Stress Ulcer Prophylaxis in the ICU:
If you can’t feed them, proton pump inhibit them

Karen Lo
University of Colorado, PGY4
March 26, 2012
Stress Related Mucosal Injury
Overview

- History
- Physiology
- Who is at risk?
- The medications:
 - Why PPIs are better
Stress Related Mucosal Injury History

- 1800s: Curling described ulcers in burn patient
- 1969: Skillman reported stress ulcers in ICU patients
- 1970s: Lucas coined the term stress related mucosal damage
- 1980s incidence of stress ulcers decreasing by increasing gastric pH

Stress Related Mucosal Injury

- Endoscopic studies have shown nearly all critically ill patients develop upper GI erosions
 - 90% ICU patients have gastric erosions by ICU day 3

Stress Related Mucosal injury
Pathophysiology

Critical Illness

- Increased catecholamines
- Increased vasoconstriction
- Hypovolemia
- Proinflammatory cytokine release
- Cardiac output

Splanchnic hypoperfusion

- Reduced HCO$_3^-$ secretion
- Reduced mucosal blood flow
- Decreased GI motility
- Acid back diffusion

Acute stress ulcer

Source: Curr Med Res Opin © 2005 Librapharm Limited
Stress Related Mucosal Injury
Who is at risk?

Level 1

- Mechanical ventilation over 48 hours
- Coagulopathy
 - INR >1.5 or plt<50
- Traumatic brain injury
- Major burn

Level 2

ICU pt with:
- Multi-trauma
- Sepsis
- Acute Renal failure

Stress Related Mucosal Injury
Prophylaxis:

What drug do I use?

- Antacid
- Carafate
- H2 blockers
- PPI
Stress Related Mucosal Injury
the other meds:

Antacids

- Neutralizes the acid of the stomach
- Oral
- Re-dose every 1-2 hours
- Aspiration pneumonia
- Toxicity:
 - Hypermagnesium
 - Hyperphosphotemia
 - Hypercalemia
Stress Related Mucosal Injury

the other meds:

Antacids

- Neutralizes the acid of the stomach
- Oral
- Re-dose every 1-2 hours
- Aspiration pneumonia
- Toxicity:
 - Hypermagnesium
 - Hyperphosphotemia
 - Hypercallemia
Stress Related Mucosal Injury

the other meds: Sucralfate

- Oral
- Coats and adheres to gastric mucosa
- Does not change gastric pH
- Decreases absorption of some medications
- Aluminum toxicity
Stress Related Mucosal Injury
the other meds:
Sucralfate

- Coats and adheres to gastric mucosa
- Does not change gastric pH
- Decreases absorption of some medications
- Aluminum toxicity
Stress Related Mucosal Injury
the other meds:
Histamine Receptor Antagonist

- Oral and IV
- Ranitidine superior to sucralfate in preventing UGI bleed in ICU Pt *
- Reversibly binds to H₂ receptor of parietal cells

*Cook, Risk factors for clinically important UGI bleeding in pts requiring mechanical Ventilation. Critical Care Med 1999 Dec 27(12):28 12-7
Stress Related Mucosal Injury
the other meds:
Histamine Receptor Antagonist

- Does not acid stop stimulation from Acetycholine and Gastrin receptors
Stress Related Mucosal Injury
the other meds:

Histamine Receptor Antagonist

- Less gastric acid control
- Multiple daily dosing
- Unwanted side effects: 7% adverse reactions
 - Altered mental status, neutropenia, thrombocytopenia
- Increased incidence of hospital acquired pneumonia
- Drug Resistance: Tachyphylaxis
Stress Related Mucosal Injury

PPI

- Irreversibly binds to Proton pump
 - Inhibiting the final step in acid production
 - Rapid onset of action
 - Longer duration of action

![Diagram showing the proton pump and its receptors](Figure 1a)

Figure reproduced with permission from Lars Olbe, Enar Carlsson, and Per Lindberg. A Proton-Pump Inhibitor Expedition: The Case of Omeprazole and Esomeprazole. Nature Reviews Drug Discovery (www.nature.com) 2003;2:132-139
Stress Related Mucosal Injury

PPI

- Irreversibly binds to Proton pump
 - Inhibiting the final step in acid production
 - Rapid onset of action
 - Longer duration of action

Figure 1a

The proton pump

Figure reproduced with permission from Lars Olbe, Enar Carlsson, and Per Lindberg. A Proton-Pump Inhibitor Expedition: The Case of Omeprazole and Esomeprazole. Nature Reviews Drug Discovery (www.nature.com) 2003;2:132-139
Stress Related Mucosal Injury

PPI

- Safe
- Do not increase the risk of hospital acquired pneumonia

Stress Related Mucosal Injury
Oral PPI versus IV H2B

- Direct comparison omeprazole versus ranitidine in 77 trauma patients
- Prospective RCT
- Single institution

TABLE 3. CLINICAL OUTCOMES*

<table>
<thead>
<tr>
<th></th>
<th>Ranitidine</th>
<th>Omeprazole</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress ulcer bleed</td>
<td>11 (31%)</td>
<td>2 (6%)</td>
<td><0.05</td>
</tr>
<tr>
<td>Nosocomial pneumonia</td>
<td>5 (14%)</td>
<td>1 (3%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* Clinically significant bleeding, secondary to stress ulcers, occurred at a statistically significant more frequent rate in those patients receiving ranitidine as compared to omeprazole. Nosocomial pneumonia also occurred more frequently in patients given ranitidine; however, the difference was not statistically significant.

Stress Related Mucosal Injury
PPI versus H2B

- **PPI** less incidence of stress ulcer bleed: 6%
- **H2B** increased incidence of stress ulcer bleeding: 31%

LEVY, Comparison of Omeprazole and Ranitidine for Stress Ulcer Prophylaxis, Digestive Diseases Science. 1997; 42; 6

Table 3. Clinical Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Ranitidine</th>
<th>Omeprazole</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress ulcer bleed</td>
<td>11 (31%)</td>
<td>2 (6%)</td>
<td><0.05</td>
</tr>
<tr>
<td>Nosocomial pneumonia</td>
<td>5 (14%)</td>
<td>1 (3%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Clinically significant bleeding, secondary to stress ulcers, occurred at a statistically significant more frequent rate in those patients receiving ranitidine as compared to omeprazole. Nosocomial pneumonia also occurred more frequently in patients given ranitidine; however, the difference was not statistically significant.
Stress Related Mucosal Injury

PPI versus H2B

- H2B do increased the risk of hospital acquired Pneumonia
- PPIs do not increase the risk of hospital acquired Pneumonia

<table>
<thead>
<tr>
<th>TABLE 3. CLINICAL OUTCOMES*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ranitidine</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Stress ulcer bleed</td>
</tr>
<tr>
<td>Nosocomial pneumonia</td>
</tr>
</tbody>
</table>

* Clinically significant bleeding, secondary to stress ulcers, occurred at a statistically significant more frequent rate in those patients receiving ranitidine as compared to omeprazole. Nosocomial pneumonia also occurred more frequently in patients given ranitidine; however, the difference was not statistically significant.

Thomson, Safety of long term use of PPI, World Journal of Gastroenterology 2010 May 21;16(19) 2323-2330
Stress Related Mucosal Injury
Oral PPI versus IV H2B

<table>
<thead>
<tr>
<th></th>
<th>Omeprazole Oral Suspension (n = 178)</th>
<th>Intravenous Cimetidine (n = 181)</th>
<th>Confidence Interval for the Difference in Rates, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant bleeding, n (%)</td>
<td>7 (3.9)</td>
<td>10 (5.5)</td>
<td>−100.0, 2.8<sup>a</sup></td>
</tr>
<tr>
<td>Any overt bleeding, n (%)</td>
<td>34 (19.1)</td>
<td>58 (32.0)</td>
<td>−21.9, −4.0<sup>b</sup></td>
</tr>
<tr>
<td>Inadequate pH control, n (%)</td>
<td>32 (18.0)</td>
<td>105 (58.0)</td>
<td>−49.2, −30.9<sup>c</sup></td>
</tr>
</tbody>
</table>

Any overt bleeding included both end point and non-end point bleeding. Inadequate pH control was defined as two consecutive gastric pH determinations of ≤4 at least 1 hr apart on any given day of treatment; tabulated patients experienced inadequate pH control at least once during the trial. The difference in rates was calculated as omeprazole-cimetidine.

^a Noninferiority analysis, one-sided 97.5% confidence interval; ^b two-sided 95% confidence interval, p = .005; ^c two-sided 95% confidence interval, p < .001.

Conrad. Randomized, double blind comparison of immediate-release omeprazole oral suspension vs IV cimetidine for prevention of UGI bleed in Critically ill patients, Critical care med 2005;33 760-765
Table 2. Results in the intent-to-treat population

<table>
<thead>
<tr>
<th></th>
<th>Omeprazole Oral Suspension (n = 178)</th>
<th>Intravenous Cimetidine (n = 181)</th>
<th>Confidence Interval for the Difference in Rates, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant bleeding, n (%)</td>
<td>7 (3.9)</td>
<td>10 (5.5)</td>
<td>-100.0, 2.8³</td>
</tr>
<tr>
<td>Any overt bleeding, n (%)</td>
<td>34 (19.1)</td>
<td>58 (32.0)</td>
<td>-21.9, -4.0b</td>
</tr>
<tr>
<td>Inadequate pH control, n (%)</td>
<td>32 (18.0)</td>
<td>105 (58.0)</td>
<td>-49.2, -30.9c</td>
</tr>
</tbody>
</table>

Any overt bleeding included both end point and non-end point bleeding. Inadequate pH control was defined as two consecutive gastric pH determinations of ≤4 at least 1 hr apart on any given day of treatment; tabulated patients experienced inadequate pH control at least once during the trial. The difference in rates was calculated as omeprazole-cimetidine.

³Noninferiority analysis, one-sided 97.5% confidence interval; btwo-sided 95% confidence interval, p = .005; ctwo-sided 95% confidence interval, p < .001.
Stress Related Mucosal Injury

Oral PPI versus IV H2B

Table 2. Results in the intent-to-treat population

<table>
<thead>
<tr>
<th></th>
<th>Omeprazole Oral Suspension (n = 178)</th>
<th>Intravenous Cimetidine (n = 181)</th>
<th>Confidence Interval for the Difference in Rates, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically significant bleeding, n (%)</td>
<td>7 (3.9)</td>
<td>10 (5.5)</td>
<td>-100.0, 2.8<sup>a</sup></td>
</tr>
<tr>
<td>Any overt bleeding, n (%)</td>
<td>34 (19.1)</td>
<td>58 (32.0)</td>
<td>-21.9, -4.0<sup>b</sup></td>
</tr>
<tr>
<td>Inadequate pH control, n (%)</td>
<td>32 (18.0)</td>
<td>105 (58.0)</td>
<td>-49.2, -30.9<sup>c</sup></td>
</tr>
</tbody>
</table>

Any overt bleeding included both end point and non-end point bleeding. Inadequate pH control was defined as two consecutive gastric pH determinations of \(\leq 4 \) at least 1 hr apart on any given day of treatment; tabulated patients experienced inadequate pH control at least once during the trial. The difference in rates was calculated as omeprazole-cimetidine.

^aNoninferiority analysis, one-sided 97.5% confidence interval; ^btwo-sided 95% confidence interval, \(p = .005 \); ^ctwo-sided 95% confidence interval, \(p < .001 \).

Conrad. Randomized, double blind comparison of immediate-release omeprazole oral suspension vs IC cimetidine for prevention of UGI bleed in Critically ill patients, Critical care med 2005;33 760-765
Stress Related Mucosal Injury

PPI versus H2B cost

Observational study of ICU patients

- 32 pts on Cimetidine
- 25 pts on Cimetidine who were changed to lansoprazole
- 31 pts on Lansoprazole

Stress Related Mucosal Injury
PPI versus H2B cost

- Of 32 patients on Cimetidine
 - 5 failed
- All 31 patients on Lansoprazole had successful treatment

Stress Related Mucosal Injury
PPI versus H2B

<table>
<thead>
<tr>
<th></th>
<th>H₂ Blockers</th>
<th>Proton Pump Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA approved medications for stress-ulcer prophylaxis</td>
<td>Cimetidine</td>
<td>Omeprazole</td>
</tr>
<tr>
<td>Potency to reduce gastric acid secretion</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Common side effects</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Drug interactions</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Tachyplaxis</td>
<td>+</td>
<td>None</td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>++++</td>
<td>++</td>
</tr>
<tr>
<td>Therapeutic effectiveness</td>
<td>++</td>
<td>++++</td>
</tr>
</tbody>
</table>

Ali, Stress -Induced Ulcer Bleeding in critically Ill patients, Gastroenterology 2009 245-265
References

- Ali, Stress -Induced Ulcer Bleeding in critically ill patients, Gastroenterology 2009 245-265
- McCarthy, Management of bleeding peptic ulcers: Current status of intravenous proton pump inhibitors, Best Practice and Research Clinical Gastroenterology 2004; 18: 7-12
- Mohebbi, L et al. Stress Ulcer Prophylaxis in the ICU, Pharmacology Notes 2009; 22(4):373-376