Life Threatening Infections, Antibiotic Selection, and Antibiotic Resistance

Fredric M. Pieracci, MD, MPH
Assistant Professor of Surgery
University of Colorado School of Medicine
Staff Surgeon, Denver Health Medical Center

Surgical Grand Rounds, 10.10.11
Necrotizing Soft Tissue Infections (NSTI)
Necrotizing Soft Tissue Infections

• **Epidemiology**
 – Rare but lethal bacterial infection of skin and soft tissue
 – Outcome correlated strongly with time to definitive therapy and adequacy of debridement
 – Protracted, complicated, expensive hospitalization

• **Nomenclature**
 – Necrotizing cellulitis
 – Necrotising fasciitis
 – Necrotising myositis
 – Fournier’s gangrene: perineal source
NSTI Subtypes

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Organisms</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (80%)</td>
<td>Polymicrobial</td>
<td>25%</td>
</tr>
<tr>
<td>Type II</td>
<td>Group A Streptococcus</td>
<td>25%</td>
</tr>
<tr>
<td>Type III</td>
<td>Clostridial spp.</td>
<td>75%</td>
</tr>
<tr>
<td>Fornier’s</td>
<td>Polymicrobial</td>
<td>75%</td>
</tr>
</tbody>
</table>
NSTI
Pathophysiology

• **Primary**
 - Vibrio vulnificus
 - Clostridium septicum

• **Secondary**
 - Trauma
 - Surgical incisions
 - Neglected sSSTIs

• **Severity**
 - Innoculum
 - Virulence
 - Foreign body/ischemic tissue
 - Impaired host defenses
NSTI
Pathophysiology

Bacterial proteases cleave tissue planes → Local necrosis → sepsis → MOF
NSTI
Diagnosis

- Overlying skin often unaffected
- Pain out of proportion to exam
- Edema and tenderness extend beyond rim of cellulitis
- Crepitus specific but not sensitive
- Clostridial species \(\rightarrow\) anemia & jaundice (hemolysis)
- Myonecrosis \(\rightarrow\) ↑ CPK
LRINEC Score

- Range 0-13
- < 6 \rightarrow unlikely
- 6-8 \rightarrow likely
- > 8 \rightarrow very likely
- At a cutoff of 6, PPV = 92% and NPV = 96%
- Not a substitute for clinical judgment

<table>
<thead>
<tr>
<th>Value</th>
<th>LRINEC score, points</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-reactive protein, mg/L</td>
<td></td>
</tr>
<tr>
<td><150</td>
<td>0</td>
</tr>
<tr>
<td>>150</td>
<td>4</td>
</tr>
<tr>
<td>WBC count, cells/mm³</td>
<td></td>
</tr>
<tr>
<td><15</td>
<td>0</td>
</tr>
<tr>
<td>15-25</td>
<td>1</td>
</tr>
<tr>
<td>>25</td>
<td>2</td>
</tr>
<tr>
<td>Hemoglobin level, g/dL</td>
<td></td>
</tr>
<tr>
<td>>13.5</td>
<td>0</td>
</tr>
<tr>
<td>11-13.5</td>
<td>1</td>
</tr>
<tr>
<td><11</td>
<td>2</td>
</tr>
<tr>
<td>Sodium level, mmol/L</td>
<td></td>
</tr>
<tr>
<td>>135</td>
<td>0</td>
</tr>
<tr>
<td><135</td>
<td>2</td>
</tr>
<tr>
<td>Creatinine level, mg/dL</td>
<td></td>
</tr>
<tr>
<td>≤1.6</td>
<td>0</td>
</tr>
<tr>
<td>>1.6</td>
<td>2</td>
</tr>
<tr>
<td>Glucose level, mg/dL</td>
<td></td>
</tr>
<tr>
<td>≤180</td>
<td>0</td>
</tr>
<tr>
<td>>180</td>
<td>1</td>
</tr>
</tbody>
</table>
NSTI
Diagnostic imaging

- Specific but insensitive
- If positive, usually too late
- Should not delay initiation of therapy based on physical exam
- The morbidity secondary to a missed diagnosis justifies a relatively high false negative rate at exploration
NSTI
Treatment

• Surgical emergency

• Debridement to include margin of healthy tissue

• Re-exploration within 24 hours until infection controlled

• Multiple coverage options
NSTI
Treatment

• Broad spectrum antibiotics
 1. Vancomycin
 2. Broad-spectrum GN agent (e.g., carbapenem, pip/tazo)
 3. Clinda vs. PCN G

• Supportive ICU care

• HBO, IVIg of unproven benefit
NSTI
Summary

• Rare, elusive, lethal

• Diagnosis rests on clinical exam with low threshold for surgical intervention

• Usually polymicrobial \rightarrow Broad spectrum antibiotics until organism isolated

• Vigilant follow up until eradication of infection

• **Pitfalls**
 – Diagnostic delay
 – Inadequate debridement
Antibiotic Selection
General Principals

- Timely initiation of broad spectrum therapy, followed by timely discontinuation of unnecessary therapy
- Know the host
- Know the bugs (local antimicobiogram)
Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock.

Anand Kumar, MD; Daniel Roberts, MD; Kenneth E. Wood, DO; Bruce Light, MD; Joseph E. Parrillo, MD; Satendra Sharma, MD; Robert Suppes, BSc; Daniel Feinstein, MD; Sergio Zanotti, MD; Leo Taiberg, MD; David Gurka, MD; Aseem Kumar, PhD; Mary Cheang, MSc

(Crit Care Med 2006; 34:1589–1596)
Antibiotic Selection
Suspected Infection

100% Sensitivity 100% Specificity

Draw Cultures → Broad-spectrum Antibiotics → Interpret Cultures

Continue → De-escalate → Escalate
Inadequate Antimicrobial Therapy Associated with Increased Mortality

Mortality (%)

0 20 40 60 80 100

Ruiz (2000)
Rello (1997)
Luna (1997)
Kollef (1999)
Dupont (2001)

Inadequate initial antibiotic treatment
Adequate initial antibiotic treatment

Antibiotics are not a substitute for source control
Which Antibiotic(s)?

- Likely organisms
- Activity of antimicrobial agents
- Bactericidal vs bacteriostatic therapy
- Resistance issues
- Patient tolerability
- Compatibility with other treatment
Risk Factors for MDR Organisms

• Hospitalization > 48 hours
• Immunosuppression
• Postoperative infection
• Recent antibiotic therapy
• Recent (< 30 days) contact with healthcare environment
• Residence in skilled nursing care or long term care facility
Antibiotic Selection
Covering the Gamut

<table>
<thead>
<tr>
<th></th>
<th>MSSA</th>
<th>MRSA</th>
<th>Enteric GNR</th>
<th>Anaerobes</th>
<th>Pseudo</th>
<th>C. diff</th>
<th>ESBL Kleb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cefepime</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pip/tazo</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vanco</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Antibiotic Selection
Ventilator Associated Pneumonia

<table>
<thead>
<tr>
<th>Clinical Scenario</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR organisms unlikely</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>MRSA likely</td>
<td>Vanomycin, ceftriaxone</td>
</tr>
<tr>
<td>Pseudomonas likely</td>
<td>Vancomycin, pip/tazo</td>
</tr>
<tr>
<td>PCN allergy</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>Linezolid, pip/tazo</td>
</tr>
<tr>
<td>Acinetobacter likely</td>
<td>Vancomycin, polymixin B</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>Vanco, pip/tazo, flucononazole</td>
</tr>
</tbody>
</table>
Antibiotic Selection
Dosing

• Inadequate dosing results in both clinical failure and resistance

• Associated with poor outcomes

• Vancomycin = 15 mg/kg q12 h; drive trough > 20

• Gentamicin 7 mg/kg daily; amikacin 20 mg/kg daily

• Levofloxacin 750 mg; ciprofloxacin 400 mg every 8 h

• Piperacillin/tazobactam 4.5g every 6 h
Continuous-Infusion Beta-lactams

- Takes full advantage of a drug’s exposure potential in the context of in vitro potency
- No alteration in dose, dosing schedule, or toxicity
- Opportunity to improve efficacy of selected therapy while minimizing resistance
Special Situations
Obesity

• \uparrow Adipose:lean mass alters V_d
 – Lipophilic drugs \rightarrow ABW vs. IBW
 – Hydrophilic drugs \rightarrow IBW vs. ABW

• V_d and Cr clearance highly unpredictable
 – Measure Cr clearance
 – follow serum concentrations whenever possible

Table 3. Dosing weights in obese patients for selected drugs used commonly in critical illness

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosing Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propofol</td>
<td>ABW</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>ABW</td>
</tr>
<tr>
<td>Single-dosage</td>
<td>IBW</td>
</tr>
<tr>
<td>Continuous infusion</td>
<td>IBW</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>$\frac{52}{1} + \left[196.4 \times e^{-0.025 \times ABW} - 53.66\right]/100$</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>ABW</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>IBW + $(0.40 \times [ABW - IBW])$</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>IBW + $(0.40 \times [ABW - IBW])$</td>
</tr>
<tr>
<td>Drotrecogin alfa (activated)</td>
<td>ABW</td>
</tr>
</tbody>
</table>

ABW, actual body weight; IBW, ideal body weight.
Special Situations

“Double Coverage”

• Differentiate from broad spectrum empiric coverage

• Theory of antimicrobial synergy
 – Improved killing
 – Prevention of resistance

• Early meta-analysis in immunocompromised patients showed no benefit and possible harm

• Recent resurgence with positive outcomes
• 64 trials 7586 patients (1981-2001)

• No mortality difference

• Clinical failure slightly more common with combination therapy (OR=0.87 [0.78-0.97], p=0.03)

• No advantage when specifically treating pseudomonas

• Decreased nephrotoxicity with monotherapy (OR 0.36 [0.28,0.47], p<0.01)
Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: A propensity-matched analysis

Anand Kumar, MD; Ryan Zarychanski, MD; Bruce Light, MD; Joseph Parrillo, MD; Dennis Maki, MD; Dave Simon, MD; Denny Laporta, MD; Steve Lapinsky, MD; Paul Ellis, MD; Yazdan Mirzanejad, MD; Greg Martinka, MD; Sean Keenan, MD; Gordon Wood, MD; Yaseen Arabi, MD; Daniel Feinstein, MD; Aseem Kumar, PhD; Peter Dodek, MD; Laura Kravetsky, BSc; Steve Doucette, MSc; the Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group
Special Situations
Fungal infection

• 3rd most common cause of ICU bloodstream infection

• Differentiation of colonization from invasive infection is difficult
 – Fungemia
 – Isolated from ≥ 2 sites
 – Immunosuppression
 – Failure to improve despite source control and antimicrobial therapy
Special Situations
Fungal infection

- Empiric therapy indicated in select situations:
 - Septic shock + prior prolonged antibiotic exposure
 - Septic shock + immunosuppression
 - Recurrent GI perforation or anastomotic leak

Critical Care Medicine. 27(6):1066-1072, June 1999.
Newer Agents
Linezolid

- Alternative therapy for VAP caused by gram-positive bacteria (MRSA)
- Achievable concentrations in bronchial secretions exceed those in serum
- Dosing adjustment not needed for renal or hepatic insufficiency
- Enteral administration has equivalent bioavailability.
- Clinical equivalence of linezolid and vancomycin in the treatment of VAP caused by gram-positive pathogens; post hoc logistic regression analysis of reported a significantly increased likelihood of clinical cure for linezolid
- Favorable cost effectiveness analyses
Tigecycline
(Glycylcyclines)

- Broad spectrum of activity against gram positives, gram negatives, and anaerobes

- Avoidance of common tetracycline resistance mechanisms (ribosomal protection, efflux pump)

- Dose 100 mg IV then 50 mg IV q12H; no adjustment necessary for renal or mild-mod hepatic impairment

- Comparable clinical cure rates to carbapenems for cIAI and Vanco/aztreonam for cSSTI

- Not active against *Pseudomonas*
Moxifloxacin

- Quinolone with broad range of activity, including gram positives (MRSA), enteric gram negatives, and anaerobes

- Dosing
 - 400 mg IV/PO QD
 - no adjustment for renal or hepatic impairment

- Primary surgical indications = cSSI and cIAI

- Misses MRSA and probably most pseudomonas
Daptomycin

- Binds to and rapidly depolarizes cell membrane of gram positive bacteria (bacteriocidal)
- Highly effective against most gram-positive bacteria, including isolates resistant to methicillin, vancomycin, and linezolid
- No mechanisms of resistance identified
- Current primary indication is for cSSI
- Dosing 4 mg/kg qd (q48 if CrCl < 30 ml/min)
- Major toxicity = rhabdo (0.2%, self-limited, follow CPKs)
Antibiotic Resistance
Antibiotic Resistance Continues to Increase in ICUs and is a Major Healthcare Issue

Graph:
- **Vancomycin/enterococci:** 28.5%
- **Methicillin/S. aureus:** 59.5%
- **Methicillin/CNS:** 89.1%
- **3rd Ceph/E. coli***:** 5.8%
- **3rd Ceph/K. pneumoniae**:** 21.1%
- **Imipenem/P. aeruginosa:** 29.5%
- **Quinolone/P. aeruginosa:** 31.9%
- **3rd Ceph/P. aeruginosa:** 31.1%
- **3rd Ceph/Enterobacter spp.:** 80%

<table>
<thead>
<tr>
<th>Jan–Dec 2003 No. of Isolates</th>
<th>% increase in resistance (2003 vs 98-02*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td>12%</td>
</tr>
<tr>
<td>4100</td>
<td>11%</td>
</tr>
<tr>
<td>3336</td>
<td>1%</td>
</tr>
<tr>
<td>1355</td>
<td>0%</td>
</tr>
<tr>
<td>1068</td>
<td>47%</td>
</tr>
<tr>
<td>1392</td>
<td>15%</td>
</tr>
<tr>
<td>1825</td>
<td>9%</td>
</tr>
<tr>
<td>2119</td>
<td>20%</td>
</tr>
<tr>
<td>1411</td>
<td>-6%</td>
</tr>
</tbody>
</table>

*January through December 2003
1998 through 2002 (+/- standard deviation)
Increase in Resistant Nosocomial Infections: MRSA

http://www.cdc.gov/drugresistance/healthcare/ha/slideset.htm
Factors Contributing to Antibiotic Resistance

- Increased severity of illness
- Severely immunocompromised patients
- New devices and procedures
- Resistance in the community
- Ineffective source control
- Inappropriate antibiotic usage
- Greater antibiotic usage
Strategies to Minimize Antibiotic Resistance

- Limit initiation of antimicrobial therapy
- Limit duration of prophylactic therapy
- Limit duration of empiric therapy
- Limit duration of targeted therapy
- Choice of antibiotic class
- Antibiotic rotation
Most febrile ICU patients do not have an infection.

- SIRS Only: 59%
- No SIRS: 26%
- Sepsis Only: 4%
- Severe Sepsis: 8%
- Septic Shock: 3%

Rangel-Frausto JAMA 273: 117, 1995
Antibiotic Exposure Greatly Increases Risk of Subsequent Resistant Infections

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study Setting</th>
<th>Findings and Odds Ratio (OR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velmahos</td>
<td>2002</td>
<td>Prophylaxis of severely injured trauma patients</td>
<td>Abx > 24 h: OR 2.13</td>
</tr>
<tr>
<td>Harbarth</td>
<td>2000</td>
<td>Surgical prophylaxis following CABG</td>
<td>Abx > 48 h increases gram-negative resistance: OR 1.6</td>
</tr>
<tr>
<td>Kollef</td>
<td>1999</td>
<td>Resistant pathogens in nosocomial MICU and SICU infections</td>
<td>Prior Abx exposure: OR 3.39</td>
</tr>
<tr>
<td>May</td>
<td>2006</td>
<td>ICP monitor prophylaxis in trauma</td>
<td>Broad-spectrum prophylaxis increased subsequent resistant infections</td>
</tr>
</tbody>
</table>
Prophylactic Antibiotics - Appropriate Duration of Therapy

• Single dose therapy is as affective as multiple doses in majority of studies.
 – Longer therapy indicated in some cases
 • usually related to inadequate data
 – No studies indicate treatment longer than 72 hrs is beneficial
 – No studies support continuing therapy for drains/tubes

AJHP 1999; 56:1839-88
Measures specific to surgical prophylaxis:

1. Prophylactic antibiotics received within 1 hour prior to surgical incision
2. Appropriate prophylactic antibiotic selection for surgical patients
3. Prophylactic antibiotics discontinued within 24 hours after surgery end time
4. Postoperative serum glucose 6 AM control in cardiac patients
5. Appropriate hair removal
6. Immediate postoperative normothermia for CRS patients
7. Postoperative wound infection diagnosed during index hospitalization

Days of Antibiotics and Risk of MRSA-Pooled Odds Ratios

Comparison of 8 vs 15 Days of Antibiotic Therapy for Ventilator-Associated Pneumonia in Adults
A Randomized Trial

- 401 patients from 51 French ICUs; VAP diagnosed bronchoscopically by quantitative microbiology

- Mortality, vent-days, ICU days, and recurrent infection equivalent

- Recurrence with MDR organism less likely in 8 day group

- Higher re-infection rate if initial organism non lactose fermenting GNR (*pseudo*, *acineto*)
Antibiotic Class and Resistance

- Certain classes of antibiotics have greater likelihood of selecting for resistance

 - Broad-spectrum cephalosporins
 - MRSA, VRE, C. difficile, ESBLs, Acinetobacter

 - Fluoroquinolones
 - MRSA, MDR gram-negatives

 - Vancomycin
 - MRSA, VRE

 - Clindamycin
 - C. difficile
Antibiotic Rotation Strategies Appear to Contribute to a Reduction in Gram-Negative Resistant Pathogens

<table>
<thead>
<tr>
<th>MDR Pathogen Group</th>
<th>IRR (95% CI; p-value)</th>
<th>Infection Rate Relative Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pathogens</td>
<td>0.24 (0.13 to 0.42; p<0.0001)</td>
<td>-76%</td>
</tr>
<tr>
<td>Acinetobacter</td>
<td>0.33 (0.14 to 0.80; p=0.014)</td>
<td>-67%</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>0.10 (0.02 to 0.41; p=0.001)</td>
<td>-90%</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>0.28 (0.11 to 0.76; p=0.012)</td>
<td>-72%</td>
</tr>
</tbody>
</table>

MDR = resistance to 3 or more AB classes; IRR = Incidence Rate Ratio

Negative Binomial Regression Model: Multidrug resistant Infection rate – count variable; Patient-days - exposure variable; AB rotation – predictor variable

Summary

• Most febrile patients do not need antibiotics; treat patients, not fevers

• Antibiotics are not a substitute for source control

• When initiating antibiotics, hit them early, hard, and with big doses

• Practice timely de-escalation/discontinuation

• Make informed decisions regarding antibiotic selection based on knowledge of the host, local environment, and suspected infection

• Judicious antibiotic use with halt the emergence of resistant organisms and save lives
Life Threatening Infections, Antibiotic Selection, and Antibiotic Resistance

Fredric M. Pieracci, MD, MPH
Assistant Professor of Surgery
University of Colorado School of Medicine
Staff Surgeon, Denver Health Medical Center

Surgical Grand Rounds, 10.10.11
U Penn School of Medicine
Philadelphia, PA

NYPH/Weill Cornell
New York, NY

Denver Health Medical Center
Denver, CO
Bactericidal/Bacteriostatic Antimicrobials vs MSSA/MRSA

Bactericidal
- Aminoglycosides
- Daptomycin
- Vancomycin
- Quinupristin-dalfopristin (MSSA only)

Bacteriostatic
- Linezolid
- TMP-SMX

DORIPENEM

- Spectrum similar to imipenem and meropenem
- In vitro, enhanced activity against and a lower propensity to select for resistance in P. aeruginosa\(^1,2\)
- MIC\(_{90}\) for resistant Enterobacteriaceae (CTZ-R Citrobacter and Enterobacter and ESBL+ Klebsiella and E. coli) are 1-2 and 2-4 dilutions lower than meropenem and imipenem, respectively\(^1\)
- Distributes well to tissue, including CNS\(^3\)
- In animals, lower potential for CNS toxicity compared to imipenem\(^4\)
- Stability in solution allows for prolonged infusion\(^5\)

Carbapenems: MIC₉₀ (mcg/mL)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Doripenem<sup>*</sup></th>
<th>Ertapenem</th>
<th>Meropenem</th>
<th>Imipenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methicillin-susceptible S. aureus (<i>n=498</i>)<sup>1</sup></td>
<td>0.06</td>
<td>0.5</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>Methicillin-resistant S. aureus (<i>n=1275</i>)<sup>1</sup></td>
<td>8</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Klebsiella spp., ESBL+ (<i>n=34</i>)<sup>2</sup></td>
<td>0.06</td>
<td>0.25</td>
<td>0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>Enterobacter spp., CTZ-resistant (<i>n=33</i>)<sup>2</sup></td>
<td>0.12</td>
<td>4</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>B. fragilis (<i>n=81</i>)<sup>3</sup></td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Other <i>Bacteroides fragilis</i> group species (<i>n=84</i>)<sup>3</sup></td>
<td>1 – 2 (<i>n=110</i>)</td>
<td>1 - 2</td>
<td>0.5</td>
<td>0.5 – 1</td>
</tr>
</tbody>
</table>

• Breakpoint criteria for meropenem and imipenem; breakpoints not assigned to doripenem
Doripenem Phase III

Complicated intra-abdominal infection\(^1,2\)

- Doripenem demonstrated non-inferiority to meropenem in both studies

- **Malafia et al:**
 - Clinical response rate for ME at TOC: 83.3% (D) vs. 83% (M)
 - Microbiologic response at TOC: 83.3% (D) vs. 83.4% (M)

- **Lucasti et al:**
 - Clinical cure rate for ME at TOC: 86.7% (D) vs. 86.6 (M)
 - Clinical cure rates were comparable between the CE and ME treatment groups, at TOC and early follow-up, respectively

1. Malafaia O et al. Presented at the 46th ICAAC; Sept 27-30, 2006; San Francisco, CA. poster L-1074b; 2, Lucasti C et al. Presented at the 1007 ECCMID, Munich, Germany, Poster #834;
Doripenem Phase III

Nosocomial Pneumonia (in progress)

• Randomized, open-label study in non-ventilated nosocomial pneumonia (NP) or early ventilator-associated pneumonia (VAP)
 – Doripenem 500 mg IV q8h (1 h infusion) vs. piperacillin-tazobactam 4.5 g IV q6h, with optional switch to levofloxacin PO after study day 3
 – Adjunctive amikacin for Pseudomonas; MRSA coverage optional
 – Duration of therapy: 7 to 14 days (IV + oral)

• Randomized, open-label study in ventilator-associated pneumonia (VAP)
 – Doripenem 500 mg IV q8h (4 h) vs. imipenem 500 mg q6h or 1g q8h IV only
 – Prolonged doripenem infusion
 – Adjunctive if P. aeruginosa, MRSA
Common Antibiotic-Resistance Mechanisms

- Ribosomal protection
- Macrolide and tetracycline efflux pumps
- PBP alterations (target site modifications)
- Beta-lactamases (including extended spectrum beta-lactamases)
- DNA gyrase mutations
Tigecycline Indications

<table>
<thead>
<tr>
<th>cSSSI</th>
<th>cIAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complicated skin and skin structure infections (cSSSI) in adults caused by susceptible strains of:</td>
<td>• Complicated intra-abdominal infections (cIAI) in adults caused by susceptible strains of:</td>
</tr>
<tr>
<td>– E. coli</td>
<td>– C. freundii</td>
</tr>
<tr>
<td>– E. faecalis</td>
<td>– E. cloacae</td>
</tr>
<tr>
<td>– S. aureus (including MRSA)</td>
<td>– E. coli</td>
</tr>
<tr>
<td>– S. agalactiae</td>
<td>– K. oxytoca</td>
</tr>
<tr>
<td>– S. anginosus group</td>
<td>– K. pneumoniae</td>
</tr>
<tr>
<td>– S. pyogenes</td>
<td>– E. faecalis†</td>
</tr>
<tr>
<td>– B. fragilis</td>
<td>– S. aureus†</td>
</tr>
</tbody>
</table>

*Vancomycin-susceptible isolates only.
†Methicillin-susceptible isolates only.
Tigecycline: An Expanded Broad Spectrum of In Vitro Activity

<table>
<thead>
<tr>
<th>Tygacil™ (tigecycline) IN VITRO ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram positives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gram negatives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anaerobes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Resistant gram positives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Resistant gram negatives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
</tbody>
</table>
Clinical Cure Rates in cSSSI and cIAI

<table>
<thead>
<tr>
<th></th>
<th>Tigecycline</th>
<th>Vancomycin plus aztreonam</th>
<th>Imipenem-cilastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure Rate (%)</td>
<td>87</td>
<td>89</td>
<td>86</td>
</tr>
</tbody>
</table>

Data on file, Wyeth Pharmaceuticals Inc.
<table>
<thead>
<tr>
<th>Infections</th>
<th>Pathogens</th>
<th>AVELOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complicated Intra-Abdominal Infections</td>
<td>Including polymicrobial infections such as abscess caused by Escherichia coli, Bacteroides fragilis, Streptococcus anginosus, Streptococcus constellatus, Enterococcus faecalis, Proteus mirabilis, Clostridium perfringens, Bacteroides thetaiotaomicron, or Peptostreptococcus species</td>
<td>400 mg IV/PO q24h 5-14 days*</td>
</tr>
<tr>
<td>Community-Acquired Pneumonia</td>
<td>Streptococcus pneumoniae (including multi-drug resistant strains [MDRSP**]), Haemophilus influenzae, Moraxella catarrhalis, methicillin-susceptible Staphylococcus aureus, Klebsiella pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae</td>
<td>400 mg IV/PO q24h 7 to 14 days</td>
</tr>
<tr>
<td>Acute Bacterial Exacerbation of Chronic Bronchitis</td>
<td>S pneumoniae, H influenzae, Haemophilus parainfluenzae, K pneumoniae, methicillin-susceptible Staphylococcus aureus, M catarrhalis</td>
<td>400 mg IV/PO q24h 5 days</td>
</tr>
<tr>
<td>Acute Bacterial Sinusitis</td>
<td>Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis</td>
<td>400 mg IV/PO q24h 10 days</td>
</tr>
</tbody>
</table>
Antibiotic Activity Against Staphylococci

SECURE Survey, United States 2000-2001

<table>
<thead>
<tr>
<th>Organism</th>
<th>Daptomycin</th>
<th>Linezolid</th>
<th>Q-DA</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSA</td>
<td>0.25</td>
<td>4.0</td>
<td>0.25</td>
<td>1.0</td>
</tr>
<tr>
<td>MRSA</td>
<td>0.5</td>
<td>4.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>MSSE</td>
<td>0.5</td>
<td>2.0</td>
<td>0.25</td>
<td>1.0</td>
</tr>
<tr>
<td>MRSE</td>
<td>0.5</td>
<td>2.0</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

MIC$_{90}$ μg/mL

Q-DA=quinupristin-dalfopristin.