Objectives of This Presentation

- Identify and describe the critical elements of the hemostatic mechanisms of the body
- Develop and implement an effective diagnostic and therapeutic approach to the abnormally bleeding patient
Black Box View of Hemostasis

Platelet/coagulation factor activation

Lots of exciting biochemistry

CLOT!
Key Points

- Hemostasis requires the interaction of platelets, coagulation and fibrinolytic factors, endothelium, proinflammatory and anti-inflammatory mediators, and leukocytes.
- Clot formation is typically initiated by vascular injury, in which a platelet plug forms and is reinforced with fibrin produced via the extrinsic pathway.
- Physiologic anticoagulants such as AT-III and Activated Protein C oppose thrombosis, serving to localize it to sites of vascular injury.
- Clot formation is balanced by plasmin-mediated fibrinolysis, resulting in the formation of D-dimers and other fibrin degradation products.
Vascular Injury

First

- Vasoconstriction

Second

- Exposure of Subendothelial Collagen
- Platelet Adhesion, Aggregation, and Activation (Primary Hemostasis)

Third

- Release of Tissue Factor
- Coagulation Cascade (Secondary Hemostasis)
- Stable Fibrin/Platelet Clot
- Fibrinolysis [as needed]
Platelets

Receptor Exposure, Activation

Adherence

Thromboxane A₂

Activation

Bind Clotting Factors

Aggregation

Vasoconstriction

Platelet Plug (Surface)

Thrombosis

Granule Release

Fibrinogen

Collagen
Thrombin
ADP
Epi
TxA₂

ADP
PDGF
5-HT

vWF
GPIib

GPIIb
GPIIIa

PL
<table>
<thead>
<tr>
<th>Coagulation Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Fibrinogen</td>
</tr>
<tr>
<td>II Prothrombin</td>
</tr>
<tr>
<td>III Thromboplastin</td>
</tr>
<tr>
<td>IV Calcium</td>
</tr>
<tr>
<td>V Proaccelerin</td>
</tr>
<tr>
<td>VI Same as V</td>
</tr>
<tr>
<td>VII Proconvertin</td>
</tr>
<tr>
<td>VIII Antihemophilic</td>
</tr>
<tr>
<td>IX Christmas</td>
</tr>
<tr>
<td>X Stuart-Prower</td>
</tr>
<tr>
<td>XI Plasma thrombo-plastin antecedent</td>
</tr>
<tr>
<td>XII Hageman</td>
</tr>
<tr>
<td>XIII Fibrin stabilizing</td>
</tr>
</tbody>
</table>
Coagulation Factor Fun Facts

<table>
<thead>
<tr>
<th>Factor</th>
<th>Production</th>
<th>T 1/2</th>
<th>Level for Surgery</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Liver</td>
<td>72-100 hr</td>
<td>> 100 mg/dl</td>
<td>Cryoprecipitate</td>
</tr>
<tr>
<td>II</td>
<td>Liver*</td>
<td>50-80 hr</td>
<td>15% - 40%</td>
<td>Plasma</td>
</tr>
<tr>
<td>V</td>
<td>Liver, EC</td>
<td>15-36 hr</td>
<td>15 - 25%</td>
<td>Plasma, platelets</td>
</tr>
<tr>
<td>VII</td>
<td>Liver*</td>
<td>5 hr</td>
<td>10 - 15%</td>
<td>Plasma, rVIIa</td>
</tr>
<tr>
<td>VIII</td>
<td>EC</td>
<td>8-12 hr</td>
<td>100%</td>
<td>Factor concentrate, DDAVP</td>
</tr>
<tr>
<td>IX</td>
<td>Liver*</td>
<td>24 hr</td>
<td>50% - 70%</td>
<td>Factor concentrate</td>
</tr>
<tr>
<td>X</td>
<td>Liver*</td>
<td>25-60 hr</td>
<td>10% - 40%</td>
<td>Plasma</td>
</tr>
<tr>
<td>XI</td>
<td>Liver</td>
<td>40-80 hr</td>
<td>10% - 25%</td>
<td>Plasma</td>
</tr>
<tr>
<td>XII</td>
<td>?</td>
<td>60 hr</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>Liver</td>
<td>4-7 days</td>
<td>< 10%</td>
<td>Plasma</td>
</tr>
</tbody>
</table>
“Classic” (Test Tube) Coagulation Cascade

Since 1961
“New” (in vivo) Coagulation Cascade

Tissue Factor + VII

PL

TF-VIIa

IX

IXa

PL Ca²⁺

VIIIa

X

Xa

Prothrombin (II)

PL

Va

Thrombin (IIa)

XIII

Fibrinogen (I) → Fibrin (weak)

XIIIa → Fibrin (strong)
Factor VII – Tissue Factor “two-unit enzyme”

- Factor VIIa – catalytic component
- Tissue factor – regulatory component (not on EC or circulating blood cells)
- TF-VIIa (extrinsic Xase) complex catalyzes X to Xa
- Extrinsic Xase activates IX
- Factor VIIa + IXa form the intrinsic factor Xase
 - Intrinsic Xase 50x more effective at catalyzing factor X activation than extrinsic Xase
The Many Roles of Thrombin

Coagulation System
Clot formation:
- Fibrinogen → Fibrin
- F XIII → F XIIIa
Amplification/Activation
- F V → F Va
- F VIII → F VIIIa

Platelets
Aggregation
Release reaction
- TxA2-synthesis

Leukocytes
Chemotaxis
- Cytokine production

Macrophages
Chemotaxis

Tumor cells
Adhesion
- Metastasis
- Cell growth

Neurons
Neurite growth regulation

Endothelial Cells
Synthesis and release:
- Prostacyclin
- EDRF, t-PA
- Endothelin
- Tissue factor
Activation:
- Protein C → PCa
- Thrombomodulin

Fibroblasts
Proliferation

Smooth Muscle
- Contraction
- Mitogenesis

Heart
Positive inotrope
Physiologic Anticoagulant Mechanisms

Tissue Factor + VII → TFPI

PL

TF-VIIa → IX

IXa → PL

IX

VIIIa → Xa

PL

VIIa → Prothrombin (II)

Antithrombin III

Thrombin

Proteins C & S (+ thrombomodulin)

Fibrinogen → Fibrin (weak) → Fibrin (strong)

Fibrinolysis
Today’s Rehearsals

- Will my patient bleed?
- Why am I seeing excessive intraoperative or post-operative bleeding!
- I think my patient has HIT!
Will my patient bleed?

- “Are you a bleeder?” is not enough
 - Hx of prolonged or frequent bleeding
 - Biting lip or tongue, gums bleed with brushing
 - Nosebleeds (excessive and recurrent)
 - Bruises without apparent injury
 - Prolonged bleeding after dental extraction
 - Excessive menstrual bleeding
 - Previous operative bleeding
 - Relative with a bleeding problem
 - Medications (ASA, Plavix, “alternatives”)
Platelet Defect or Factor Deficiency?

- Platelet defect or von Willebrand disease
 - Mucocutaneous bleeding
 - Excessive bruising, gingival bleeding, frequent nose bleeds
- Coagulation factor defects
 - Muscle and joint bleeds
- Both groups will bleed excessively from injuries and at the time of surgery!
Inherited Defects of Platelet Function

- **Platelet function disorders with normal platelet numbers**
 - Collagen aggregation defects (variable inheritance)
 - Glanzmann thrombasthenia (AR)
 - Dense body deficiency (AR)
 - Secretion defect (varies)

- **Thrombocytopenia (large platelets)**
 - Alport’s syndrome (AD)
 - Autosomal dominant thrombocytopenia (AD)
 - Bernard-Soulier (AR)
 - Gray platelet syndrome (AD)
 - May Hegglin anomaly (AD)
 - Fechnter syndrome (AD)
 - Montreal giant platelet syndrome (AD)

- **Thrombocytopenia (normal sized platelets)**
 - Chédiak-Higashi syndrome (AR)
 - Thrombocytopenia with absent radius (TAR, AR)
 - Factor V Quebec (AD)

- **Thrombocytopenia (small platelets)**
 - Wiskott-Aldrich syndrome (X-linked)
Acquired or Inherited Factor Disorder?

- Acquired bleeding factor disorders will often present suddenly with severe bleeding and newly abnormal coagulation tests
 - Patients have other illnesses but autoimmune coagulation disorders can suddenly strike any previously healthy person
Acquired or Inherited Factor Disorder?

• Inherited bleeding factor disorders
 – Present from birth until old age
 – Mild hemophilia or von Willebrand disease patients may not have had troublesome bleeding until the first trauma or surgery
• Do not ignore an abnormal aPTT in an older patient
• Review family history
 – Hemophilia A/B are sex-linked - brothers, cousins, uncles
 – Von Willebrand disease may have variable penetrance within the family
Von Willebrand Disease (vWD)

• The most common inherited bleeding disorder
 – 1% of the population
 – Five forms or types are known and distinguishable
 – Classic – reduced VIII activity and decreased vWF
• vWF is crucial for the interaction of platelets with damaged vasculature
• vWF is also the carrier protein for factor VIII (otherwise, free VIII is labile in the plasma)
• vWD usually results from either a drop in vWF concentration or impaired vWF/VIII function
Von Willebrand Disease (vWD)

- Patients with vWD have “platelet-type” bleeding (nosebleeds and bruising)
 - Joint bleeding is rare
 - Bleeding as a child, less as an adult
 - Testing (a challenge)
 - Bleeding time (variable sensitivity)
 - Factor VIII level
 - Von Willebrand antigen
 - Ristocetin cofactor activity (binds vWF to platelets)
 - Crossed immunoelectrophoresis
- Therapy: DDAVP, Humate-P, cryoprecipitate
Will my patient bleed?

• Level I concern
 – History is negative
 – Procedure planned is relatively minor

✓ No screening tests are recommended
Will my patient bleed?

• Level II concern
 – History is negative
 – Screening tests have been negative in the past
 – **Major operation** is planned (procedure not usually attended with significant bleeding)

✔ Platelet count, peripheral smear, PT-INR, aPTT
Will my patient bleed?

• Level III concern
 – History is suggestive of poor hemostasis
 – Procedure may impair hemostasis (CPB or cell saver) or the procedure may leave behind a large, raw surface
 – Minimal post-operative bleeding will be injurious (craniotomy)

✓ Platelet count, PT-INR, aPTT,
✓ +/- bleeding time (PFA-100)
Will my patient bleed?

- Level IV concern
 - History highly suggestive of a hemostatic defect
 - Hematology consult
 - Platelet count, bleeding time, PT-INR, aPTT, euglobulin clot lysis analysis, factor assays
 - Bleeding time test + ASA provocative test
 - If emergent – platelet aggregation testing and thrombin time (TEG, if available)
Will my patient bleed?

• Patients with liver disease, renal failure, obstructive jaundice, possibility of disseminated malignant disease
 ✓ Platelet count, aPTT, PT-INR (uremic patients usually have a vitamin-K deficiency)

• Patients with uremia (qualitative platelet function abnormality)
 ✓ Bleeding time (improved with dialysis or administration of DDAVP)
Laboratory Monitoring of Coagulation

• Prothrombin Time (PT-INR)
 – Plasma + Calcium + Tissue Thromboplastin
 TF + VIIa → Xa + V → IIa → CLOT

• PT-INR only elevated
 – Factor VII deficiency
 • Congenital (very rare)
 • Acquired (Vit K deficiency, liver disease)
 – Factor VII inhibitor
 – Rarely in pts with modest decreases of factor V or X
Laboratory Monitoring of Coagulation

- Activated Partial Thromboplastin Time (aPTT)
 - Plasma + Calcium + Kaolin + Phospholipids
 - Contact → XIa → IXa + VIII → Xa + Va → IIa → CLOT

- PTT only elevated
 - Factor XI, IX, or VIII deficiency
 - Factor XI, IX, or VIII specific factor inhibitor
 - Heparin contamination
 - Antiphospholipid antibodies
Laboratory Monitoring of Coagulation

- Both PT-INR and aPTT are elevated
 - Factor(s) X, V, or II deficiency
 - Factor(s) X, V, or II inhibitor
 - Improper anticoagulation ratio (Hct >60 or <15)
 - High doses of heparin (↑ aPTT > ↑ PT-INR)
 - Large Warfarin effect ((↑ PT-INR > ↑ aPTT)
 - Low fibrinogen (<80 mg/dl)
Laboratory Monitoring of Coagulation

- Four causes of elevated aPTT and response to 50:50 mix
 - Factor XI, IX, or VIII deficiency
 - Corrects with 50:50 mix (normal pool plasma)
 - Factor XI, IX, or VIII specific factor inhibitor
 - May correct at time zero but then prolongs
 - Heparin contamination
 - Does not correct at all with normal pool plasma
 - Antiphospholipid antibodies
 - Does not fully correct at time zero or any time point
Laboratory Monitoring of Coagulation

- Thrombin Clotting Time (TCT)
 - Add thrombin to patient’s plasma
 - This should directly clot fibrinogen
 - Elevated in
 - Heparin use
 - DIC
 - Dysfibrinogenemia
 - Low fibrinogen levels
 - High fibrinogen levels
 - Uremia
Intraoperative Bleeding

“Surgical”
Discrete bleeding points
Obvious source
Typical scenario

Find it: Look at potential sites

(Get help, if needed)

Venous

Arterial

Pack
Get more help!
Direct suture
Ligate
Pack and close

“Coagulopathic”
Diffuse oozing

Late in case?

Early in case?

Pre-existing problem?

Suspect congenital or pre-existing problem

Sudden?

Progressive?

Hypothermia
Acidosis
DIC
Dilution
Primary fibrinolysis

Transfusion reaction
Medications

Treat as indicated
Hematology assistance?
HEROIC AWARD TIME!!

- Kaptain Koagulation
 - Brian Peyton
- Kid Clotter
 - Jayer Chung

- Infected aortic graft
 - Ax-bifem graft
 - Laparotomy
 - Pseudoaneurysm resection and aortic closure
- Extreme bleeding!!
- Extreme coagulopathy!!
- Couldn’t remove aortic X-clamp!!
Evaluation of Excessive Intraoperative or Postoperative Bleeding

- Ineffective or incomplete local hemostasis
- Complications of blood transfusion
 - Massive blood transfusion
 - Hemolytic transfusion reaction
- Previously undetected hemostatic defect
- Consumptive coagulopathy
- Fibrinolysis
Evaluation of Excessive Intraoperative or Postoperative Bleeding

- Ineffective or incomplete local hemostasis
 - √ Enough factor XV (Ethicon)?
 - √ CBC, platelet count
 - √ Bedside PT, aPTT
 - √ Blood transfusion record
 - √ Review patient’s history again (quickly)
Evaluation of Excessive Intraoperative or Postoperative Bleeding

• Complications of blood transfusion
 – Massive blood transfusion
 • Usually, patients who receive 10 units or more of banked blood within 24 hrs will be measurably thrombocytopenic, this is commonly not associated with a hemostatic defect
 • If there is diffuse bleeding, an 8- to 10-pack of fresh platelet concentrate should be given empirically (no clear association between the platelet count, bleeding time, and profuse bleeding)
Evaluation of Excessive Intraoperative or Postoperative Bleeding

• Complications of blood transfusion
 – Hemolytic transfusion reaction
 • First hint – diffuse bleeding in an operative field that had previously been dry
 • Pathogenesis –
 – release of ADP from hemolyzed rbcs, resulting in diffuse platelet aggregation, after which the platelet clumps are swept out of the circulation (relative thrombocytopenia)
 – Release of procoagulants – intravascular defibrination
 – Triggering of the fibrinolytic mechanism
Evaluation of Excessive Intraoperative or Postoperative Bleeding

- Previously undetected hemostatic defect
 - Congenital defects
 - Factor deficiencies
 - VIII (Hemophilia A, and/or von Willebrand’s disease)
 - IX (Hemophilia B or Christmas disease)
 - XI (Hemophilia C)
 - II, V, and X
 - VII
 - XIII
 - Transfusion purpura
 - Antibodies to donor platelets, which eventually destroy the host’s own platelets
Evaluation of Excessive Intraoperative or Postoperative Bleeding

- Consumptive coagulopathy (DIC) vs Fibrinolysis
 - No single test can confirm or exclude the diagnosis or distinguish between the two
 - Thrombocytopenia, positive plasma protamine test for fibrin monomers, a low fibrinogen level (<100), elevated FDPs argue for DIC
 - Positive euglobulin lysis time provides a method for detecting diffuse fibrinolysis
 (↑ plasminogen activator)
Life saver? rFVIIa

• Recombinant (activated) Factor VII
 – Initiates hemostasis at sites of bleeding
 • Directly activates thrombin on platelets
 – Used in various complex settings
 • Hemophilia, inhibitors to factors VIII or IX
 • Warfarin-associated bleeding
 • Massive transfusion coagulopathy
 • Acute intracerebral hemorrhage
 • Cardiac Surgery
 • Severe trauma
rFVIIa

• Anticoagulant reversal agent?
 – Hemorrhage due to LMWH – anecdotal
 – Potential reversal agent for most of the newer anticoagulant agents?
 • Reports of efficacy are derived from lab experiments or from healthy volunteers
 – Reversal of warfarin
 – Reversal of hirudin
 – Reversal of fondaparinux
 • Recommendations will require clinical data
Half of your patient’s platelets disappeared overnight! Where did they go?

- **HIT** = heparin-induced thrombocytopenia
 - Occurs in 0.6 to 30%* of patients who have received heparin

- **HITTS** = heparin-induced thrombocytopenia and thrombosis syndrome
 - Occurs in 3% with thrombosis in 0.9%
 - Morbidity and mortality reported at 61% and 23 %, respectively

*25-50% of post-cardiac surgery pts Ab (+) during the next 5-10 days!
Heparin- Induced Thrombocytopenia

- HIT begins 3 to 14 days after heparin exposure
 - Bovine, porcine, lmw heparins all guilty
- Suspect the diagnosis if…
 - 50% drop in platelet count [on heparin]
 - Fall in platelets below 100,000 [on heparin]
 - Thrombosis while on heparin
 - ? Sepsis or DIC
Heparin- Induced Thrombocytopenia

- **Treatment**
 - **Stop all heparin products**
 - Allow the heparin effect to wear off [ongoing prothrombotic state – micro-particles]
 - **Warfarin contraindicated** until adequate alternative anticoagulation established
 - Prothrombotic state similar to that of warfarin-induced protein C/S deficiency
 - May lead to venous gangrene or worse
Anticoagulants Approved for Use by the FDA

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
<th>Mechanism</th>
<th>Indications</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>Coumadin/Generic</td>
<td>Vitamin K</td>
<td>Art/Ven thrombosis</td>
<td>Oral</td>
</tr>
<tr>
<td>Anisindione</td>
<td>Miradon</td>
<td>Vitamin K</td>
<td>Art/Ven thrombosis</td>
<td>Oral</td>
</tr>
<tr>
<td>Unfractionated Heparin</td>
<td>Various agents</td>
<td>Thrombin/factor Xa antagonist</td>
<td>Art/Ven thrombosis</td>
<td>IV, SC</td>
</tr>
<tr>
<td>Fractionated Heparins</td>
<td>Fragmin Lovenox</td>
<td>Factor Xa/thrombin inhibitor</td>
<td>VTE prophylaxis & treatment, ACS</td>
<td>IV, SC</td>
</tr>
<tr>
<td>Antithrombin</td>
<td>Thrombate III</td>
<td>Thrombin/factor Xa antagonist</td>
<td>AT III deficiency</td>
<td>IV</td>
</tr>
<tr>
<td>Danaparoid</td>
<td>Orgaran</td>
<td>Factor Xa/thrombin inhibitor</td>
<td>VTE prophylaxis</td>
<td>IV</td>
</tr>
<tr>
<td>Argatroban</td>
<td>Argatroban</td>
<td>Thrombin inhibitor</td>
<td>HIT</td>
<td>IV</td>
</tr>
<tr>
<td>Lepirudin</td>
<td>Refludin</td>
<td>Thrombin inhibitor</td>
<td>HIT</td>
<td>IV</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>Angiomax</td>
<td>Thrombin inhibitor</td>
<td>PCI</td>
<td>IV</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>Arixtra</td>
<td>Factor Xa inhibitor</td>
<td>VTE prophylaxis in Orthopedics</td>
<td>SC</td>
</tr>
<tr>
<td>Drotrecogin alfa</td>
<td>Xigris</td>
<td>Factor Va/VIIa inhibitor</td>
<td>Severe sepsis</td>
<td>IV</td>
</tr>
</tbody>
</table>
What if Surgery “Requires” Heparin?

- Consider status of HIT
 - Active HIT:
 - Avoid surgery
 - Avoid heparin
 - Subacute HIT
 - Avoid surgery
 - Consider alternatives to heparin
 - Heparin if absolutely necessary
 - History of HIT
 - Consider alternatives to heparin
 - Heparin, monitor closely
Black Box View of Hemostasis

Platelet/coagulation factor activation

Lots of exciting biochemistry that I now really understand!

CLOT!