Acute Pain

Nathaen Weitzel, M.D.
Assistant Professor of Anesthesiology
Objectives

- Understand the basic mechanism of action for local anesthetics
- Understand the difference between neuraxial and peripheral nerve blocks
- Name some of the benefits and risks associated with regional anesthesia
- Be familiar with common regional techniques
SPECIAL ARTICLE

History of the Development and Evolution of Local Anesthesia Since the Coca Leaf

Jesús Calatayud, M.D., D.D.S., Ph.D.,* Ángel González, M.D., D.D.S., Ph.D.†

THE development of anesthesia in general and local anesthetics, in particular, required a cultural change. The concept of pain (especially obstetric pain) was linked to the concept of original sin, and the ability to endure pain was regarded as a sign of character and, in up to 0.7–1.8% by weight. Many species of this genus have been grown in Nicaragua, Venezuela, Bolivia, and Peru since pre-Columbian times. The earliest cultivation and use of the coca leaf in the Bolivian and Andean region date back to 700 B.C., though

www.anesthesiology.org
First Topical Anesthetic: Cocaine - 1884

Karl Koller
Infiltration and Nerve Block

Anesthesia - 1885

William Stewart Halsted

Mandibular Nerve Block
Epidural Anesthesia: Corning in 1885

Space Identification

Thoracic & Lumbar Placement

Epidural Catheters
Spinal Anesthesia: Bier in 1898
Local Anesthetics: What do they do?

- Temporarily alter neuronal transmission when injected near nerve fibers
- Produce motor and sensory blockade
- Provide sensory blockade while preserving motor function (dilute concentrations)
Local anesthetics slow the rate of depolarization of the nerve action potential.
Mechanism of Action

- Mechanism of Action
 - Local Anesthetics cross nerve membranes where they alter axonal conduction
- Local Anesthetics exist in 2 forms
 - The unionized weak base formLA
 - crosses nerve membranes
 - The ionized form..........................LAH⁺
 - binds NA channels preventing depolarization
Regional anesthesia: Sequence of onset

- Sequence of onset of anesthesia
 - Depends on the rise of LA concentration near the nerves and the length of the fiber exposed to the LA

- Clinically observed sequence:
 1. **Sympathetic nervous system fibers**
 (B fibers: Vasodilation, skin temperature ↑)
 2. **Temperature and pain conduction** (Aδ and C fibers)
 3. **Proprioception and touch** (Aγ and Aβ fibers)
 4. **Motor function** (Aα fibers)
Motor and Sensory Block
Local Anesthetic Structure

Aromatic Ring

Intermediate Chain

Tertiary Amine
Local Anesthetic Structure

NH₂ \(\text{O} \) \(\text{C} \) \(\text{CH}_2 \)

Intermediate Chain

- Determines Local Anesthetic Class and Metabolism
Local Anesthetics: types

Esters
- Procaine
- Chloroprocaine
- Tetracaine
- Cocaine

Amides
- Lidocaine
- Mepivacaine
- Bupivacaine
- Prilocaine
- Ropivacaine
Local anesthetics - Classes
(Rule of “i’s”)

<table>
<thead>
<tr>
<th>Esters</th>
<th>Am"i”des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine</td>
<td>Bupivacaine</td>
</tr>
<tr>
<td>Chloroprocaine</td>
<td>Lidocaine</td>
</tr>
<tr>
<td>Procaine</td>
<td>Ropivacaine</td>
</tr>
<tr>
<td>Tetracaine</td>
<td>Etidocaine</td>
</tr>
<tr>
<td></td>
<td>Mepivacaine</td>
</tr>
</tbody>
</table>
In 1943, the first modern local anesthetic agent was lidocaine, trade name Xylocaine®.
- Sets on quickly and produces a desired anesthesia effect for several hours.
- It’s accepted broadly as the local anesthetic in United States today.
Drug specific properties and effects

- What determines **time to onset of action**?
 - $\text{pK}_a \downarrow = \text{(ionization} \downarrow) = \text{time to onset} \downarrow$

- What determines **potency**?
 - Lipid solubility $\uparrow = \text{potency} \uparrow$

- What determines **duration of action**?
 - Protein binding \uparrow and lipid solubility $\uparrow = \text{duration of action} \uparrow$

Local anesthetics

<table>
<thead>
<tr>
<th></th>
<th>pK$_a$:</th>
<th>onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
<td>7.8</td>
<td>quick</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>8.1</td>
<td>intermediate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>lip. sol.:</th>
<th>potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
<td>46</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>390</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>prot. bind.:</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
<td>64</td>
<td>intermediate</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>95</td>
<td>long</td>
</tr>
</tbody>
</table>
Types of Regional Anesthesia

- **Neuraxial Anesthesia**
 - Local anesthetic is injected into the neuraxis
 - Site of action: nerve root
 - Produces motor and/or sensory block with dermatomal pattern
 - Includes epidural and spinal anesthesia

- **Peripheral Nerve Blockade**
 - LA injected near peripheral nerves
 - Block follows innervation of each particular nerve
Why Regional Anesthesia?

- Benefits of a Regional Technique
 - avoids general anesthesia
 - no airway instrumentation
 - no risk of malignant hyperthermia
 - less risk of post-op nausea and vomiting
More Benefits....

- Decreased risk for DVT, PE
- Reduced intraoperative blood loss
- Improved pain control and patient satisfaction
- Less opioid use
- Earlier ambulation and improved rehabilitation outcomes
Risks of Regional Anesthesia

- **Block Failure**
 - Direct Tissue Damage
 - hematoma formation
 - nerve trauma
 - damage to other organs or structures
- **Local Effects**
 - neuro toxicity
More Risks...

- Systemic Effects
 - Allergic reactions
 - Excessive or high block
 - hypotension
 - bradycardia
 - loss of airway
 - Local anesthetic toxicity
 - seizures
 - CV collapse
Neuraxial Anesthesia: spinal and epidural

- Results in dermatomal pattern of blockade
Epidural, Spinal, & Combined Spinal Epidural

- epidural catheter placement for labor analgesia
Anatomy

- Vertebral body
- Anterior spinal root
- Paravertebral nerve
- Posterior spinal root
- Subarachnoid space
- Spinal cord
- Dorsal root ganglion
- Dura mater
- Epidural space
- Ligamentum flavum
Epidural Catheter Placement
Peripheral Nerve Blockade

- Common Block Procedures
 - Popliteal Fossa
 - Sciatic Nerve
 - Femoral Nerve
 - Lumbar Plexus
 - Lumbar Plexus
 - Brachial Plexus
 - Interscalene, Supraclavicular
 - Infraclavicular, Axillary
Peripheral Nerve Blockade

- Single injection popliteal nerve block for foot and ankle surgery
Peripheral Nerve Blockade

- Sciatic nerve block for LE surgery
Peripheral Nerve Block

- Femoral Nerve block for post-op pain control following knee surgery
Peripheral Nerve Blockade

- Lumbar Plexus block placing LA into the lumbar plexus
- Utilized in hip replacement surgery
Peripheral Nerve Blockade

- Supraclavicular approach to the brachial plexus
- Used in upper extremity surgery
References

- Rathmell, Regional Anesthesia The Requisites In Anesthesiology, 2004
- Morgan, Clinical Anesthesiology 3rd Ed, 2002
- New York School of Regional Anesthesia Website, NYSORA.com
- Google Images Search links
 - http://mywebpages.comcast.net/epollak/PSY255_pix/PSY255_pix.htm
 - adam.about.com/surgery/100195.htm