Hemodynamic Support

Eric L. Sarin, MD
Fellow, Surgical Critical Care
UCHSC Dept of Surgery
Hemodynamic Support

Overview

- Differential Diagnosis of Shock
- Interpretation of Invasive Monitoring
- Use of Inotropes & Pressors
- Mechanical Support
- Evidence Based Guidelines for Resuscitation
Defining Shock

• **Physiologic state characterized by significant, systemic reduction in tissue perfusion causing end-organ dysfunction**

• **Hypotension with**
 – altered mental status
 – oliguria/anuria
 – dry mucous membranes, cool/clammy skin
 – delayed capillary refill
Differential Diagnosis of Shock

- **Hypovolemic**
- **Cardiogenic**
- **Distributive**
Hypovolemic Shock

- Decreased preload
 - Hemorrhage
 - Trauma
 - GI source
 - Ruptured aneurysm
 - Fluid Loss
 - Burn injury
 - Enteral (diarrhea/vomiting)
 - 3rd spacing
Cardiogenic Shock

- Pump failure
 - Cardiomyopathy
 - Infarction
 - Dilated cardiomyopathies
 - Stunned/depressed myocardium
 - Arrhythmias
 - Atrial or ventricular
 - Bradycardia
 - Mechanical
 - Valvular
 - Septal defects
 - Tumor/myxoma
 - Obstructive/ Extracardiac
 - Tension pneumothorax
 - Tamponade
 - Severe pulmonary hypertension
Distributive/ Vasodilatory Shock

- Septic
- Neurogenic
- Drug/Toxin
- Systemic Inflammatory Response
- Adrenal Insufficiency
Shock Hemodynamics

PCWP CO SVR

HYPOVOLEMIC ↓ ↑

CARDIOGENIC ↑ ↓ ↑

DISTRIBUTIVE ↓ ↑ ↓
Pulmonary Artery Catheter

- Provides detailed information (measured and derived) regarding volume status, cardiac function, vascular tone
- *JAMA*, 1996-5 yr review of 5,735 pts
 - PACs in initial 24hrs assoc w/increased mortality
 - Not dangerous, not helpful either
Flow Directed Catheter
PAC Controversy

- *Chest*, 2002 - 417 physicians presented a vignette
 - PAC data improved tx plans
 - 10% persisted with harmful plans

- *Int Care Med*, 2003 - survey of 126 critical care physicians using 3 vignettes
 - #1 50%
 - #2 44%
 - #3 37%
• *J Trauma*, 1998-
 – Pts with EF <40% w/ ↑ splanchnic perfusion, improved pH with ↑ preload compared to inotropes
 – No adverse affect on pulmonary function

• *NEJM*, 2001- early goal directed therapy (CVP 8-12) improves mortality in septic shock

• *Circulation*, 2004 (ACC/AHA) -
 – 250ml bolus for cardiogenic shock, no evidence of pulm edema
 – Optimal PCWP ≈ 18-25

• Increased preload needed for right sided infarction
• Maximize Starling curve
Crystalloid vs Colloid

- *Cochrane Rev, 2004-*
 - meta analysis of 46 RCT’s comparing crystalloids to colloids
 - No survival benefit using colloid
 - Expense not justified outside of a randomized trial
Pressors and Inotropes

• Pharmacologic manipulation of alpha adrenergic, beta adrenergic, and/or dopamine receptors

• Rational use relies on understanding the following
 – One agent can affect multiple receptors
 – Dose-dependent nature of effects
 – Direct versus reflex actions

• Optimizing physiology
 – Stop bleeding, treat infection
 – Adequate volume
 – Physiologic milieu

• Frequent reevaluation
Inotropes/ Pressors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Receptor</th>
<th>HR</th>
<th>Inotropy</th>
<th>SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>DA → β₁→α₁</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>(1-20mcg/kg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobutamine</td>
<td>β₁β₂>α₁</td>
<td>↑</td>
<td>↑↑</td>
<td>↓↓</td>
</tr>
<tr>
<td>(2.5-20mcg/kg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>α₁α₂β₁</td>
<td>↑</td>
<td>↑↑</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>(0.5-20 mcg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephrine</td>
<td>α₁α₂β₁β₂</td>
<td>↑↑</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>(2-10 mcg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>α₁</td>
<td>0</td>
<td>0</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>(20-200 mcg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>β₁β₂</td>
<td>↑↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>(1-10 mcg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pressors

• **Vasopressin** - direct effect on vascular smooth muscle causing vasoconstriction
 – *Circulation, 2003; Anesth, 2002*:
 - Addition of vasopressin to norepinephrine improves outcomes in distributive shock

• **Milrinone** - PD inhibitor
 – \uparrow cAMP levels = \uparrow Ca$^{++}$ = \uparrow contractility
 – Peripheral actions limit use in hypotension, 1° use in heart failure
Mechanical Support
Intra-aortic balloon pump

- Inserted via femoral artery into descending aorta
- Inflation/deflation synchronized with cardiac cycle
- Augments coronary diastolic flow, decreases afterload
- Contraindications: Aortic insufficiency, ileofemoral disease
- VADs, CPB/ECMO
Goal-Directed Therapy

- *NEJM*, 2001 - application of GDT for septic shock in ED

- Randomized to 6hrs of GDT vs control prior to ICU admission

- Overall mortality reduced from 46.5% to 30.5%
Conclusions

• Shock can be multifactorial, PACs can be helpful adjuncts to therapy

• Early recognition and prompt initiation of treatment are key

• Goal-directed resuscitation improves outcomes