Surgical Therapy for Choledocholithiasis

Jeniann Yi, PGY–2
University of Colorado Denver
Objectives

- Epidemiology
- Surgical options
- Clinical outcomes
- Cost analysis
- Technical feasibility
- Conclusions
Epidemiology

- Gallstones are present in approximately 15% of the general population

- Estimated $6 billion/yr to treat gallstone-related disease

- Nearly 700,000 cholecystectomies/yr in the US
 - >80% performed laparoscopically

- 10–15% found to also have choledocholithiasis
 - Suspected preoperatively by imaging, jaundice, abnormal LFTs, pancreatitis, etc.
Surgical Options
Anatomy of the CBD

- Right hepatic duct
- Left hepatic duct
- Right hepatic artery
- Portal vein
- Gastro-duodenal artery
- Common hepatic artery
- Cystic artery
- Common bile duct
- Neck
- Corpus
- Cystic duct
- Hartmann’s pouch
- Common bile duct
- Fundus
- Pancreatic duct
- Papilla
Open CBDE

- First open CBDE described in 1889 by Robert Abbe

- Indications:
 - Open/combined procedure
 - Large or multiple CBD stones
 - Need for transduodenal sphincteroplasty

- “Gold standard” for CBDE
Open CBDE

- Procedure details
 - Exposed in the free border of the lesser omentum and anterior vertical incision made
 - Duct flushed with irrigation
 - Balloon catheterization
 - +/- Sphincterotomy

- Closure
 - T-tube at choledochotomy site
Laparoscopic CBDE

- **Transcystic**
 - Preferred method (less cost, least invasive)
 - Successful for smaller stones
 - Requires dilation of the cystic duct to accept a 9 or 10Fr choledochoscope (3 – 5mm scope)

- **Choledochotomy**
 - Often necessary for larger (>6mm), multiple (>5), or proximal stones
 - Longitudinal incision on CBD, approx 1 cm
Laparoscopic CBDE

- Procedure details
 - Cystic or CBD irrigated
 - Balloon catheter dislodgement

- Endoscopic maneuvers
 - Direct visualization
 - Basket retrieval
 - +/- Lithotripsy
 - Risk of ductal damage

- 93% success rate overall
ERCP

- Clearance rate of ~90%

- 12.9% of pts have retained or new stones after preop ERCP

- Complications include pancreatitis, bleeding, infections, perforations
 - Complication rate 10%
 - Serious complications 1.5%
 - Mortality <0.5%
Clinical Outcomes
“Pre- or post-operative ERCP for bile duct clearance in patients undergoing cholecystectomy for gallstones offers no apparent advantage over surgical exploration.”
ERCP vs. open CBDE

- N=760 from 8 combined trials
- Greater clearance rate with open CBDE (93.3% vs 80.4%)
- No significant difference in morbidity or mortality
Pre-op ERCP vs. laparoscopic CBDE
- N=425 from 3 combined trials
- No significant difference in morbidity or mortality
- No difference in retained stones (87.6% vs. 87.6%)
- Extra 0.97 procedures per pt in ERCP arm
- Hospital stay 6 vs. 9 days in surgical arm (P<0.05)
Post-op ERCP vs. laparoscopic CBDE

- N=166 from 2 combined trials
- No significant difference in morbidity or mortality
- Greater risk of failure with ERCP (OR 4.50, p=0.01)
- Extra 1.09 procedures per pt in ERCP arm
- Significantly shorter hospital stay with surgery only
Cost Analysis
N=27,739 from National Inpatient Survey (2002)

Pts stratified by propensity score to receive CBDE vs. ERCP to similar subgroups

Only 7% of pts underwent CBDE

THC savings from CBDE was $5,500 ± $1,500
 ◦ 53% of these savings due to decreased LOS
National analysis of in-hospital resource utilization in choledocholithiasis management using propensity scores

B. K. Poulse,¹ P. G. Arbogast,² M. D. Holzman¹

Fig. 1. Mean total hospital charges per patient hospitalization by propensity score (PS) quintile. Significant differences were observed at PS quintiles 2 and 5 using complex sample t-test.

Fig. 2. Mean inpatient length of stay per hospitalization by propensity score (PS) quintile. Significant differences were observed at PS quintiles 2 and 5 using complex sample t-test.
Technical Feasibility
Training Higher Surgical Trainees in Laparoscopic Common Bile Duct Exploration

Matthew G. Tutton · Nikhil Pawa ·
Tan H. A. Arulampalam · Roger W. Motson

- Retrospective review comparing outcomes of attendings vs. trainees at one institution
 - 9.2% underwent lap CBDE
 - 79% by consultants (attendings), 21% by trainees

- Overall 11% complication rate, <0.5% mortality
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Consultants</th>
<th>HSTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic CBD exploration</td>
<td>187 (79%)</td>
<td>48 (21%)</td>
</tr>
<tr>
<td>Transcystic</td>
<td>102 (55%)</td>
<td>21 (44%)</td>
</tr>
<tr>
<td>Choledochotomy</td>
<td>85 (45%)</td>
<td>27 (56%)</td>
</tr>
<tr>
<td>Successful choledochoscopy</td>
<td>183 (98%)</td>
<td>48 (100%)</td>
</tr>
<tr>
<td>CBD calculi present</td>
<td>160 (86%)</td>
<td>45 (94%)</td>
</tr>
<tr>
<td>Complete CBD clearance</td>
<td>141 (88%)</td>
<td>43 (96%)</td>
</tr>
<tr>
<td>CBD diameter (mm), mean</td>
<td>13.2</td>
<td>13.1</td>
</tr>
<tr>
<td>Operating time (min), median</td>
<td>130*</td>
<td>150*</td>
</tr>
<tr>
<td>Conversion to open procedure</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Postoperative ERCP</td>
<td>9 (5%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hospital stay (days), median</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

CBD common bile duct, *ERCP* endoscopic retrograde cholangiopancreatography

* Statistically significant (\(* p < 0.05\), Mann-Whitney U-test)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Consultants</th>
<th>HSTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic CBD exploration</td>
<td>187 (79%)</td>
<td>48 (21%)</td>
</tr>
<tr>
<td>Transcystic</td>
<td>102 (55%)</td>
<td>21 (44%)</td>
</tr>
<tr>
<td>Choledochotomy</td>
<td>85 (45%)</td>
<td>27 (56%)</td>
</tr>
<tr>
<td>Successful choledochoscopy</td>
<td>183 (98%)</td>
<td>48 (100%)</td>
</tr>
<tr>
<td>CBD calculi present</td>
<td>160 (86%)</td>
<td>45 (94%)</td>
</tr>
<tr>
<td>Complete CBD clearance</td>
<td>141 (88%)</td>
<td>43 (96%)</td>
</tr>
<tr>
<td>CBD diameter (mm), mean</td>
<td>13.2</td>
<td>13.1</td>
</tr>
<tr>
<td>Operating time (min), median</td>
<td>130*</td>
<td>150*</td>
</tr>
<tr>
<td>Conversion to open procedure</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Postoperative ERCP</td>
<td>9 (5%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hospital stay (days), median</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

* CBD common bile duct, ERCP endoscopic retrograde cholangiopancreatography
* Statistically significant (*p < 0.05, Mann-Whitney U-test)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Consultants</th>
<th>HSTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic CBD exploration</td>
<td>187 (79%)</td>
<td>48 (21%)</td>
</tr>
<tr>
<td>Transcystic</td>
<td>102 (55%)</td>
<td>21 (44%)</td>
</tr>
<tr>
<td>Choledochotomy</td>
<td>85 (45%)</td>
<td>27 (56%)</td>
</tr>
<tr>
<td>Successful choledochoscopy</td>
<td>183 (98%)</td>
<td>48 (100%)</td>
</tr>
<tr>
<td>CBD calculi present</td>
<td>160 (86%)</td>
<td>45 (94%)</td>
</tr>
<tr>
<td>Complete CBD clearance</td>
<td>141 (88%)</td>
<td>43 (96%)</td>
</tr>
<tr>
<td>CBD diameter (mm), mean</td>
<td>13.2</td>
<td>13.1</td>
</tr>
<tr>
<td>Operating time (min), median</td>
<td>130*</td>
<td>150*</td>
</tr>
<tr>
<td>Conversion to open procedure</td>
<td>2 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Postoperative ERCP</td>
<td>9 (5%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Hospital stay (days), median</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

* CBD common bile duct, ERCP endoscopic retrograde cholangiopancreatography
* Statistically significant (*p < 0.05, Mann-Whitney U-test)
Conclusions
Conclusions

- Laparoscopic CBDE is equivalent to ERCP + LC based on clinical outcomes.

- LCBDE decreases length of hospital stay and total hospital costs.

- With the appropriate surgeon education, LCBDE can become a commonplace operation with good results.
Conclusions

Overall, LCBDE is the superior therapeutic modality for treatment of CBD stones.
Questions?
References