The Acute Coagulopathy of Trauma is due to Impaired Initial Thrombin Generation but not Clot Formation or Clot Strength

University of Colorado Denver, Department of Surgery
Trauma Research Center
and
Denver Health Medical Center, Denver CO

Supported in part by NIH Grants T32-GM008315 and P50-GM49222
Acute Coagulopathy of Trauma (ACOT)

- Hemorrhage accounts for 40% of all trauma deaths

- An acute coagulopathy is identified in 1 in 4 trauma patients on admission
 - Four-fold increase in mortality

Acute Coagulopathy of Trauma (ACOT)

- Biphasic
- Disseminated Intravascular Coagulation (DIC)
- Activated Protein C

Cannon, WB. Gray, H. *Am J Physiol* 1914

Hardaway, JW. Neimes, R *Ann Surg* 1962

Simmons, R. Collins, J *Ann Surg* 1969

Brohi, D. Cohen, MJ *J Trauma* 2008
Proposed Mechanisms

Disseminated Intravascular Coagulation

- Tissue Hypoperfusion
 - ↑ Thrombomodulin
 - Thrombomodulin/Thrombin Complex
 - Platelet Activation/Aggregation
 - TAFI Activation
 - Hypercoagulability
 - Clotting Factor Consumption
 - Hypocoagulability
 - Endothelial TPA Release
 - Fibrinolysis

Activated Protein C Pathway

- Tissue Injury
 - ↑ Thrombomodulin
 - thrombomodulin/Thrombin Complex
 - Protein C Activation
 - Factors V and VIII Inactivation
 - PAI-1 Consumption
 - ACOT

Clotting Factor Depletion vs. No Depletion
Cell-Based Model of Coagulation

- Plasma-based tests (INR, PTT)

- Viscoelastic hemostatic assays (TEG, RoTEM)
 - comprehensive test

Thrombelastography

R: Reaction Time
SP: Split Point
Delta: (R-SP)
K: Clot Formation Time
MA: Maximum Amplitude
G: Clot Strength
EPL: Percent Lysis

Platelet-Fibrin Interaction
Fibrinolysis

Thrombin Generation
Fibrinogen
Platelets
Purpose

To determine the mechanism of ACOT in a clinically relevant model of trauma/hemorrhagic shock
Methods

- Adult Male Sprague-Dawley Rats
- Trauma/Hemorrhagic Shock
- Statistical Analysis: ANOVA with post-hoc Fisher’s Test
Clinical Relevance

• Tissue Injury + Hemorrhagic Shock
 • Laparotomy
 • ~50% of Total Blood Volume Removed
 – Class IV Shock

• Hb: 14.1 ± 1.5 → 7.4 ± 0.7 g/dL

• Mean Δ in BD: 13.95 mEq/L
Thrombin Generation is Impaired Following T/HS

<table>
<thead>
<tr>
<th>Delta</th>
<th>Baseline</th>
<th>Shock</th>
<th>Post-Resuscitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.07 (±0.03)</td>
<td>0.32 (±0.11)*</td>
<td>0.27 (±0.05)*</td>
</tr>
</tbody>
</table>

* p < 0.001 from baseline
p < 0.05 from shock
TEG Results in T/HS Model

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Shock</th>
<th>Post-Resuscitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymatic Activity (R)</td>
<td>0.78 (±0.14)</td>
<td>1.62 (±0.10)*</td>
<td>1.97 (±0.10)*,#</td>
</tr>
<tr>
<td>Split Point (SP)</td>
<td>0.72 (±0.13)</td>
<td>1.30 (±0.11)*</td>
<td>1.70 (±0.12)*,#</td>
</tr>
<tr>
<td>Thrombin Generation (Delta)</td>
<td>0.07 (±0.03)</td>
<td>0.32 (±0.11)*</td>
<td>0.27 (±0.05)*</td>
</tr>
<tr>
<td>Clot Formation (K)</td>
<td>0.87 (±0.07)</td>
<td>0.80 (±0.00)</td>
<td>0.83 (±0.03)</td>
</tr>
<tr>
<td>Fibrin Cross-linking (Angle)</td>
<td>81.8 (±1.42)</td>
<td>82.65 (±0.46)</td>
<td>82.07 (±0.35)</td>
</tr>
<tr>
<td>Platelet Contribution (MA)</td>
<td>70.67 (±2.91)</td>
<td>73.93 (±0.81)</td>
<td>70.63 (±0.75)</td>
</tr>
<tr>
<td>Clot Strength (G)</td>
<td>12.75 (±3.48)</td>
<td>13.68 (±1.59)</td>
<td>12.22 (±1.06)</td>
</tr>
<tr>
<td>Percent Lysis (EPL)</td>
<td>0.15 (±0.13)</td>
<td>1.03 (±0.66)</td>
<td>1.40 (±1.15)</td>
</tr>
</tbody>
</table>

* p < 0.001 from baseline
p < 0.05 from shock
TEG Supports Activated Protein C Mechanism

Clotting Factor Dysfunction
Impaired Thrombin Generation

DIC

Kouerinis, I, et al.
Conclusion

• ACOT is due to impaired thrombin generation…but not clot formation or clot strength

• Persistence of hemostatic potential suggests no consumption of coagulation factors

These data best support the activated-protein C hypothesis
The Acute Coagulopathy of Trauma is due to Impaired Initial Thrombin Generation but not Clot Formation or Clot Strength

University of Colorado Denver, Department of Surgery
Trauma Research Center
and
Denver Health Medical Center, Denver CO