Minimally Invasive Esophagectomy: OVERRATED!!!

Sagar Damle
UCHSC
December 11, 2006
Esophageal Cancer

- Est. 15,000 cases in 2006
- Est. 14,000 deaths

- Overall 5-year survival: 15.6%
 - 33.6 % for local disease @ Dx
 - 16.8 % for regional disease @ Dx
 - 2.6 % for mets @ Dx
Esophageal Cancer Tidbits

- **S/SX**: Insidious
- **Dx:**
 - EGD with biopsy
 - CT +/- PET
 - Barium Swallow
 - Endoscopic Ultrasound
- **Histologic Types**
 - Adenocarcinoma
 - US and Europe mostly
 - Squamous Cell Carcinoma
 - Asian countries and worldwide
Staging: TNM

• T:
 – Tis = Carcinoma in situ
 – T1 = Invades lamina propria
 – T2 = Invades muscularis propria
 – T3 = Invades adventitia
 – T4 = Invades adjacent structures

• N:
 – N0 = No regional nodes
 – N1 = Regional mets

• M:
 • M0 = No distant mets
 • M1a = Tumors in celiac nodes, cervical nodes or other non-regional nodes.
 • M1b = Other distant mets.
Stages and Typical Tx:

- **Stage 0**: Tis, NO, MO
 - Surgery (Esophagectomy, PDT, EMR)
- **Stage 1**: T1, N0, M0
 - Surgery (Esophagectomy, PDT, EMR)
- **Stage IIA**: T2 or T3, N0, M0
 - Neoadjuvant chemotx +/- surgery
- **Stage IIB**: T1 or T2, N1, M0
 - Same as IIA
- **Stage III**: T3N1 or T4
 - Same as IIA
- **Stage IV**: M any
 - Palliation
A Little History Lesson

- Limited body cavity exams in mid-1800s with hollow tube + refractive lens
- Greatest strides came from George Kelling and achieved “celioscopy.”
- 1960s used for GYN but limited due to instrumentation
- 1980s improved instruments allowed procedures
- …the rest is history.
Proposed benefits (ie MYTHS) of MIE

• Smaller incisions => less pulmonary complications
• Magnification => safer operation => decreased surgical mortality
• Decreased ICU and hospital LOS
• Improved or equivalent survival
Debunking the Myths

• Morbidity
 – Hospital LOS
 – Pulmonary Complications
 – Anastamotic Leak

• Mortality
 – Surgical (Short-term)
 – Oncologic (Long-term)
Length of Stay (ICU and Hospital)

<table>
<thead>
<tr>
<th>Location</th>
<th>MIE</th>
<th>vs.</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia</td>
<td>2 d / 18 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1 d / 11 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minneapolis</td>
<td>1 d / 9 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>1 d / 7 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>2 d / 20 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Anderson</td>
<td></td>
<td>LOS 12 days</td>
<td></td>
</tr>
</tbody>
</table>
Pulmonary Complications

MIE vs. Traditional

- **Australia** (Liebman 2005)
 - > 50% pts

- **Pittsburgh** (Luketich 2003)
 - > 20%

- **Minneapolis** (Collins 2006)
 - > 30%

- **Japan** (Tachibana 2003)
 - ~ 37%

- **Kentucky**
 - < 20%
Leaks

MIE vs. Traditional

- **Australia** (Martin 2005)
 - 19% Leak Rate
 - Only 36 pts

- **Pittsburgh** (Luketich 2003)
 - 12% Leak Rate
 - > 200 pts

- **Minneapolis** (Collins 2006)
 - 12% Leak Rate
 - 25 pts

- **Transhiatal**
 - Initially 15%
 - Now:
 - 3% - (Orringer 2000)
 - 8% - (Casson 2002)

- **Transthoracic**
 - 11% (Altorki 2005)
 - 4.2% (Lerut 2004)

- **Overall** (Tx MDA)
 - 6% (Hofstetter 2002)
The Ultimate Outcome: Survival
<table>
<thead>
<tr>
<th>MIE</th>
<th>vs.</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Georgia (Early exp)</td>
<td></td>
<td>• Belgium</td>
</tr>
<tr>
<td>– 5%</td>
<td></td>
<td>– 1% (Lerut 2004)</td>
</tr>
<tr>
<td>• Pittsburgh (222 pts)</td>
<td></td>
<td>• Kentucky- 10 yr experience</td>
</tr>
<tr>
<td>– 1.3 %</td>
<td></td>
<td>– 1% (Bousamra 2002)</td>
</tr>
<tr>
<td>• Minneapolis</td>
<td></td>
<td>• MD Anderson</td>
</tr>
<tr>
<td>– 4%</td>
<td></td>
<td>– 5-6%</td>
</tr>
</tbody>
</table>
Oncologic Survival

<table>
<thead>
<tr>
<th>MIE</th>
<th>vs.</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Median Survival 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 20% survival @ 4 yrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for invasive CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh (222 pts)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Est. survival @ 20-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 40 months for invasive CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 30-50% @ 5 yrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Anderson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– > 45% @ 4 yrs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems with the Literature: Apples to Oranges

- “Comparison of MIE with TTE and THE”
 - Retrospective. MIE group got supplemental nutrition. THE and TTE groups had > 90% cancer while MIE group had > 20% benign.
- MIE group MUST tolerate single-lung ventilation and so have better CP status.
- MIE group typically have had smaller tumors that do NOT invade local tissues.
- MIE procedures only being done by full-time MIE surgeons
- Difficult to get RCT for many reasons

Summary

• MIE does NOT offer decreased pulmonary complications.
• MIE does NOT offer decreased mortality
• MIE is NOT better than traditional open esophagectomy for long-term survival
Conclusions

Open esophagectomy, should remain the standard of care for esophageal cancer.

This is because the M&M associated with these procedures stems from the esophagectomy and dissection and not the incisions themselves.

The open approach allows for better overall exposure with better short- and long-term results.
References

Oncologic Perspective: Nodes

MIE vs. Traditional

9 per specimen
Collins 2006

7 per patient
Law 1997

• 13 per patient
 – Law 1997