Drug-Eluting Coronary Stents

Paul Montero PGY-II
University of Colorado Health Sciences Center
Surgical Grand Rounds
Resident Debate
Outline

- Coronary Artery Disease
- Evolution of Percutaneous Coronary Intervention
- Drug-Eluting Stents
- CABG vs PCI
- Current/Future Trials
Coronary Artery Disease

- **Etiology**
 - Atherosclerosis
 - Internal elastic membrane rupture and regeneration
 - Endothelial proliferation with lipid deposits
 - Formation of plaque

- **Worldwide Incidence of Death**
 - 3.8 million men yearly
 - 3.4 million women yearly

...'worst episode ever'
Treatments for CAD

- **Medical**
 - Aspirin, beta blockers, statins, ACE inhibitors, Ca Channel blockers, ARBs, platelet inhibitors, heparinization, tPA

- **Surgical**
 - CABG: Reversed Saphenous Vein, Internal Thoracic Arteries, Radial Artery, off pump, robotic

- **Interventional**
 - IABP, balloon angioplasty, bare metal stents (BMS), drug-eluting stents (DES)
Percutaneous Coronary Intervention (PCI)

- Balloon dilation angioplasty successfully used in 1978 for single vessel, isolated lesions
 - Improved technology
 - Increasing experience
Stenting

- **1850s**: Dentist Charles Stent created metal scaffolding for aligning teeth\(^1\)
- **1960s**: Charles Dotter described concept of stenting after dilation angioplasty
- **1980s**: Sigwart et al introduce coronary stents\(^2\)
Stents

- Structure... Now over 40 designs
 - Flexibility
 - Trackability
 - Radiopacity
 - Scaffolding
 - Corrugated vs Slotted Tube
 - Materials
 - Covered Stents/Coated Stents
 - Gold
 - Silicon Carbide
 - Heparin
Problems with Stents

- **Thrombosis**
 - Acute, subacute, late
 - No difference between BMS and DES

- **Hypersensitivity**
 - Dyspnea, bronchospasm, urticaria, hypotension, asymptomatic bradycardia

- **Restenosis**...the ‘achilles heel’
Mechanism of Restenosis

- Elastic Recoil of Vessel
 - immediate
- Negative Remodeling
 - late constrictive process
- Vessel Injury
- Neo-Intimal Hyperplasia
 - stress induced protein kinases
 - growth factors and cytokines
 - smooth muscle cell proliferation and migration to intima
 - thrombus/platelet activation
 - Formation of **Matrix**
Restenosis Risk Factors

- Diabetes
- Lesion Length
- Use of Multiple Stents
- Inadequate Stent Expansion
- Gaps Between Stents
- Luminal Cross-section Area after Stenting
Restenosis Rates

- **Balloon Angioplasty:**
 - 40% rate of angiographic restenosis 6 months after PTCA, with majority having recurrent symptoms\(^6\)
 - 20-30% required clinically driven repeat target lesion revascularization

- **Bare Metal Stents:**
 - Prevent Recoil and Negative Remodeling, but not Intimal Hyperplasia
 - 20-30% angiographic restenosis at one year
 - 10-15% target lesion revascularization
Preventing Restenosis

- **Brachytherapy**
 - Catheter based delivery of radiation to vessel
 - Reduced rate of intimal hyperplasia/restenosis
 - Too many late effects such as thrombosis

- **Addition of Abciximab**
 - Stone et al, NEJM 2002
 - N = 2082
 - PTCA with/without Stent, abciximab
 - Death, CVA, MI, revascularization occurred least in group with stent and abciximab
Preventing Restenosis

- Is there any other way to reduce restenosis?
Drug-Eluting Stents

- **Delivery Mechanism**-
 - Biostable or bioerodible polymer with controlled release of drug, usually over 14–30 days
 - Non-thrombogenic
 - Inert

- **Delivered Goods**
 - Lipophilic Medications
 - Locally absorbed
 - Less variable concentration
 - Various Classes of Drugs
 - Anti-inflammatory, antiproliferative, immunomodulators...
Stents Eluting Drugs

- Sirolimus
- Everolimus
- Paclitaxel
- Beta-Estradiol
- Dexamethasone
Sirolimus

- **Rapamycin**
 - Produced by *Streptomyces hygroscopicus*, a fungus discovered on Easter Island
 - Macrolide antibiotic
 - Antifungal
 - Anti-tumor
 - Immunosuppressant
Sirolimus

- Arrests smooth muscle cells in G1 phase via FK506 binding protein and p27
- Inhibits proliferation and migration of vascular smooth muscle cells
- First DES approved by FDA in 2003

- the **Cypher**
 Johnson and Johnson
First In Man Study9 Brazil and Netherlands

- Single de novo coronary lesions
 - \(<18\text{mm length, 3.0-3.5 mm diameter}\)
- Tested fast and slow release Sirolimus stents
- Followed at intervals with Intravascular Ultrasound (IVUS)
- Found 0\% restenosis at 24 months
More Sirolimus Trials

- **RAVEL**\(^{10}\)
 - Randomized Double Blind Study
 - 238 patients with single coronary lesions, not including left main
 - 0% in-stent restenosis (ISR) at 6 months
 - 0% revascularization at 2 years

- **SIRIUS**\(^{11}\)
 - Multicenter Randomized Double Blind Study
 - 1058 patients with de novo coronary artery lesions, including diabetes and multivessel disease
 - 3.2% ISR at 8 months versus 35.4% in BMS
 - 8.3% ISR with diabetics versus 48.5% in BMS
 - Further benefit from those on GIIb/IIIa inhibitors
Paclitaxel

- Broad Spectrum Antineoplastic Agent
 - Ovary
 - Breast
 - Lung
 - Head and Neck
 - Esophagus

- TAXUS stent, Boston Scientific

- Pacific Yew Tree *Taxus brevifolia*
 - Found in Northwestern US and Canada
Paclitaxel Mechanism

- Enhances and stabilizes microtubule assembly

- Prevents mitosis, migration, endocytosis, and secretion
 - Cell arrest at G_0

- Lipophilic

- Cell remains viable

- Long lasting antiproliferative effect after short dosing
Paclitaxel Trials

ELUTES
n = 304 European Evaluation of Paclitaxel Eluting Stent
- At 6 months, DES restenosis rate was 3% vs 21% in BMS

ASPECT
n = 117 Asian Paclitaxel Eluting Stent Clinical Trial
- At 6 months, DES restenosis rate was 4% vs 27% in BMS

TAXUS II
n = 1314
- At 9 months, angiographic restenosis rate was 8% (versus 27% for BMS) and target revascularization rate was 3% (versus 11% for BMS).
- At one year, major adverse cardiac events were significantly less (10.8% versus 20% in BMS).
DES vs BMS

- Indolfi et al: Meta-analysis13
 - RAVEL, TAXUS, ASPECT, SIRIUS, ELUTES, DELIVER, SMART
 - N = 3680
 - DM population ranged from 13 to 29% in studies
 - MACEs occurred less frequently with DES (RR 0.40). Major Adverse Cardiac Events: MI, Death, Revasc
 - Significant decrease in need for revascularization (RR 0.30) for DES vs BMS
DES vs BMS

- Kong et al 2005 Meta-analysis¹⁴
 - Eleven trials, N = 5140
 - Significant reduction in target lesion revascularization (4% vs 13%) and major adverse cardiac events (8% vs 16%) with DES.
How does CABG weigh in?

- CABG vs Balloon Angioplasty
- CABG vs Bare Metal Stents
- CABG vs Drug-Eluting Stents?
PTCA vs CABG

- RITA-1 (Randomized Intervention Treatment of Angina) 1993-1998
 - N = 1011
 - No difference in mortality at 6.5 yr f/u
 - Angina 3x more frequent in PTCA
 - Similar costs after 5 years
 - 26% of PTCA patients later underwent CABG
PTCA vs CABG²

- **BARI** (Bypass Angioplasty Revasc. Investigation) 1996 - 2000
 - N = 1829
 - PTCA- more frequent revascularization (52% v 6%)
 - 5 year survival better with CABG* for diabetics (94% v 80%).
 * required IMA graft
 - Survival at 7 years better for CABG (76% v 56%)

- **EAST** (Emory Angioplasty v Surgery Trial) 1995 - 2000
 - N = 392
 - Non-significant late survival benefit in CABG for those with proximal LAD stenosis or diabetes
CABG vs PTCA

- Are results any better for PTCA with stents?
Stent vs CABG

- **SoS** (Stent or Surgery)\(^{15}\) 1999-2002
 - N = 988
 - Repeat revascularization 21% (stent) vs 6% (surgery) at 2 yr
 - In hospital events no different (CVA, death, MI)

- **ERACI II** (Argentina) 2001
 - N = 450
 - Repeat revascularization 14.8% (stent) vs 4.8% (surgery) at 1 yr

- **ARTS** (Arterial Revascularization Therapies Study) 2002
 - N = 205
 - No difference in death, CVAs, MIs for multivessel disease
 - Repeat revascularization 29.2% (stent) vs 7.3% (surgery) at 3 yr
Stent vs CABG

- Serruys et al 2001 NEJM16
 - N = 1205
 - Studied multivessel disease
 - Rates of death, stroke, myocardial infarction were no different
 - Revascularization occurred in 16.8% of stented patients vs 3.5% in CABG group
Stent vs. CABG

- **New York Cardiac Registry, NEJM 2005**
 - N = 37,212
 - Observational Study
 - 3 yr survival rate favored Stenting
 - 3 yr ‘risk-adjusted survival rate’ favored CABG
 - Revascularization rate BMS > CABG
 - 7.8% vs 0.3% underwent subsequent CABG
 - 27.3% vs 4.6% underwent subsequent PCI
 - In hospital mortality rate CABG > BMS (650 vs 150 deaths)
Stent vs CABG

- Hoffman et al 2003 JACC
 - Meta-analysis
 - RITA, EAST, ERACI, CABRI
 - BARI, SIMA, ARTS, SoS
 - 13 randomized trials
 - N = 7964

- Revascularization
 - Stents: 15% more at 1,3 yrs

- Survival
 - Same at 1,3 yrs
 - 5 and 8 year data includes PTCA without Stents

- A. All Trials in Investigation
- B. Multivessel Disease Only
Stent vs CABG

- How about stents vs CABG in special scenarios?
Stent vs CABG in High Risk

- **AWESOME** trial\(^{19}\)
 - Angina With Extremely Serious Operative Mortality Evaluation
 - VA Multicenter, Randomized Trial
 - N = 2431
 - At least one risk factor
 - IABP
 - MI within 7 days
 - LVEF < 35%
 - Age > 70
 - Prior heart surgery
Stent vs CABG in High Risk

- **AWESOME** trial
 - 36 month survival rate
 - CABG: 79%
 - PCI: 80%
Stent vs CABG in Diabetes20

- BARI, EAST, CABRI- survival at 8 years
 - CABG 76%
 - PCI 60%*
 - * before stent usage

- ARTS one year results in diabetics
 - Similar death rates (3.1% vs 6.3%, \(p = 0.40 \))
 - Similar MI rates (3.1% vs 6.3%, \(p = 0.40 \))
 - Revascularization Rates
 - CABG 3.1%
 - Stent 22%
CABG vs Stent in Diabetics
2006

- **New Developments**
 - **Drugs**
 - Clopidogrel: ADP-induced aggregation inhibitor
 - Ticlodipine: ADP-induced aggregation inhibitor
 - Abciximab: IIb/IIla Platelet Inhibitor
 - EPISTENT (12% reduction of TVR in diabetics)\(^\text{21}\)

- **DES in Diabetics**
 - RAVEL (12.2% revascularization with CYPHER vs 27.1% with BMS)
CABG vs DES??

- CARDia Trial UK22
 - 600 Diabetics with multivessel disease
 - Surgeon and Cardiologist in agreement about ability to be randomized
 - Will include sirolimus stents, bare metal stents, and abciximab
- End Points Include
 - Death/nonfatal MI/nonfatal stroke
 - Revascularization
 - Major Bleeding Complications
CABG vs DES??

- **FREEDOM Trial** North America
 - Enrolling 2600 diabetics with multivessel disease
 - Sirolimus Stents with abciximab vs CABG
 - Primary End-Point: 5 year mortality
Summary

- Drug-Eluting Stents are yet another advancement in non-surgical technology for the treatment of CAD
 - Mode of controlled, tissue-directed drug release
 - Significant reduction in restenosis and revascularization
 - Experience and technology advance faster than research that can support it
Summary

- Major limitation of PTCA with stenting is the need for target vessel revascularization...

- DES reduce need for revascularization...
References

7. Stone et al. Comparison of Angioplasty with Stenting, with or without Abciximab, in Acute Myocardial Infarction. NEJM 2002; 346: 957-66
10. Serruys et al. Intravascular Ultrasound Findings in the Multicenter, Randomized, Double-Blind RAVEL (Randomized study with the sirolimus-eluting Velocity balloon-expandable stent in the treatment of patients with de novo coronary artery Lesions) trial. Circulation 2002; 106: 798
References

References