Posterolateral Corner Injuries

Strategies for Treatment

Albert O. Gee, MD
Assistant Professor
Department of Orthopaedics and Sports Medicine
University of Washington

CU Sports Medicine Fall Symposium
September 22, 2017
Posterolateral Corner Injuries

• Majority are part of combined ligament tears (Knee dislocation)
• Bad injuries
• Relatively rare
• Heterogeneous group of knee injuries
 – High-energy vs Low-energy
 – Associated nerve / artery injury
 – Fractures

➤ Limited consensus on best treatment practices
Anatomy

• 3 main structures
 - Fibular collateral ligament (FCL)
 - Popliteus
 - Popliteofibular ligament (PFL)
Biomechanics

• Static stabilizers:
 - FCL
 - PFL
 - Posterolateral capsule

• Popliteus tendon
 - Dynamic and Static
Fibular Collateral Ligament

• Primary restraint to varus

• Proximal / posterior to femoral epicondyle

• Inserts on fibular head
Popliteofibular Ligament

- Static restraint to external rotation
- 2° varus restraint
- Posterior fibular styloid
- Muscle-tendon junction of popliteus
Popliteus

- Static / Dynamic restraint to external rotation
- Inserts at anterior fifth of popliteus sulcus
- 18.5 mm distance from FCL origin on femur
Physical Exam

• For high energy injuries
 - ATLS
 - Evaluate for associated injuries
 - Vascular injury to limb
 • Pulses
 • ABI < 0.9
 • Angiography
 - Compartment syndrome
Varus Stress Test

• Full extension

• 30° of flexion
External Rotation Recurvatum Test

• Extend knee by toes
• Recurvatum
• Varus and ER of tibia
Dial Test

- Ext Rotation at 30° / 90°
- Positive at 30° → PLC
- Positive at 90° → PLC + PCL

Veltri, Warren AJSM 1996
Posterolateral Spin Test

- ER stress at 90°
- Palpate step-off of lateral tibia
- Normal
 - Tibia anterior to femoral condyle
Imaging

• Plain radiographs
 – Stress radiographs
 – Full length alignment films (chronic injuries)

• MRI

• Vascular studies as needed
Treatment options

• Non-surgical treatment
 - Cast / Brace
 - External fixation
 - Consider when multiple co-morbid conditions / associated injuries

• Surgical treatment
 - Repair vs. Reconstruction
 - Reconstruction technique
 - Timing
Combined Injuries

• Isolated PL corner is uncommon (28%)

• Combined with another ligament (72%)
 - ACL or PCL or both
Surgical Techniques

- Larson (1996)
- Early anatomic – fibular based
- Semitendinosis allograft
Surgical Techniques

- Levy, Marx (2008)
- Fibular based reconstruction
- Achilles allograft
Surgical Techniques

- Stannard (2005)
- Modified two-tailed
- Tibia and fibula based
Surgical Techniques

• LaPrade, Engebretsen 2004

• Anatomic

• Tibia and fibula based

• 2 grafts
Surgical Techniques

• Numerous surgical techniques have been described
 - Fibular based
 - Anatomic (Tibial and fibular tunnels)

• No one surgical technique has been shown to be superior
 - Largely Level IV case series data
 - Much heterogeneity exists in the injury factors as well as in the treatment factors
 - Definitive conclusions or best practices lacking
Timing

• **Early (<3 weeks) vs Delayed Surgery**

• Remains controversial
 - Outcomes appear improved with Early treatment
 - ? Arthrofibrosis and stiffness with early surgery
 - More research needed → Randomized trial in the works
Timing

- Levy, Stannard et al. Arthroscopy 2009 –
- Systematic review of Acute vs. Chronic

Mean Lysholm Scores

<table>
<thead>
<tr>
<th>Study</th>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tzurbakis</td>
<td>88</td>
<td>82</td>
</tr>
<tr>
<td>Harner</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>Liow</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>Wascher</td>
<td>92</td>
<td>79</td>
</tr>
<tr>
<td>Fanelli</td>
<td>90</td>
<td>92</td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
<td>82</td>
</tr>
</tbody>
</table>
Timing

- **Levy, Stannard et al. Arthroscopy 2009** –

IKDC % Excellent/Good

<table>
<thead>
<tr>
<th>Study</th>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tzurbakis</td>
<td>77</td>
<td>56</td>
</tr>
<tr>
<td>Harner</td>
<td>53</td>
<td>8</td>
</tr>
<tr>
<td>Liow</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>Wascher</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>Fanelli</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>31</td>
</tr>
</tbody>
</table>
Repair vs Reconstruction

Stannard. AJSM, 2005

- N = 57 knees
 - 35 repaired
 - 22 reconstruction
- 77% multiligament injuries
- Repair group had delayed reconstruction of cruciates

Repair failure = 37%
Recon failure = 9%
Repair vs Reconstruction

Levy AJSM, 2010

- N = 28 knees
 - 10 repaired
 - 18 reconstruction

- PLC repair group had delayed reconstruction of cruciates

Repair failure = 40%
Recon failure = 6%
Conclusions

• Posterolateral corner injuries are very challenging

• Clinical outcomes vary widely

• Identify injured structures with good exam + imaging

• Associated injuries
 – Vascular and neurologic must be carefully assessed
Conclusions

• Often combined with other ligament injuries that need to be treated together

• Early surgery may improve outcomes

• Reconstruction may give better outcomes

• More research is needed
THANK YOU