Mechanical Ventilation

Jeffrey L. Johnson, MD
Associate Director, Dept of Surgery, Denver health
Associate Professor of Surgery, UCHSC

Denver Health Medical Center Department of Surgery and the
University Of Colorado Denver Health Sciences Center
Mechanical Ventilation – Cornerstone of ICU care

◆ 1928: Drinker-Shaw Iron Lung
◆ 1950s: Polio epidemic
◆ 1955: Invasive positive pressure ventilation
◆ 1973: Intermittent Mandatory Ventilation (IMV)
Who needs mechanical ventilation?

1. Inadequate ventilation (hypercapnic pulmonary failure)
2. Failure of oxygenation (hypoxic pulmonary failure)
3. Inability to maintain airway
4. Inadequate respiratory drive
Ventilation

Elimination of carbon dioxide

\[\text{PaCO}_2 = k \times \text{metabolic production} \]

alveolar minute ventilation

\[\text{Alveolar MV} = \text{resp. rate} \times \text{effective tidal vol.} \]

Effective TV = TV - dead space

Ventilatory requirement is dependent on

metabolic rate, minute volume and dead space
Symptoms/Signs of Hypercapnic Failure

- Tachypnea
- Use of accessory muscles
- Paradoxical motion of abdomen
- Delirium
- Hypercapnia (pCO2 >50)
- Insufficient compensation for metabolic acidosis (expect pCO2 to be 100 *[pH-7.00])
Oxygenation

– Partial pressure of oxygen in alveolus \((P_{A}O_{2})\) is the driving pressure.

\[P_{A}O_{2} = (\{\text{Ambient pressure} - \text{water vapor}\} \times F_{i}O_{2}) - \frac{P_{a}CO_{2}}{RQ} \]

– Hemoglobin is fully saturated 1/3 of the way thru the capillary

– *Take home message*: Mean airway pressure and v/q mismatching are the major determinants of oxygenation
Symptoms/Signs of Hypoxic Failure

- Tachypnea
- Cyanosis
- Delirium
- Hypoxia (pulse ox ok – ABG better)
What kinds of MV are there?

- Nomenclature of modes seems daunting
- Classification is actually *simple*
 - **Triggering** (by patient or machine)
 - **Cycling** (pressure, time or flow)
 - **Limits/Controls** (pressure, time or flow)
What kinds are there: Triggering

- **Triggering**: how ventilator determines initiation of a breath
- **Examples**:
 - Machine only: CMV
 - Patient only: PSV
 - Both: SIMV, A/C
Triggering: Assist/Control

- Patient-assisted breath
- First breath assisted
- Second breath control
- Machine-controlled breath

Airway pressure

Time
Triggering: SIMV

Synchronized Intermittent Mandatory Ventilation

- Mandatory breath
- Spontaneous breath

Pressure vs. Time

Volume vs. Time
What kinds are there: cycling

- **Cycling = switch between inhalation and exhalation**

- **How cycling can be determined:**
 - Volume (assist/control)
 - Flow (PSV)
 - Time (pressure control ventilation)
Cycling: Volume (A/C)

A/C:
Inspiration is over when a set volume is reached
Summary of Basic Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Trigger</th>
<th>Cycling</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assist /Control</td>
<td>Pt or Machine</td>
<td>Volume</td>
<td>Flow</td>
</tr>
<tr>
<td>SIMV</td>
<td>Patient Machine</td>
<td>Flow (usually) Volume (usually)</td>
<td>Pressure Flow</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>Machine Only</td>
<td>Time</td>
<td>Pressure</td>
</tr>
<tr>
<td>Pressure Support</td>
<td>Pt Only</td>
<td>Flow (usually)</td>
<td>Pressure</td>
</tr>
</tbody>
</table>
Volume or Pressure Ventilation?

- **Volume Control (A/C)**
 - Consistent Tidal Volume
 - Ignores changing impedance
 - Auto-PEEP from incomplete exhalation
 - Variety of flow waves, rates
 - How to assess patient effort?

- **Pressure Support (or PC)**
 - Alveolar pressure maintained within set limits
 - Variable flow rate
 - Variable tidal volume
 - Reduced WOB
 - Variable I-time & pattern (PS)
 - Patient effort easier to assess
Scientific Evidence For Different Modes of Ventilation

- Extremely poor quality
 - Diverse Patient populations
 - Study designs (crossover, animal models, theoretical models, small sample sizes)
 - Secondary endpoints (WOB)

- Recent example: Ortiz et al., *Chest* 2010
 - 4968 pts/349 ICUs/23 Countries
 - SIMV vs A/C
 - Arbitrary definition of “simple, difficult, or prolonged” weaning
 - Logistic regression: No difference
Scientific Evidence Summarized:

Dean Hess: 2010

“Many new modes [have been] introduced in recent years…..but have not been subjected to rigorous scientific study. None has been conclusively shown to improve patient outcomes. The Acute Respiratory Distress Syndrome Network study……..is the only study of mechanical ventilation ever shown to improve patient outcome”
Keep it simple: Only two kinds of Mechanical Ventilation

– **Full** MV support
 - Inadequate respiratory drive
 - Poor gas exchange
 - Cardiovascular instability
 - Inability to execute work of breathing

– **Partial** support
Recommended Approach

- **Initial full support:**
 - **Goal:** ensure adequate ventilation
 - **Recommend:** Assist-Control
 - Pt & machine triggered
 - Volume cycled – constant volume each breath
 - Flow limited – adjust flow for rate and comfort
Recommended Approach

- **Subsequent partial support**
 - **Goal:** exercise without tiring
 - **Recommend:** PSV
 - Pt triggered – pt determines rate and I:E
 - Flow cycled – pt determines flow rates
 - Pressure limited – adjust PS to respiratory rate
 - **Spontaneous breathing trial when criteria met**
How do I protect the patient?

- **Mechanical ventilation**
 - Largely supportive
 - Recovery is independent of the ventilator itself
 - Particular mode of ventilation appears to make little difference

- **Avoid:**
 - Ventilator induced lung injury (VILI)
 - Nosocomial pneumonia

- **Pursue:**
 - Protocol-driven care
 - Appropriate sedation
Protecting the Lung

Two types of Ventilator-Induced Injury (VILI)

Barotrauma: too much pressure

Volutrauma:
- repetitive opening closing
- regional overdistention
Normal Lung

PIP 45 cm H$_2$O 5 Min

PIP 45 cm H$_2$O 20 Min

Dreyfuss Am Rev. Respir Dis 1985
Pressure/volume curve: Inflation vs Deflation
The Acutely Injured Lung (ALI/ARDS)

ARDS lungs
- Normal regions
- Collapsed regions
- Consolidated regions

VILI
- Overdistention of alveoli from high tidal volumes
- Repetitive opening/closing of lung units from low tidal volumes
Lung Recruitment

Recruitment = “…. A sustained increase in airway Pressure (30 – 90 Sec) with the goal to open collapsed lung Tissue”

Potential pressures of > 140 cm H₂O
Does Recruitment Help?

- Constantin et al., Crit Care 2010
- Prospective, Randomized studies
- Patients enrolled promptly after intubation for hypoxia
- “Recruitment” = CPAP 40 for 30 seconds
- Did not change PEEP (5 cm water)
Techniques to Facilitate Lung Recruitment

- Sigh Breaths: 1.5 - 2 times the Vt
- Temporary increase in PEEP
- Temporary increase in Tidal Volume
- Temporary use of CPAP
- High Frequency Ventilation
- APRV
- Pronation
Many questions Remain

Which patients will benefit??

ARDS_{\text{PULM}}
ARDS_{\text{EXtraPULM}}

Post R.M. PEEP

Optimal Duration of R.M.

Routine use or only
during Hypoxic events

Contraindications:
Pneumonia ??
Unilateral Dz process

Acute hypoxia without

\textit{CXR}
Overall Strategy for MV

<table>
<thead>
<tr>
<th>Ventilatory Parameter</th>
<th>Traditional</th>
<th>Lung-Protective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation Volume</td>
<td>10-15 ml/kg</td>
<td>5-7 ml/kg</td>
</tr>
<tr>
<td>End-insp. pressure</td>
<td>Peak Pr<50 cm water</td>
<td>Plateau Pr<30</td>
</tr>
<tr>
<td>PEEP</td>
<td>PRN to keep FiO2<0.6</td>
<td>5-15 cm of water</td>
</tr>
<tr>
<td>ABG</td>
<td>Normal, pH 7.36-7.44</td>
<td>Hypercapnia allowed, pH 7.2-7.4</td>
</tr>
<tr>
<td>Recruitment Maneuvers?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Lung Protection Improves Survival

When and how do I “wean” MV?

- Better term: Withdrawal of mechanical ventilatory support
- Principles:
 - Work every day
 - Don’t work too hard
 - No scientific evidence supporting any given mode
 - PSV or CPAP
 - SIMV
 - T-piece
Does My Patient Need the Ventilator?

- Assess continuously
- Most patients should be on partial support during the day
- Should coincide with diminution of sedation
- Contraindications to Partial Vent Support:
 - Inadequate respiratory drive
 - Cardiovascular instability
 - Poor gas exchange
 - ICP requiring treatment
 - Minute volume > 14 lpm
Spontaneous Breathing Trials

- **Minimal Support**
 - PEEP = 5, PS = 0 – 5, FiO₂ ≤ 50%
 - Assess for 30 – 120 min
 - ABG obtained at end of SBT

- **Failed SBT Criteria**
 - RR > 35 for >5 min
 - SaO₂ < 90% for >30 sec
 - HR > 140
 - Systolic BP > 180 or < 90mm Hg
 - Cardiac dysrhythmia
 - pH < 7.32
Are SBTs Beneficial?

• Robertson et al., 2008
 • 488 SICU patients
 • Routine SBTs initiated at beginning of study
 • Comparison of first and last two months

• Observed
 • Decreased days on ventilator
 • Decreased ICU stay
 • No change in reintubation rate
Determinants of Ventilator Dependence

- **Gas Exchange**
- **Respiratory muscle “pump failure”**
 - Diminished CNS drive
 - Phrenic nerve dysfunction
 - Muscle weakness
 - Hyperinflation
 - Malnutrition
 - Acidosis/medications
 - Increased load: poor compliance, increased CO2 production, dead space
- **Anxiety**
Predicting Successful Liberation from MV

Tobin: “A number of indices....have been proposed as predictors of weaning outcome. However, none....have ever been subjected to prospective investigation but have been passed on from one review article to another”
The Evidence: Discontinuation of Mechanical Ventilation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2/FiO2</td>
<td>200</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>Minute Ventl.</td>
<td><10L/min</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>Vital capacity</td>
<td>10ml/kg</td>
<td>0.82</td>
<td>0.37</td>
</tr>
<tr>
<td>Rate/Tidal Volume (Rapid, Shallow Breathing Index)</td>
<td><105/min/L</td>
<td>0.78</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Tobin and Alex, in “Principles of Mechanical Ventilation”, 1994
For the Severely Hypoxic Patient

- Corticosteroids for Late ARDS
- Prone ventilation
Steroids: The LaSRS Trial

• 180 Pts with ARDS of at least 7 days duration
• Randomized to Methylprednisolone vs Placebo
• Results:
 – No overall mortality benefit at 60 days
 – Pts started >2 weeks after ARDS dx may have had increased risk of death

NEJM 354(16): 1671-84, 2006
Should we be Pronating Patients?
Normal Distribution of Pulmonary Perfusion in the Standing Human
Note the Profound Effect of Gravity on Blood Flow Through the Lung

- No Flow zone 1
- Intermittent Flow zone 2
- Constant Flow zone 3
Mechanism of Improved Gas Exchange with Prone Positioning

SUPINE
- Perfusion: +3
- PPL: -3.0

PRONE
- Perfusion: +3
- PPL: +1.0

SUPINE
- Perfusion: +1
- PPL: -3.0

PRONE
- Perfusion: +3
- PPL: +1.0
<table>
<thead>
<tr>
<th>Day</th>
<th>PaO$_2$/FIO$_2$, (mean)</th>
<th>Supine</th>
<th>Prone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>182 (78)</td>
<td>188 (78)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>193 (76)</td>
<td>210 (82)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>199 (78)</td>
<td>213 (85)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>206 (84)</td>
<td>227 (87)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>205 (79)</td>
<td>224 (88)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>204 (78)</td>
<td>223 (91)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>206 (78)</td>
<td>228 (91)</td>
<td></td>
</tr>
</tbody>
</table>

Guerin Jama Nov 17, 2004
Prone Position for ARDS

- 152 supine; 152 prone ARDS
- No difference in ICU mortality: 50.7% vs. 48.0%
- Improved am PaO₂ in prone Pt.
- More pressure sores in prone

Prone Positioning in Patients With Moderate and Severe Acute Respiratory Distress Syndrome: A Randomized Controlled Trial

Paolo Taccone, MD; Antonio Pesenti, MD; Roberto Latini, MD; Federico Polli, MD; Federica Vagginelli, MD; Cristina Mietto, MD; Luisa Caspani, MD; Ferdinando Raimondi, MD; Giovanni Bordone, MD; Gaetano Iapichino, MD; Jordi Mancebo, MD; Claude Guérin, MD; Louis Ayzac, MD; Lluis Blanch, MD; Roberto Fumagalli, MD; Gianni Tognoni, MD; Luciano Gattinoni, MD, FRCP; for the Prone-Supine II Study Group

Summary and Conclusions

- Ventilator modes are simple
- Ventilator modes do not determine outcome
- You should know how a mode you are using triggers, cycles and limits each breath
- Avoid high stretch and high pressure on the lung
- Regular spontaneous breathing trials improve outcome
- Prone ventilation and other recruitment maneuvers improve hypoxia but may not improve outcome
Thank You

JJ