Thoracoscopic Lobectomy for Lung Cancer

Clearly Superior to Open Resection

Sunil Malhotra, M.D.
Department of Surgery
University of Colorado Health Sciences Center
Resident Debate
May 15, 2006
Lung Cancer in the US

- The leading cause of cancer-related deaths: 165,000 predicted deaths in 2006
- 180,000 new cases per annum
- 80% of cases are non-small cell lung cancer
- 90% are expected to die from lung cancer
Surgery for Lung Cancer

- Resection is considered the most effective modality for controlling the primary tumor for Stage I, II and selected III patients.

- Less than 25% of cases are potentially curable.
Video-Assisted Thoracic Surgery

- 1910: Jacobeus introduces thoracoscopy to facilitate collapse therapy
- 1940’s: Widespread use in Europe for tuberculosis
- 1990-present: Rapid expansion in diagnostic and therapeutic applications
Contraindications to VATS lobectomy

- Need for bronchoplastic resection
- Chest wall involvement
- Endobronchial involvement
- Large size
- T3 disease
Does VATS lobectomy provide standard of care?

- Safety
- Oncologic effectiveness
 - Recurrence rate
 - Survival
 - Adequacy of mediastinal lymph node sampling
Safety

Operative Mortality

- McKenna (n=1,100, 2006) 0.8%
- Thomas (n=511, 2002) 2.7%
- Walker (n=159, 2003) 0.8%
- McKenna (n=298, 1998) 0.3%
- Lewis (n=200, 1999) 0%
- Yim (n=214, 1998) 0.5%

Blood loss

Suguira et al.: Less blood loss in VATS cohort
(150 ± 126 cc vs. 300 ± 192 cc, p=0.009)
Oncologic Adequacy: Survival

- **Walker et al. Eur J CTS 2003**
 - Stage I: 5 yr survival 80%
 - Stage II: 5 yr survival 51%

- **Thomas et al. Eur J CTS 2002**
 - Retrospective comparison of VATS vs open resections

- **Alexander et al. ATS 2003**
 - Multicenter retrospective review of VATS lobectomy
Improved survival?

 - 97.2% 8-year survival following thoracoscopic lobectomy for Stage 1A

 - 90% 3 and 5-year survival following thoracoscopic lobectomy for Stage 1A
Oncologic Adequacy: Recurrence

- Alexander et al. ATS 2003
 - Local recurrence 5.7%
 - Metastatic disease 14%
- McKenna et al. ATS 1998
 - Incision site recurrence in 1 case in 258 (0.3%)
Oncologic Adequacy: Mediastinal Lymph Node Dissection

- **Watanabe et al. Surgery 2005**
 - Retrospective analysis of Stage 1A patients
 - Equivalent number of lymph nodes obtained

Table III. Number of dissected nodes in right side

<table>
<thead>
<tr>
<th></th>
<th>Upper + Middle</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VATS (n = 78)</td>
<td>OT (n = 52)</td>
</tr>
<tr>
<td>TNDN</td>
<td>30.7 ± 11.1</td>
<td>31.1 ± 13.4</td>
</tr>
</tbody>
</table>

Table IV. Number of dissected nodes in left side

<table>
<thead>
<tr>
<th></th>
<th>Upper</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VATS (n = 48)</td>
<td>OT (n = 40)</td>
</tr>
<tr>
<td>TNDN</td>
<td>28.0 ± 10.2</td>
<td>28.1 ± 11.3</td>
</tr>
</tbody>
</table>
Thoracotomy is a Morbid Incision
Potential Benefits

- Less impairment of pulmonary function
- Maintenance of immune function
- Reduced postoperative pain
- Faster recovery
- Cosmesis
Postoperative Pulmonary Function

- PaO2, O2 sat and peak flow rate higher in the postoperative period
 (Nakata et al. ATS 2000)

- Reduced impairment in 6 minute walk and vital capacity
VATS reduces acute phase response: CRP and IL-6

IL-8 and IL-10 production diminished following VATS lobectomy
(Yim et al. ATS 2000)
Improved Immunologic Surveillance

 - Prospectively randomized comparing VATS vs open lobectomy
 - Evaluated effects on cellular immunity

- Thoracotomy resulted in greater reduction in circulating CD4 cells at 2 days, NK cells at 7 days

- Leukocyte signaling (generation of reactive oxygen species) depressed further following open lobectomy

- VATS may confer an improved maintenance of host immune anti-tumor defenses
Postoperative Pain

- **Nomori et al. ATS 2001**
 - Lobectomy via VATS vs limited anterior thoracotomy
 - Pain scores significantly less from POD 1-7 (p=0.03)
 - Analgesic requirement significantly less at POD 7 (p<0.001)

- **Demmy et al. ATS 1999**
 - At 3 weeks, pain far better for the VATS group

- **Sugiura et al. Surg Laparos Endosc 1999**
 - Shorter need for epidural (3 v 7 days)
Demmy et al. ATS 1999
- Earlier return to full preoperative activity
- 2.2 ± 1.0 vs. 3.6 ± 1.0 months (p=0.02)

Sugiura et al. Surg Laparos Endosc 1999
- Time to return to full preoperative activity with VATS
- 2.25 ± 1.7 vs. 7.8 ± 8.6 months (p=0.027)
Length of Stay

- **Demmy et al. ATS 1999**
 - Far shorter length of stay with VATS approach
 - 5.3 d vs. 12.2 d (p=0.02)

- **McKenna et al. ATS 2006**
 - Reports results from 1,100 VATS lobectomies
 - Length of stay: median 3 days; mean 4.7 days
Cost

- VATS typically incurs a higher operative cost with the use of disposables.
- Overall cost may favor VATS if hospital stay is significantly shorter.
Thoracoscopic lobectomy is a safe operation

The VATS approach does not compromise survival rates

VATS lobectomy confers multiple advantages over thoracotomy

- Improved postoperative pulmonary function
- Diminished pain
- Quicker recovery
Conclusion

- Thoracoscopic lobectomy should be considered the operation of choice for resection of early stage lung cancer.

- A multicenter prospective, randomized trial will definitively provide answers regarding the role of thoracoscopic lobectomy in the surgical treatment of lung cancer.
What would your patient prefer?