations and Disorders of the Newborn</td>
<td>1.0 cr.</td>
<td>Prereq: GENC 6110. Coreq: GENC 6111. Course Restrictions: Matriculated student in Genetic Counseling M.S. Program or instructor permission. This course covers common major malformations and non-metabolic genetic disorders identified by newborn screening programs. Clinical phenotypes, diagnosis, management and etiology are addressed. Psychosocial impact of these conditions and genetic counseling approaches will be discussed.</td>
</tr>
<tr>
<td>GENC 6201</td>
<td>Advanced Psychosocial Genetic Counseling</td>
<td>2.0 cr.</td>
<td>Prereq: GENC 6101 and GENC 6102. Course Restrictions: Matriculated second year student in Genetic Counseling M.S. Program. This course examines advanced genetic counseling techniques as they relate to psychosocial theories, specific client characteristics and the client/counselor dynamic. Critical discussion of core topics and readings and case analysis will be used for instruction.</td>
</tr>
<tr>
<td>GENC 6210</td>
<td>Professional Issues in Genetic Counseling I</td>
<td>2.0 cr.</td>
<td>Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Second year student in Genetic Counseling M.S. Program. First course in a two course sequence regarding professional practice issues of master’s level genetic counselors. The fall semester course focuses on professional standards, professional ethics, legal principles and health systems and policy issues relevant to genetic counselors.</td>
</tr>
<tr>
<td>GENC 6211</td>
<td>Professional Issues in Genetic Counseling II</td>
<td>2.0 cr.</td>
<td>Prereq: GENC 6210 Professional Issues in Genetic Counseling I. Course Restrictions: Second year student in Genetic Counseling M.S. Program. Second course in a two course sequence regarding professional practice issues of master’s level genetic counselors. The Spring semester course focuses on disability issues, cultural competency, public health genetics, research methods in genetic counseling, and professional roles.</td>
</tr>
<tr>
<td>GENC 6250</td>
<td>Risk Calculation in Genetic Counseling</td>
<td>1.0 cr.</td>
<td>Prereq: GENC 6110. GENC 6120. Course Restrictions: Matriculation in M.S. Genetic Counseling Program. This course covers pedigree analysis and risk calculation principles used by genetic counselors in clinical practice.</td>
</tr>
<tr>
<td>GENC 6910</td>
<td>Applied General Genetics Clinic I</td>
<td>3.0 cr.</td>
<td>Prereq: GENC 6101. GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.</td>
</tr>
</tbody>
</table>
This is a clinical rotation for Genetic Counseling M.S. students through a general genetics clinic serving a variety of referral indications. Students will learn and practice case management, history taking, risk assessment, counseling, and client advocacy skills.

GENC 6911 Applied Prenatal Genetics Clinic II
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
3.0 cr.

This is a clinical rotation for genetic counseling students through a prenatal diagnosis and genetics clinic. Students will learn/practice history taking, risk assessment, patient education and genetic counseling, case management, as well as observe prenatal diagnosis and ART procedures.

GENC 6912 Applied Metabolic Genetics Clinic
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
3.0 cr.

This is a clinical rotation for genetic counseling students through a genetics clinic for inborn errors of metabolism. Students will work with patients referred for diagnostic evaluation, medical/nutritional management of specific conditions, follow-up of positive newborn metabolic screening results.

GENC 6913 Applied Regional & Specialties Genetics Clinics
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
Variable cr.

This is a clinical rotation for genetic counseling students through regional outreach genetics clinics and specialty/multidisciplinary clinics serving patients with various genetic conditions.

GENC 6914 Applied Hereditary Cancer Clinic
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6110, PEDS 6601, PEDS 6602. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
1.0 cr.

This is a clinical rotation for genetic counseling students through a hereditary cancer clinic for individuals seeking genetic counseling and testing for genetic cancer predisposition syndromes.

GENC 6915 Applied Adult Medical Genetics Clinic
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
1.0 cr.

This is a clinical rotation for genetic counseling students through a medical genetics clinic and clinical research settings providing diagnosis, management, risk assessment and genetic counseling for adults.

GENC 6919 Applied Medical Genetics Clinic – Clinical Elective
C. Walton, M.S.– (Fall, Spring, Summer) Prereq: GENC 6101, GENC 6105, GENC 6110. Course Restrictions: Matriculation as M.S. Genetic Counseling Student.
Variable cr.

This is an elective clinical rotation for genetic counseling students desiring to arrange training in settings outside of core required clinical rotations or an additional, advanced rotation.

GENC 6950 Masters Thesis
C. Walton, M.S.– (Fall, Spring, Summer). Course Restrictions: Matriculated student in Genetic Counseling M.S. Program. Masters thesis research to be arranged with prior approval of the Graduate Program in Genetic Counseling.
Variable cr.

HUMAN MEDICAL GENETICS

HMGP 7600 Survey of Human Genetics
Dr. R. Spritz - (Spring)
Survey of human genetics, including Mendelian and other types of inheritance, chromosomes and cytogenetics, molecular and biochemical basis of genetic disease, quantitative genetics and gene mapping, developmental and cancer genetics, clinical genetics, and genetic screening and prenatal diagnosis.
3.0 cr.

HMGP 7610 Topics in Human Genetics
Dr. R. Spritz - (Fall, Spring) Prereq: Graduate standing.
Two-semester course based on weekly HMGP seminar series. Students meet with speakers and discuss seminar or related topics and arranged readings. Grade based on class participation and required paper and presentation. Required for 1st and 2nd year HMGP students.
1.0 cr.

HMGP 7620 Genomics
Dr. J. Sikela - (Spring)
The goal of this course is to provide a thorough coverage of the field of genomics, including genome sequencing and mapping, bioinformatics, DNA chips, comparative genomics, human DNA variation, medical genomics, pharmacogenomics, and ethical issues arising from genome-based knowledge.
2.0 cr.

HMGP 7630 Independent Study in Human Medical Genetics
Dr. R. Spritz - (Fall, Spring, Summer)
Independent study is intended to permit students to carry out directed reading and discussion with a specific faculty member other than their thesis advisor. Consent of the faculty member offering the independent study and the program director are required.
Variable cr.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMGP 7650</td>
<td>Research in Human Medical Genetics</td>
<td>Variable cr.</td>
<td>Dr. R. Spritz - (Fall, Spring, Summer)</td>
<td>Research work in human medical genetics.</td>
</tr>
<tr>
<td>HMGP 8990</td>
<td>Doctoral Thesis</td>
<td>Variable cr.</td>
<td>Dr. R. Spritz - (Fall, Spring, Summer)</td>
<td>Doctoral thesis work in human medical genetics.</td>
</tr>
</tbody>
</table>

IMMUNOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMU 7602</td>
<td>Special Topics in Tumor Immunology</td>
<td>1.0 cr.</td>
<td>Dr. J. Slansky - (Spring) Prereq: IMMU 7662</td>
<td>This interactive course, elucidates mechanisms and paradigms relevant to the immune response to tumors. Current research and future directions in the field are discussed. Students are assessed via presentations, participation, and an exam.</td>
</tr>
<tr>
<td>IMMU 7603</td>
<td>Special Topics in Clinical Immunology</td>
<td>1.0 cr.</td>
<td>Dr. R. Alam – (Spring) Prereq: IMMU 7662</td>
<td>Course covers selected topics (8 total) encompassing a wide range of topics in clinical immunology and will provide insight into immunologically – mediated human diseases and the prospect of new immuno-therapies. Format includes presentation by lecturer, student presentation and class participation.</td>
</tr>
<tr>
<td>IMMU 7604</td>
<td>Special Topics in Signal Transduction in the Immune System</td>
<td>1.0 cr.</td>
<td>Dr. A-L Perraud - (Spring) Prereq: IMMU 7662</td>
<td>The course covers selected topics (8 in all) encompassing wide range of topics in signal transduction through receptors important in the immune system.</td>
</tr>
<tr>
<td>IMMU 7607</td>
<td>Science as a Profession</td>
<td>1.0 cr.</td>
<td>Dr. P. Marrack - 303-398-1307. (Fall)</td>
<td>This course discusses ethical issues, conflicts of interest, and regulations for working with humans or animals. It also includes instruction on writing papers and grants, giving effective presentations and advice on finding jobs in academia and industry.</td>
</tr>
<tr>
<td>IMMU 7630</td>
<td>Overview of Immunology</td>
<td>2.0 cr.</td>
<td>Dr. J.J. Cohen - (Fall)</td>
<td>An overview course in immunology for non-Immunology-program graduate students. The focus is human relevance and the practical use of immunology in a variety of fields. Students gain experience applying immunological knowledge to their own area of interest.</td>
</tr>
<tr>
<td>IMMU 7650</td>
<td>Research in Immunology</td>
<td>Variable cr.</td>
<td>Dr. R. Torres – (Fall, Spring, Summer) Prereq: Consent of instructor.</td>
<td>Research work in immunology.</td>
</tr>
<tr>
<td>IMMU 7662</td>
<td>Immunology</td>
<td>6.0 cr.</td>
<td>Dr. D. Riches - (Spring)</td>
<td>This course covers the basic principles of the immune system. Included are discussions on (i) the innate and adaptive immune responses, (ii) the molecular and cellular basis of immune specificity and (ii) aspects of clinical immunology.</td>
</tr>
<tr>
<td>IMMU 8990</td>
<td>Doctoral Thesis</td>
<td>Variable cr.</td>
<td>Dr. R. Torres – (Fall, Spring, Summer). Prereq: Consent of instructor</td>
<td>Doctoral thesis work in immunology.</td>
</tr>
</tbody>
</table>

INTERDEPARTMENTAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDPT 5600</td>
<td>Topics in Biomedical Science and Research</td>
<td>4.0 cr.</td>
<td>Dr. S. Flores - (Summer)</td>
<td>Research internship for undergraduate fellows in Graduate Experiences for Multicultural Students (GEMS) program.</td>
</tr>
<tr>
<td>IDPT 7160</td>
<td>Philosophical Foundations of Research Ethics</td>
<td>2.0 cr.</td>
<td>Dr. M. Yarborough - (Spring) Crosslisted: CLSC 7160.</td>
<td>This course will examine the philosophical basis for current research ethics practices, address current ethical issues and controversies in biomedical research and provide students with knowledge and analytical skills to address the ethical dimensions of biomedical research.</td>
</tr>
<tr>
<td>IDPT 7200</td>
<td>Scientific Writing for Doctoral Students</td>
<td>2.0 cr.</td>
<td>Dr. D. Wilkerson - (Spring) Prereq: Must have passed preliminary examination; permission of instructor.</td>
<td></td>
</tr>
</tbody>
</table>
Scientific writing course for students engaged in research. Focuses on critical thinking, analytical writing, and oral presentation. Taught as a writing workshop, the course emphasizes effective communication with both professional and non-technical audiences.

IDPT 7300 Technology Transfer and Biotechnology 3.0 cr.
Dr. A. Meyers - (Fall, Spring)
The purpose of this course is to inform students about the process of technology transfer, from academic discovery and invention to commercialization of a product.

IDPT 7305 Hands On Proteomics Workshop 1.0 cr.
Dr. N. Reisdorph - (Fall, Spring, Summer)
4-day intensive hands-on workshop designed to provide comprehensive view of proteomics. Appropriate for individuals with little/no experience in mass spectrometry and/or high performance liquid chromatography. Participants learn introductory proteomics science and applicable protocols/technologies through extensive hands-on experience. Instructor permission only.

IDPT 7645 MSTP Seminar 1.0 cr.
Dr. A. Ribera - (Fall, Spring)
Designed to expose MSTP and physician scientist students to research programs and opportunities in biomedical sciences at the UC Denver Anschutz Medical campus and selected departments of the UC Boulder campus.

IDPT 7646 Tissue Biology and Disease Mechanism 3.0 cr.
Dr. J. Hooper - (Spring) Prereq: Biomedical Sciences Core Courses.
This course provides an overview of organ systems and disease through 1) a survey of the major systems, including the cellular and molecular mechanisms underlying their function and repair, integrated with 2) common diseases, current therapies, and their mechanistic basis.

IDPT 7650 Research in Biomedical Sciences Variable cr.
Dr. D. Bentley - (Fall, Spring, Summer) Prereq: Consent of instructor.
Research rotation for students in the biomedical sciences Ph.D. program.

IDPT 7651 Summer Research Rotation Variable cr.
Dr. A. Gutierrez-Hartmann - (Summer) Prereq: Acceptance into the MST Program and permission of MSTP Director.
This course is an 8-10 week laboratory rotation experience in an MSTP training laboratory.

IDPT 7652 MSTP Advanced Topics Variable cr.
Dr. A. Ribera - (Fall, Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815; permission of instructor.
This course is designed for students in the MSTP and consists of in-depth small group (1-7 students) sessions that provide in-depth didactic and/or paper readings on subjects related to research rotations or thesis projects.

IDPT 7655 Thesis Years – Foundations of Doctoring 1 cr.
Dr. A. Gutierrez-Hartmann - (Fall, Spring, Summer) Prereq: All Phase I and II SOM courses. Course Restrictions: Permission of Instructor.
This course intended for MD or MD-PhD students who have successfully completed all coursework for Phases I and II of SOM curriculum, are on leave of absence from SOM and wish to maintain clinical exposure and training during the leave.

IDPT 7805 Case Studies: Molecules to Medicine 3.2 cr.
Dr. A. Ribera - (Fall) Crosslisted: IDPT 5002 Prereq: Biomedical Sciences Core Courses Coreq: Biomedical Sciences Core Courses.
This course is targeted for first year MSTP/Physician-Scientist students. Clinical cases will be presented/discussed by faculty and students to provide clinical context for basic science principles taught in the graduate core courses (IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815).

IDPT 7811 Biomedical Sciences Core Course I 2.0 cr.
Dr. M. Churchill - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Block 1: Building blocks and guiding biophysical principles.

IDPT 7812 Biomedical Sciences Core Course II 2.5 cr.
Dr. R. Davis - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Block 2: Generating the blocks.

IDPT 7813 Biomedical Sciences Core Course III 2.5 cr.
Dr. R. Evans - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Block 3: Building a cell: Cell structure and function.
IDPT 7614 Biomedical Sciences Core Course IV 1.5 cr.
Dr. A. Bradford - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Block 4: How does it function: Cell signaling.

IDPT 7615 Biomedical Sciences Core Course V 1.5 cr.
Dr. K. Artinger - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Block 5: Putting it all together: Development, organs and systems.

IDPT 7850 Independent Study in Bioethics, Medical Humanities or Health Law Variable cr.
Dr. M. Yarborough - (Fall, Spring, summer) Course Restrictions: Permission of the instructor. Repeatable for credit within the degree program, but not within the same term Maximum credits - 6.
Course is designed to meet the needs of students interested in conducting advanced studies of issues and topics in bioethics, medical humanities, or health law. Students will work under the direction of the course director on a specific research topic.

IDPT 8890 Clinical Experience for CTSI PhD Students 1.0 cr.
Dr. C. Sladek - (Fall, Spring, summer) Prereq: IDPT 7805 and IDPT 7646, EPID 6630, BIOS 6601 or equivalent. Course Restrictions: PhD Grad Students Each student will identify a clinician mentor who will develop/direct a clinical experience tailored to student’s thesis research. It may include participation in relevant clinical conference, a direct clinical experience, clinical research, preparation of clinical research protocol.

MICROBIOLOGY

MICB 7650 Research in Microbiology Variable cr.
Dr. J. Schaack - (Fall, Spring, Summer) Prereq: Consent of instructor. Research work in microbiology.

MICB 7701 Molecular Virology and Pathogenesis 3.0 cr.
Dr. J. Schaack - (Spring) Prereq: IDPT 7803 or consent of instructor. Molecular principles of viral pathogenesis. Topics include virus-host interactions, infectious diseases, cancer and virus replication. Students are assessed via in-class presentations, class participation and a written exam.

MICB 7702 Molecular Mechanisms of Bacterial Disease 2.0 cr.
Dr. R. Gill - (Spring) Prereq: IDPT 7803 or consent of the instructor. Course will provide an introduction to the biology of pathogenic bacteria and an in-depth discussion of several paradigms of bacterial diseases which will illustrate important concepts and molecular mechanisms of bacterial pathogenesis and evasion of the host defenses.

MICB 7703 Contemporary Topics in Molecular Bacteriology 1.0 cr.
Dr. R. Gill - (Spring) Prereq: IDPT 7803 or consent of instructor. Lecure and discussion course. Topics may include: biochemical/genetic control of bacterial cell cycle, growth rate and cellular differentiation signal transduction and responses to environmental stimuli, genetic regulation of microbial pathogenesis. Students assessed via in-class presentations, class participation, and written exam.

MICB 7704 Host Response to Infectious Disease 2.0 cr.
Dr. L. VanDyk - (Spring) Prereq: IDPT 7803 or consent of instructor. This interactive graduate course, which provides an overview and specific examples of the host response to infectious disease. Current research and future directions in the field are discussed. Students are assessed via presentations, participation, and an exam.

MICB 7705 Medical Microbiology 4.0 cr.
Dr. R. Gill - (Fall) Prereq: Consent of instructor. Course introduces students to certain fundamental features of microorganisms and their ability to cause disease. Topics include: molecular/cellular aspects of bacterial structure; specific properties of pathogenic bacteria; properties of viruses; diseases caused by viral agents. Students assessed by written exams.

MICB 8990 Doctoral Thesis Variable cr.
Dr. J. Schaack - (Fall, Spring, Summer) Doctoral thesis work in microbiology.

MOLECULAR BIOLOGY

MOLB 7616 Topics in Molecular and Cellular Biology 1.0 cr.
Dr. J. Kieft – (Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.
Various topics in molecular and cellular biology will be selected every year. Each topic will be studied by a faculty lecture and group presentations by graduate students of research papers.

MOLB 7650 Research in Molecular Biology
Dr. J. Kieft - (Fall, Spring, Summer) Prereq: Consent of the instructor.
Research work in molecular biology.

MOLB 7661 Molecular Biology Seminar
Dr. J. Kieft - (Fall, Spring)
Seminar series provides a forum for the presentation of scientific experiments and information in molecular biology by faculty, postdoctoral fellows, graduate students and invited outside guest speakers.

MOLB 7800 Advanced Topics in Molecular Biology
Dr. J. Kieft - (Spring) Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815. Course Restrictions: By permission of instructor. Course offered in 4 blocks of 1 hour of credit each.
Course instructs graduate students how to critically evaluate scientific literature. Course in 4 blocks, topics include nucleic acid, chromatin structure, DNA replication, RNA transcription, RNA processing, cell cycle control, genetics of model organisms. Papers chosen by instructors, presentations by students.

MOLB 8990 Doctoral Thesis
Dr. J. Kieft - (Fall, Spring, Summer)
Doctoral thesis work in molecular biology.

NEUROSCIENCE

NRSC 7600 Cellular & Molecular Neurobiology
Dr. N. Schoppa - (Fall)
A comprehensive, in-depth, discussion-based course intended for candidates for the PhD in Neuroscience. Topics include ion channel structure and function, ionic basis of the resting and action potential, and the biochemistry and physiology of direct and indirect synaptic transmission.

NRSC 7605 Directed Studies in Biomedical Science
Dr. D. Restrepo - (Fall)
Unified presentation of fundamental principles of biochemistry, cell biology, genetics, and molecular biology. Designed for all first-year basic sciences graduate students. Students will take 80% of the lectures in IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.

NRSC 7610 Fundamentals of Neurobiology
Dr. T. Finger - (Spring) Prereq: NRSC 7600 or equivalent at the discretion of the instructors. This course will provide basic knowledge on the structure and function of the nervous system. The lectures will be supplemented by discussion of primary research literature in neurobiology.

NRSC 7614 Molecular Basis of Neuropsychiatric Disorders
Dr. S. Leonard - (Spring) Prereq: IDPT 7802 or BMGN 5000/CSBI 5001. This elective, for basic sciences graduate students and medical students, provides a survey of current clinical and molecular aspects of human neuropsychiatric disorders. Both movement disorders and DSMIV diagnoses will be covered. Contact Course Director for a list of topics.

NRSC 7615 Developmental Neurobiology
Dr. A. Ribera - (Spring) Prereq: IDPT 5004, NRSC 7600 & NRSC 7610. This course will cover fundamental principles regarding development of the nervous system. The format of the course will consist of lecture plus reading of primary literature.

NRSC 7616 Introduction to Biomedical Photonics
Dr. D. Restrepo - (Spring) Prereq: EE 5802 Optical Engineering. The course introduces several principles of applying optical techniques to biomedical applications. Current development of biophotonic research, such as microscopy, optical coherence tomography, optical spectroscopic techniques in tissues, will be discussed.

NRSC 7650 Research in Neuroscience
Dr. D. Restrepo – (Fall, Spring, Summer) Prereq: Consent of instructor. Research work in neuroscience.

NRSC 7661 Grant Proposal Writing Workshop
Dr. R. Levinson - (Spring) Prereq: NRSC 7610. Course is practical workshop in grant-writing culminating in a mock review panel including course participants. Students will examine various proposal types/formats, then write their own proposal in the format of NRSA fellowship application. Restricted to students with adequate neuroscience background.

NRSC 7670 Advanced Topics in Neuroscience
Dr. D. Restrepo – (Fall, Spring, Summer) Prereq: NRSC 7600 or permission from instructor.
The course will consist of discussion of manuscripts relevant to a specific topic in neuroscience.

NRSC 7800 Teaching Neuroscience
1.0 cr.
Dr. D. Restrepo – (Spring)
Prereq: NRSC 7610
Course Restrictions: Second year students in neuroscience or above.
Students will be guided in developing two class sessions in systems neuroscience to be presented in the Systems Neuroscience course, NRSC 7610. Each session will include a practice presentation and post-mortem critique.

NRSC 8990 Doctoral Thesis
Variable cr.
Dr. D. Restrepo – (Spring)
Prereq: Consent of instructor
Doctoral thesis work in neuroscience.

PHARMACOLOGY

PHCL 7560 Drug Metabolism & Pharmacogenetics I
1.0 cr.
Dr. V. Vasiliou - (Fall)
Crosslisted: TXCL 7560.
Course will focus on reactions that exogenous compounds undergo in mammalian systems and mechanisms of these reactions. Enzyme kinetics and unusual (idosyncratic) drug responses that have a hereditary basis and the interrelationship between genes and drug metabolism will be discussed.

PHCL 7561 Drug Metabolism and Pharmacogenetics II
2.0 cr.
Dr. V. Vasiliou - (Spring)
Crosslisted: TXCL 7561.
Course will focus on reactions that exogenous compounds undergo in mammalian systems and mechanisms of these reactions. Enzyme kinetics and unusual (idosyncratic) drug responses that have a hereditary basis and the interrelationship between genes and drug metabolism will be discussed.

PHCL 7600 Frontiers in Pharmacology
1.0 cr.
Dr. T. Kutateladze - (Fall)
Course is intended to introduce students to cutting-edge pharmacology research and to the range of research opportunities available within the Pharmacology Training Program. Pharmacology Department faculty presentations will focus on cellular signaling, molecular mechanisms of drug actions, structure-based drug design.

PHCL 7605 Ethics in Research
1.0 cr.
Dr. J. Sikela – (Fall)
The Department of Pharmacology in the UCD School of Medicine organizes and offers an interactive course entitled “Ethics in Research”. The course is designed to inform/sensitize students, trainees, faculty to problems of fraud, misconduct and unethical practices in scientific research.

PHCL 7606 Receptors and Cell Signaling
3.0 cr.
Dr. M. Dell'Acqua - (Spring)
Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814 and IDPT 7815.
This elective course presents an in-depth treatment of the role of receptors and signal transduction systems in the regulation of cell functions through faculty-presented lectures and student-led discussions of current literature.

PHCL 7609 Statistical Methods in Pharmacology
2.0 cr.
Dr. J. Sikela – (Fall)
Course Restrictions: Restricted to Pharmacology PhD Students.
Introduction to basic statistical methods utilized to analyze scientific data. The goal of course is to provide students in the biological/health sciences with the knowledge/skills necessary to analyze/interpret data which is essential for communicating scientific results.

PHCL 7610 Survey of Bioinformatics Methods
2.0 cr.
Dr. L. Hunter - (Fall)
What is Bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, and what computational analyses are possible?

PHCL 7611 Bioinformatics I
4.0 cr.
Dr. L. Hunter - (Fall)
Crosslisted: BISO 7711.
Prereq: Bioinformatics PhD students or consent of instructor.
What is Bioinformatics and why study it? How is large-scale molecular biology data generated, where and how can researchers gain access to it, what computational analyses are possible and computational techniques for solving inference problems in molecular biology?

PHCL 7612 Bioinformatics II
4.0 cr.
Dr. L. Hunter - (Spring)
Crosslisted: BISO 7712.
Prereq: BISO 7711
Inference problems and computational techniques for molecular biology, with emphasis on machine learning approaches. Use of computational induction techniques focused on information extraction from biomedical literature, inference of biochemical networks from high-throughput data, and prediction of protein function.

PHCL 7614 Membrane Biophysics
2.0 cr.
Dr. T. Benke - (Spring)
Crosslisted: NRSC 7614.
Prereq: NRSC 7600 or equivalent
Lectures and homework on ionic mechanisms underlying cellular excitability, especially in the central nervous system. Descriptive mathematics, pharmacology and molecular biology will be stressed. An introductory application to real-life problems using the NEURON simulation environment will be taught.

PHCL 7615
Grant Proposals in Pharmacology
Dr. K. Bayer - (Fall)
Restrictions: None but priority enrollment for Pharmacology students
We will learn principles of good grantsmanship, and hone our skills in homework assignments and discussions. Our goal is to enable a better learning experience during comps proposal writing, by gaining the tools for optimized self-assessment.

PHCL 7620
Principles of Pharmacology
Dr. J. Sikela – (Spring)
Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815, Course Restrictions: Consent of course directors required.
Lectures are provided in the general areas of pharmacokinetics, receptor theory, structure-activity relationships, drug metabolism, basic pharmacological mechanisms with a particular emphasis on systems such as the nervous system and cardiovascular system, as well as cancer and microbial chemotherapy.

PHCL 7622
Principles of Pharmacology for MSTP Students
Dr. J. Sikela – (Spring)
Prereq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815, PHCL 6000. Course Restrictions: Consent of course directors required.
Lectures are provided in the general areas of pharmacokinetics, receptor theory, structure-activity relationships, drug metabolism, and basic pharmacological mechanisms with a particular emphasis on systems such as the nervous system and cardiovascular system, as well as cancer and microbial chemotherapy.

PHCL 7650
Research in Pharmacology
Dr. J. Sikela – (Fall, Spring, Summer)
Prereq: Consent of instructor.
Research work in pharmacology.

PHCL 7660
Advanced Topics in Pharmacology
Dr. D. Port – (Fall, Spring, Summer)
Prereq: PHCL 7600, PHCL 7606, PHCL 7609, PHCL 7620, PHCL 7650. Coreq: IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815.
An in-depth discussion-oriented course for advanced students focusing each term on specific topics associated with pharmacological studies including new insights about drug addiction; alcohol actions and alcoholism memory models and LTP; rational approaches to cancer chemotherapy; cardiovascular physiology.

PHCL 8990
Doctoral Thesis
Dr. J. Sikela – (Fall, Spring, Summer)
Prereq: Consent of instructor.
Doctoral thesis work in pharmacology.

PHARMACEUTICAL SCIENCES

PHSC 7300
Applied Statistics in Research & Development
Dr. D. Clough - (Fall)
Crosslisted: CHEN 5128. Prereq: Undergraduate course in probability and statistics.
Students learn statistical methods that are appropriate to experimentation in research and development activities. Statistical design of experiments and model fitting are emphasized. Students apply methods using spreadsheets and statistical software.

PHSC 7310
Fundamentals of Pharmaceutical Sciences
Dr. D. Bain - (Fall)
Crosslisted: TXCL 7310
Core course explores key aspects of Pharmaceutical Sciences. Major themes will focus on macromolecular interactions, pharmaceutics, pharmacokinetics, pharmacodynamics, apoptosis, signal transduction and immunology. Critical thinking and problem solving skills will be emphasized via lectures, discussions, and computer-based data analyses.

PHSC 7325
Pharmaceutical Development: Evaluating the External Environment
Dr. R. Valuck - (Summer)
An overview of pharmaceutical industry in U.S. and the environment in which it exists. Material covered includes: epidemiology/classification of disease; trends in health care costs/expenditures; organization/financing of health care; pharmaceutical industry characteristics; drug product marketing and introduction to pharmaceutical outcomes/economics.

PHSC 7330
Issues in Drug Development
Dr. J. Carpenter - (Spring)
Prereq: Permission from instructor.
A multidisciplinary approach to educating students about all aspects of drug development including federal drug regulatory issues, natural product screening, combinatorial chemistry, high throughput screening, in vitro and in vivo pharmacology models, preclinical/clinical toxicology, dosage forms, and clinical trials design.

PHSC 7339
Human Subjects Ethics
Dr. A. Prochazka - (Spring)
An overview of the field of ethics in clinical research. It is designed for non-Clinical Science degree students and certificate students and investigators who will be conducting research involving human subjects. Topics include the historical background and current regulations.

PHSC 7345 Nanotechnology and Drug Delivery
2.0 cr.
Dr. U. Kompella - (Spring)
Prereq: Student should be enrolled in a graduate or equivalent program.
Course presents physicochemical and biological principles of drug delivery including drug delivery system design for various applications. In addition, it will address principles of nanotechnology related to the design of nanosize delivery systems intended for drug delivery, imaging and diagnosis.

PHSC 7350 Proteins
3.0 cr.
Dr. R. Hodges – (Spring) Crosslisted: BMST 7350.
Chemical and physical basis for protein structure, folding, function and stability; role of molecular dynamics, use of molecular simulations in investigations of protein-ligand and protein interactions; methods and principles of protein/peptide purification and enzyme catalysis, including electron transfer and mutagenesis.

PHSC 7354 Structural Analysis of BioMolecules I
2.0 cr.
Dr. R. Hodges – (Spring) Crosslisted: BMST 7354.
This course describes the fundamentals of spectroscopic methods used to study protein structure and function. These techniques include optical methods (CD spectroscopy, fluorescence and absorbance), vibrational methods (IR and ESR), analytical ultracentrifugation, mass spectrometry, calorimetry, light scattering and Biacore analysis.

PHSC 7400 Ethical Issues in Toxicology & Pharmaceutical Sciences
1.0 cr.
Dr. R. Agarwal - (Fall) Crosslisted: TXCL 7400.
The purpose of this course is to expose students to ethical issues in the fields of toxicology and pharmaceutical sciences. Emphasis will be placed on research conduct, animal use, and other timely issues relevant in these fields.

PHSC 7450 Protein Chemistry 2
2.0 cr.
Dr. J. Carpenter - (Spring) Crosslisted: BMST 7450.
This course represents methods/principles of protein/peptide purification and enzyme catalysis, including electron transfer/mutagenesis. In addition, the investigation of protein and enzyme structure/function, the role of molecular dynamics, and use of molecular stimulations in investigations of protein-ligand interactions will be presented.

PHSC 7454 Structural Analysis of Biomolecules 2
2.0 cr.
Dr. R. Hodges – (Spring) Crosslisted: BMST 7454.
Methods and strategies for determination of the primary and 3-dimensional structures of biologically important molecules. Crystallography, nuclear magnetic resonance spectroscopy and mass spectrometry will be taught in structural determination of proteins, nucleic acids complex carbohydrates, and lipid molecules.

PHSC 7530 Cancer: Experimental and Medical Aspects
2.0 cr.
Dr. A. Malkinson - (Spring)
Prereq: Permission of course coordinator.
This is an interactive seminar course on recent topics in cancer biology. Topics include biochemical/morphological description of tumors and tumor behavior, such as metastasis and angiogenesis, and tumor development. This course also covers aspects of carcinogenesis: mechanisms, modulation, testing/epidemiology, chemotherapy.

PHSC 7561 Pharmacology of Anticancer Agents
2.0 cr.
Dr. G Eckhardt - (Fall)
This is a course that will examine the principles behind the pharmacological treatment of cancer. Focus will be on the agents currently used in the clinic as well as developing therapies. Mechanistic aspects and therapeutic strategies will be emphasized.

PHSC 7568 Seminar in the Pharmaceutical Sciences
Variable cr.
Dr. D. Bain - (Fall, Spring)
Discusses current literature and research in the pharmaceutical sciences. The only revision for this course is that the maximum credit hours possible will be three.

PHSC 7570 Special Topics in Outcomes Research
1.0 cr.
Dr. R. Valuck - (Fall, Spring) Prereq: Graduate Standing & Consent of instructor.
This course involves identification, analysis and discussion of contemporary issues in the field of pharmaceutical outcomes research. Format and topics vary depending on the focus of the course for each semester.

PHSC 7610 Cost-Effectiveness Theory
3.0 cr.
Dr. P. Sullivan - (Fall)
The theoretical and methodological foundational course of a two-course sequence in cost-effectiveness analysis, this course will provide an overview of cost-effectiveness theory and methodology in health and medicine. It will also introduce patient-reported outcomes and health-related quality of life measurement.

PHSC 7611 Applied Cost-Effectiveness
3.0 cr.
Dr. P. Sullivan - (Spring) Prereq: PHSC 7610.
The final course of a two-course sequence in cost-effectiveness analysis, this course will apply the theory and methods learned in PHSC 7610 to develop competency in conducting cost-effectiveness analysis in health and medicine. Students will complete their own cost-effectiveness model.

PHSC 7620 Research Design & Methodology in Pharmaceutical Outcomes Research 2.0 cr.
Dr. K. Nair - (Spring) Prereq: Biostatistics and Epidemiology.
Examing the research methods used in conducting Pharmaceutical Outcomes Research.

PHSC 7621 Database Research Methods 2.0 cr.
Dr. M. McCollum - (Fall) Course Restrictions: Currently enrolled in a graduate-level program of study.
This course, the first of a two-course sequence, will cover theoretical and methodological foundations of database research. Topics will include observational research methods, data management and analysis considerations, and an overview of databases available for use in health services research.

PHSC 7622 Applied Database Research 3.0 cr.
Dr. M. McCollum - (Spring) Course Restrictions: Currently enrolled in a graduate-level program of study.
Course is first of two-course sequence in database research, providing students opportunity to apply theory and methods learned in PHSC7621 to develop competency in conducting research using secondary datasets. Students conduct their own database project and participate in critical discussions.

PHSC 7650 Research Rotation Pharmaceutical Sciences Variable cr.
Dr. D. Bain - (Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in pharmaceutical sciences.

PHSC 7651 Pharmaceutical Biotechnology 3.0 cr.
Dr. T. Randolph - (Fall) Crosslisted: CU Boulder CHEN 5900.
Course covers role of bioengineering in development of pharmaceutical biotechnology products. In particular, the student will learn to apply solution thermodynamics as well as mass and heat transfer concepts to the stabilization/formulation of macromolecules and production of drug delivery systems.

PHSC 7652 Principles of Medicinal Chemistry 2.0 cr.
Dr. J. Ruth - (Fall) Prereq: One-year organic chemistry with lab one semester of biochemistry.
This survey course covers organic chemistry of drugs with respect to drug action: mechanism of action, structure-activity relationships, metabolism, dosage forms and rational drug design. Course encompasses traditional therapeutic categories of drugs as well as selected topics from current literature.

PHSC 7653 Protein Formulation 2.0 cr.
Dr. J. Carpenter - (Spring)
This course will provide instruction in rational design of stable therapeutic protein formulations with emphasis on the practical and mechanistic aspects of developing aqueous solution and freeze-dried formulations. Students will read papers from the literature and participate in critical discussions.

PHSC 7654 Advanced Topics in Pharmacology Variable cr.
Dr. D. Bain - (Fall, Spring) Course Restrictions: Permission from Instructor/Program Director.
Considers special topic of current interest in pharmacology. Course may be repeated for credit with the instructor's approval.

PHSC 7657 Advanced Topics in Medicinal Chemistry Variable cr.
Dr. J. Ruth - (Fall, Spring) Prereq: Permission from instructor.
Considers special topic of current interest in medicinal chemistry. Course may be repeated for credit with the instructor's approval.

PHSC 7658 Advanced Topics in Pharmaceutical Sciences Variable cr.
Dr. D. Bain - (Fall, Spring) Prereq: Permission from instructor
Considers special topic of current interest in pharmaceutical sciences. Course may be repeated for credit with instructor's approval.

PHSC 7660 Membrane Dynamics 2.0 cr.
Dr. D. Bain - (Spring)
This course will cover the basics of membrane bioenergetics in biological systems. The physical properties of membranes are described based on studies with liposomes, and the course further explores the use of liposomes as drug delivery vehicles.

PHSC 7831 Case Studies in Biotechnology 2.0 cr.
Dr. D. Kompala – (Spring) Crosslisted: CU Boulder CHEN 5831.
Course is required of all graduate students in interdisciplinary graduate biotechnology certificate program and those supported on NIH training grants. Reviews molecular genetics, product synthesis/purification, economics, intellectual property, and business planning. Working in teams, students present a biotechnology product plan.

PHSC 8990 Doctoral Thesis Variable cr.
Dr. D. Bain - (Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in pharmaceutical sciences.
PHYSIOLOGY

PHSL 6001 Human Physiology 4.0 cr.
Dr. S. Vijayaraghavan – (Spring) Course Restrictions: BA or BS including Biology, Chemistry, Physics. Crosslisted: DSBS 5508-Physiology.
This course in Physiology is designed to provide an understanding of the functions of cells, tissues and organs in the human body and the overall integration of organ functions in the body as a whole.

PHSL 7650 Research in Physiology and Biophysics Variable cr.
Dr. S. Vijayaraghavan – (Fall, Spring, Summer) Prereq: Consent of instructor.
Research work in Physiology and Biophysics

PHSL 7840 Advanced Topics in Cell Signaling 1.0 cr.
Dr. N. Schoppa – (Fall, Spring, Summer) Prereq: Consent of instructor.
Students select topics in the area of cell signaling and receive one-on-one instruction from expert faculty. Each one-credit topic will be taught for 5 weeks. Course work will include reading and discussing papers, as well as practical exercises.

PHSL 8990 Doctoral Thesis Variable cr.
Dr. S. Vijayaraghavan – (Fall, Spring, Summer) Prereq: Consent of instructor.
Doctoral thesis work in physiology.

REPRODUCTIVE SCIENCES

RPSC 7650 Research in Reproductive Science Variable cr.
Dr. A. Bradford - (Fall, Spring, Summer) Prereq: Consent of the Instructor.
Research work in Reproductive Science

RPSC 7652 Special Topics in Reproductive Science Variable cr.
Dr. A. Bradford - (Fall, Spring, Summer) Prereq: Enrollment in PhD Program in Graduate School.
This course provides instruction in a specialized area of Reproductive Science. Course content and the extent of the course varies from year to year.

RPSC 7801 Molecular Mechanisms of Reproductive Endocrinology and Metabolism 3.0 cr.
Dr. A. Bradford - (Spring) Prereq: Core Courses IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815. Restrictions: UCDAMC grad students; others by permission of the Course Director.
Endocrine systems will be covered from the molecule to the systems level. Pituitary secretions actions/regulation, regulation of water, ion, calcium balance, regulation of metabolism including insulin secretion/action will be discussed, the context of normal physiology, the mechanisms of endocrine dysfunction.

RPSC 7802 Reproductive Development 1.0 cr.
Dr. A. Bradford - (Spring) Prereq: Core Courses IDPT 7811, IDPT 7812, IDPT 7813, IDPT 7814, IDPT 7815.
Focus of course is developmental biology of reproductive systems. Sex determination, fertilization, implantation, development of placenta and mammary glands will be covered in lectures and discussions of current literature. Course is designed to follow Endocrinology and Metabolism in Spring semester.

RPSC 8990 Doctoral Thesis Variable cr.
Dr. A. Bradford - (Fall, Spring, Summer) Prereq: Consent of the Instructor.
Doctoral thesis work in Reproductive Science

TOXICOLOGY

TXCL 7310 Fundamentals of Pharmaceutical Sciences 3.0 cr.
Dr. D. Petersen - (Fall) Crosslisted: PHSC 7310.
This core course explores key aspects of Pharmaceutical Sciences. Major themes will focus on macromolecular interactions, pharmaceutics, pharmacokinetics, pharmacodynamics, apoptosis, signal transduction and immunology. Critical thinking and problem solving skills will be emphasized via lectures discussions, and computer-based data analyses.

TXCL 7322 Molecular and Target Organ Toxicology 3.0 cr.
Dr. D. Ross - (Fall) Prereq: Need discussion with and consent of Instructor.
The course is designed to provide a foundation in molecular mechanisms of toxicity. Biochemical mechanisms underlying toxicity will be analyzed and integrated with discussions of reactive metabolites, oxidative stress, signal transduction, cell death and organ specific toxicity.

TXCL 7323 Environmental and Target Organ Toxicology 2.0 cr.
Dr. D. Fariss - (Spring) Prereq: Need discussion with and consent of Instructor.
The course is designed to provide a fundamental understanding of environmental-related toxicants (e.g., solvents, pesticides, metals, radiation) with emphasis on the molecular mechanisms underlying their organ specific toxicity and on risk assessment.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXCL 7325</td>
<td>Current Topics in Toxicology Research</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. C. Ju</td>
<td>(Fall, Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is a mandatory 2-credit hour course for Toxicology program graduate students. Each student is expected to lead one discussion per year, papers discussed will be authored by the upcoming Toxicology seminar series speaker. Grade given after Spring semester.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7326</td>
<td>Current Concepts & Comprehensive Review of Physiology</td>
<td>4.0 cr.</td>
</tr>
<tr>
<td>Dr. R. Radcliffe</td>
<td>(Fall, Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course will consist of a comprehensive overview of the physiology of nervous cardiovascular, respiratory, renal, gastrointestinal, endocrine, and reproductive systems. Graduate students enrolled in this course will receive assignments concerning organ-specific, cell-cell interactions in overall physiology.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7330</td>
<td>Issues in Drug Development</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. J. Carpenter</td>
<td>(Fall)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary approach to educating students about aspects of drug development including federal drug regulatory issues, natural product screening, combinatorial chemistry, high throughput screening, in vitro and in vivo pharmacology models, drug metabolism, preclinical/clinical toxicology, dosage forms and clinical trials design.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7400</td>
<td>Ethical Issues in Toxicology and Pharmaceutical Sciences</td>
<td>1.0 cr.</td>
</tr>
<tr>
<td>Dr. A. Agarwal</td>
<td>(Fall)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The purpose of this course is to expose students to ethical issues in the fields of Toxicology and Pharmaceutical Sciences. Emphasis will be placed on research conduct, animal use, and other timely issues relevant in these fields.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7475</td>
<td>Advanced Topics in Toxicology</td>
<td>Variable cr.</td>
</tr>
<tr>
<td>Dr. V. Vasiliou</td>
<td>(Fall)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Considers special topic of current interest in toxicology. Course may be repeated for credit with instructor’s consent.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7555</td>
<td>Evidenced-Based Toxicology</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>P. Guzelian</td>
<td>(Fall, Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students perform literature research to address actual ongoing consultations made to a private practice of environmental toxicology. Questions of occupational/environmental safety, product safety, regulatory compliance, personal injury, medical monitoring are addressed by writing conclusions formed using principles of Evidence-Based Toxicology.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7560</td>
<td>Drug Metabolism & Pharmacogenetics</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. V. Vasiliou</td>
<td>(Fall)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslisted: PHCL 7561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course focuses on reactions that exogenous compounds undergo in mammalian systems and mechanisms of reactions. Enzyme kinetics/unusual drug responses that have hereditary basis is discussed. Interrelationship between genes/drug metabolism along with studies on polymorphic differences in genes encoding drug-metabolizing enzymes.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7561</td>
<td>Drug Metabolism & Pharmacogenetics</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. V. Vasiliou</td>
<td>(Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslisted: PHCL 7561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course will focus on the reactions that the exogenous compounds undergo in mammalian systems and the mechanisms of these reactions. Enzyme kinetics and unusual (idiosyncratic) drug responses that have a hereditary basis will be discussed.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7562</td>
<td>Analytical Basis of Forensic Toxicology</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. V. Vasiliou</td>
<td>(Summer, Fall)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Considerations include type of sample, routes/kinetics of metabolism, analytical methodology, possible interferences of physiological impairment. Agents include ethanol, cocaine, cannabinoids, amphetamines, opiates, phencyclidine, and anabolic steroids.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7564</td>
<td>Environmental Risk Assessment and Applied Toxicology</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. D. Pyatt</td>
<td>(Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provides students with experience in risk assessment, environmental toxicology for public health and regulatory decision making. Topics include comprehensive human health risk assessments, baseline/probabilistic statistics, ecological risk assessment activities associated with emergency action, medical monitoring, role toxicology plays in courtroom.</td>
<td></td>
</tr>
<tr>
<td>TXCL 7575</td>
<td>Drug Development for the Toxicologist</td>
<td>2.0 cr.</td>
</tr>
<tr>
<td>Dr. V. Vasiliou</td>
<td>(Spring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of drug development process. Course will provide understanding of regulatory obligations required for submitting an N.D.A. as well as discussions related to additional corporate roles including activities for in vivo study conduct & due diligence review for licensing opportunities.</td>
<td></td>
</tr>
</tbody>
</table>
TXCL 7650 **Research Rotation in Toxicology**
Dr. V. Vasiliou - (Fall, Spring, Summer)
Research work in toxicology.

TXCL 7655 **Pharmacokinetics and Toxicokinetics**
Dr. V. Vasiliou - (Fall)
This is a course on the pharmacokinetic analysis of xenobiotics. Absorption, distribution, metabolism and elimination of drugs will be discussed with focus on mathematical descriptions.

TXCL 7670 **Methods in Molecular Toxicology**
Dr. V. Vasiliou - (Spring)
This is a laboratory-based course that involves the carrying out of biochemical, molecular and analytical based experiments in the laboratories of toxicology faculty. Requirements for each laboratory assignment will be at the discretion of the instructor for that section.

TXCL 8990 **Doctoral Thesis**
Dr. V. Vasiliou - (Fall, Spring, Summer) Prereq: Consent of the instructor.
Doctoral thesis work in toxicology.