Regional Anesthesia: An Introduction

SPECIAL ARTICLE

Anesthesiology 2003; 98:1503-8
© 2003 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

History of the Development and Evolution of Local Anesthesia Since the Coca Leaf

Jesús Calatayud, M.D., D.D.S., Ph.D.,* Ángel González, M.D., D.D.S., Ph.D.†

THE development of anesthesia in general and local anesthetics, in particular, required a cultural change. The concept of pain (especially obstetric pain) was linked to the concept of original sin, and the ability to endure pain was regarded as a sign of character and, in up to 0.7-1.8% by weight. Many species of this genus have been grown in Nicaragua, Venezuela, Bolivia, and Peru since pre-Columbian times. The earliest cultivation and use of the coca leaf in the Bolivian and Andean region date back to 700 B.C., though

Jason Ramirez, MD
Associate Director Acute Pain Service
University Hospital
March 2007
Objectives

- Understand the basic mechanism of action for local anesthetics
- Understand the difference between neuraxial and peripheral nerve blocks
- Be able to name some of the benefits and risks associated with regional anesthesia
- Be familiar with some of the common regional techniques used at University Hospital
Local Anesthetics: Cornerstone of Regional Anesthesia

- Temporary blockade of neuronal transmission when local anesthetics (LAs) injected near nerve fibers
- Results in motor and sensory blockade
- Dilute concentrations of LAs can provide sensory blockade while preserving motor function
Motor and Sensory Blockade

Diagram of a neuron showing the components such as dendrites, soma, axon hillock, myelin sheath, axon, presynaptic terminals, and muscle fiber.
Mechanism of Action

- Local Anesthetics cross nerve membranes where they stop axonal conduction
- Local Anesthetics exist in 2 forms
 - the unionized weak base formLA
 - crosses nerve membranes
 - The ionized form.........................LAH+
 - binds NA channels preventing depolarization
Mechanism of Action

- Unionized form.. LA.. crosses nerve membrane
- Becomes ionized .. LAH⁺.. and blocks sodium channels
Local Anesthetic Structure

Aromatic Ring

Intermediate Chain

Tertiary Amine

CH$_3$

O

NH

C

CH$_2$

N

C$_2$H$_5$

C$_2$H$_5$

MAYO CLINIC
Local Anesthetic Structure

\[
\begin{array}{c}
O \\
\text{NH} \quad \text{C} \quad \text{CH}_2
\end{array}
\]

Intermediate Chain

- Determines Local Anesthetic Class and Metabolism
Types of Regional Anesthesia

- **Neuraxial Anesthesia**
 - Local anesthetic is injected into the neuraxis
 - Site of action is at the nerve root
 - Results motor and/or sensory block which follows a dermatomal pattern
 - Includes epidural and spinal anesthesia

- **Peripheral Nerve Blockade**
 - LA injected near peripheral nerves
 - Resulting block follows the innervation of each particular nerve
Why Regional Anesthesia?

Benefits of a Regional Technique

- avoidance of general anesthesia
 - no airway instrumentation
 - no risk of malignant hyperthermia
 - less risk of post-op nausea and vomiting
Benefits Continued

- decreased incidence of DVT, PE
- decreased amount of intraoperative blood loss
- improved pain control and patient satisfaction
- less opioid use
- earlier ambulation and improved rehabilitation outcomes
Risks of Regional Anesthesia

- Block Failure
- Direct Tissue Damage
 - hematoma formation
 - direct nerve trauma
 - damage to other organs or structures
- Local Effects
 - nerve toxicity
Risks Continued

- Systemic Effects
 - Allergic reactions
 - Excessive or high block
 - hypotension
 - bradycardia
 - loss of airway
 - Local anesthetic toxicity
 - seizures
 - CV collapse
Neuraxial Anesthesia
spinal and epidural

• Results in dermatomal pattern of blockade
Epidural and Spinal

- epidural catheter placement for labor analgesia
Epidural Catheter Placement

- Epidural needle
- Catheter
Peripheral Nerve Blockade at the University Hospital

• Common Block Procedures
 • Popliteal Fossa
 • Sciatic Nerve
 • Femoral Nerve
 • Lumbar Plexus
 • Brachial Plexus
 • Interscalene, Supraclavicular
 • Infraclavicular, Axillary
Peripheral Nerve Blockade

- Single injection popliteal nerve block for foot and ankle surgery

www.nysora.com
Peripheral Nerve Blockade

- Sciatic nerve block for LE surgery

www.nysora.com
Peripheral Nerve Block

• Femoral Nerve block for post-op pain control following knee surgery
Peripheral Nerve Blockade

- Psoas compartment block placing LA into the lumbar plexus
- Utilized in hip replacement surgery
Peripheral Nerve Blockade

- Interscalene approach to the brachial plexus
- Used in shoulder replacement and rotator cuff repair
References

- Rathmell, *Regional Anesthesia The Requisites In Anesthesiology*, 2004
- Morgan, *Clinical Anesthesiology 3rd Ed*, 2002
- New York School of Regional Anesthesia Website, NYSORA.com
- Google Images Search links
 - http://mywebpages.comcast.net/epollak/PSY255_pix/PSY255_pix.htm
 - [adam.about.com/surgery/100195.htm](adam/about.com/surgery/100195.htm)