Surgical Critical Care: Poisoning and Toxicology

Franklin Wright, MD
5/6/2015

University of Colorado Anschutz Medical Campus
Toxicology

• “All substances are poisons, there is none which is not a poison. The right dose differentiates a poison from a remedy” Paracelsus, 1493-1541

• Dosis facit venenum
 The dose makes the poison

• Study of the effects of drugs, poisons, toxic substances on the physiology of living organisms
Poisoning

- 5-14% of adult ICU admissions
- Second leading method of suicide (behind firearms)
- 50% of intentional ingestion misreported
- Toxico-kinetic stages
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
Deaths from Poisoning

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>410</td>
</tr>
<tr>
<td>- Alone</td>
<td>170</td>
</tr>
<tr>
<td>- Combination</td>
<td>240</td>
</tr>
<tr>
<td>Sedative/hypnotic/antipsychotic</td>
<td>395</td>
</tr>
<tr>
<td>Cardiovascular drugs</td>
<td>280</td>
</tr>
<tr>
<td>Opioids</td>
<td>266</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>260</td>
</tr>
<tr>
<td>Alcohols</td>
<td>169</td>
</tr>
<tr>
<td>Stimulants/street drugs</td>
<td>133</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td>81</td>
</tr>
</tbody>
</table>

Mechanism of Action

• Usually functional reversible
 o Support organ function until toxin elimination

• Exceptions – fatal cellular damage
 o Acetaminophen
 o Carbon monoxide
 o Corrosives
 o Toxic alcohols
 o Heavy metals
 o Neurotoxic hydrocarbons
Physiologic Assessment

<table>
<thead>
<tr>
<th>Excited</th>
<th>Depressed</th>
<th>Discordant</th>
<th>Normal</th>
</tr>
</thead>
</table>
| **Sympathomimetics**
 - Amphetamines
 - Cocaine
 - MAO-I | **Sympatholytics**
 - ACE-I
 - B-blockers, CCB
 - TCA
 - Digitalis | **Asphyxiants**
 - CO, cyanide
 - Hydrogen sulfide
 - Herbicides | **Nontoxic exposure** |
| **Anticholinergics**
 - Antihistamines
 - Atropine
 - TCA | **Cholinergics**
 - Insecticides
 - Nicotine
 - Pilocarpine | **AGMA inducers**
 - Ethylene glycol, methanol
 - Salicylate, Valproic | **Toxic time bombs**
 - Acetaminophen
 - Mushrooms
 - Anticholinergics |
| **Hallucinogens**
 - LSD
 - Amphetamine
 - PCP | **Opioids**
 - Analgesics
 - Heroin | **CNS syndromes**
 - INH
 - Solvents
 - Strychnine | **- Carbamazepine**
 - Digitalis
 - Ethylene glycol
 - Heavy metals |
| **Withdrawal**
 - B-blockers, TCA
 - Clonidine
 - EtOH, opioids | **Sedative-Hypnotics**
 - EtOH, benzos
 - Anticonvulsants
 - Barbituates | **Membrane active**
 - Antiarrhythmics
 - TCA, heavy metals
 - Local anesthetics | **- Methanol**
 - MAO-I
 - Salicylates |
Toxidromes

- **Anticholinergic**
 - Tachycardia
 - Hyperthermia
 - Hallucination
 - Dry mouth
 - Mydriasis
 - Ileus
 - Urinary retention
 - Dry, flushed skin

- **Narcotic**
 - ↓RR, miosis, ↓LOC, ↓BP

- **Sedative/hypnotic**
 - ↓RR, ↓LOC, ↓BP

- **Sympathomimetic**
 - Mydriasis
 - Agitation
 - Diaphoresis
 - Hypertension
 - Hyperthermia
 - Tachycardia

- **Cholinergic**
 - Salivation
 - Lacrimation
 - Urination
 - Defecation
 - GI cramps
 - Emesis
 - Bradycardia, miosis, confusion
Treatment Objectives

- Resuscitation
- Prevention of further exposure
- Enhanced elimination
- Antidotal therapy
Resuscitation

- Airway
- Breathing
- Circulation
- Depressed level of consciousness
 - Naloxone 0.2-4+ mg
 - Thiamine 100mg
 - 50% glucose 25-50g
Prevention of absorption

- Body cavity exposure
- Eye and skin exposure
- Inhalational exposure
- Ingestion
 - Activated charcoal – 1g/kg, most effective if 1-2h after ingestion
 - Not indicated for acids, alkali, hydrocarbons, Fe, lithium, cyanide
 - Gastric lavage – left lateral decubitus
 - Whole bowel irrigation
 - Surgery – cocaine packets with toxicity
 - Dilution – corrosive ingestion
 - Ipecac/cathartecis – NO evidence
Enhanced Elimination

• Diuresis, manipulation of urinary pH
 o Sulfonamides, salicylates, barbituates
 o 3-8cc/kg, urine pH > 7.5

• Multiple-Dose Activated Charcoal
 o Binds toxins:
 • excreted in bile
 • secreted by intestinal cells
 • passively diffuse into gut

• Extracorporeal Methods
 o PD, HD, hemoperfusion, hemofiltration, plasmapheresis, exchange transfusion
 o Hemodialysis
 • Barbituate, bromide, chloral hydrate, EtOH, ethylene glycol, isopropyl alcohol, lithium, methanol, procainamide, acetaminophen, theophylline, salicylate, heavy metals
<table>
<thead>
<tr>
<th>Agent</th>
<th>Antidotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>N-acetylcysteine</td>
</tr>
<tr>
<td>Anticholinergic</td>
<td>Physostigmine</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>Vitamin K, protamine, PCC</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Flumazenil</td>
</tr>
<tr>
<td>B-antagonists</td>
<td>Glucagon, calcium salts</td>
</tr>
<tr>
<td>CCB</td>
<td>Calcium salts, glucagons</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Cholinergics</td>
<td>Atropine, pralidoxime</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Nitrites, thiosulfate, hydroxycobal</td>
</tr>
<tr>
<td>Digoxin (digitalis)</td>
<td>Fab Antibody fragments, magnesium</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>Ethanol, 4-methylpyrazole, pyridoxine, thiamine</td>
</tr>
<tr>
<td>Envenomations</td>
<td>Antivenins</td>
</tr>
<tr>
<td>Fluoride</td>
<td>Calcium and magnesium salts</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>Dimercaprol, D-penicillamine, calcium disodium, EDTA</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>Oxygen, nitrites</td>
</tr>
<tr>
<td>Iron</td>
<td>Deferoxamine</td>
</tr>
<tr>
<td>INH</td>
<td>GABA agonists, pyridoxine</td>
</tr>
<tr>
<td>Methanol</td>
<td>Ethanol, 4-methylpyrazole, folate</td>
</tr>
<tr>
<td>Methemoglobinemia</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>Opiods</td>
<td>Naloxone, nalmefene, naltrexone</td>
</tr>
<tr>
<td>Sympathomimetics</td>
<td>Adrenergic blockers</td>
</tr>
</tbody>
</table>
Acetaminophen

• Consider co-ingestion
• Early charcoal use
• Assess level 4h after ingestion
• Rumack-Matthew nomogram for single ingestion
• Additional level 4h later for extended-release
• Antidote: N-acetylcysteine
 o Best in 8h, works up to 24h later
IV N-acetylcysteine

- Preferred especially if:
 - > 8-10h after ingestion
 - encephalopathy

- Dose:
 - 150mg/kg over 15 min
 - 50mg/kg over 4h
 - 100mg/kg over 16h

- Dosing regimen 20h, but if given late continue

- Anaphylactoid reactions in 14-18%
 - Hypotension, bronchospasm, rash, death
 - Caution with asthma
 - Treat with diphenhydramine
Oral N-acetylcysteine

- Dose: 140mg/kg, then 70mg/kg every 4h for 17 doses (72h)
- NG tube for administration
- Antiemetics
- No dosage adjustment needed with charcoal
- Redose within 1h if vomiting
Alcohols and Glycol

Alcohol Dehydrogenase

- Ethanol
- Methanol
- Ethylene Glycol
- Methanol

Subproducts:

- Glycoaldehyde
- Glycolic acid
- Glyoxylic acid
- Oxalic acid
- Acetaldehyde
- Acetate
- Acetyl CoA
- Formaldehyde
- Formic acid
Ethylene Glycol and Methanol

• Early
 o CNS, GI (methanol), cardiopulmonary symptoms
 o Osmol gap
 • $2 \times \text{Na} + (\text{glucose} / 18) + (\text{BUN} / 2.8) + \text{EtOH}/4.6$
 o Oxalate crystals (ethylene glycol)

• Late
 o Visual disturbances/ophthalmologic findings (methanol)
 o Renal failure, myositis, seizures (ethylene glycol)
 o Anion gap metabolic acidosis
Ethylene Glycol and Methanol

- **Treatment**
 - IV sodium bicarbonate to pH \(\geq 7.3 \)
 - Inhibition of alcohol metabolism
 - Ethanol (PO or IV)
 - Fomepizole
 - Hemodialysis
 - Renal failure
 - Severe metabolic acidosis pH \(< 7.25\)
 - End organ toxicity
 - Kidneys (ethylene glycol)
 - Visual (methanol)
 - Concentration > 25-50 mg/dL
Ethanol Therapy

- Preferred substrate for ADH – competitive inhibitor
- Oral (20-30%) or IV (5-10%)
- Loading dose: 0.8g/kg of 100% EtOH
- Goal serum level of 100-150mg/dL
- Side effects
 - Sedation/agitation
 - Hemodynamic instability
 - Respiratory depression
 - Hypoglycemia
 - Gastritis
Fomepizole Therapy

• More potent competitive inhibitor of ADH

• Advantages
 o no CNS/behavior issues
 o no concentration monitoring
 o Wide therapeutic margin, fixed dosing

• Disadvantage - Expense

• Loading dose: 15mg/kg

• Maintenance (12h after loading)
 o 10mg/kg q 12h x 48h then
 o 15mg/kg q 12h

• Higher frequency during dialysis
Additional Therapies

- Ethylene glycol
 - IV pyridoxine (100mg) qDay
 - IV thiamine (100mg) qDay
 - Ethylene glycol undetectable, metabolic acidosis resolved

- Methanol
 - IV Folinic acid (leucovorin) or folate
 - 1-2mg/kg q4-6h
 - Methanol undetectable, metabolic acidosis resolved
Propylene Glycol

- Solvent, antifreeze, used in pharmaceuticals
 - IV lorazepam (Ativan), diazepam (Valium), etomidate, phenobarbital, pentobarbital, phenytoin (Dilantin), procainamide, nitroglycerin, theophylline
 - Topical silver sulfadiazine (silvadene)
- Rapid IV infusion (Dilantin load)
 - Prolonged PR and QRS duration
 - Idioventricular rhythms
 - Cardiorespiratory depression/arrest
- Prolonged use, > 3 days of high doses
- Seizures, renal dysfunction, CNS depression, arrhythmias
- Osmolar gap with anion gap acidosis, ↑ lactate
- Stop therapy, support
B-Blocker, CCB Toxicity

- Atropine, IVF, vasopressor
- Hyperinsulinemic euglycemia
 - Insulin bolus – 1 U/kg with 25-50ml of D50W IV
 - Infusion at 1 U/kg/h and dextrose at 0.5 g/kg/h
- Calcium chloride (1g) over 5 min, repeat q10-20 min for 3-4 doses
- Glucagon (5-10mg) IV bolus, repeat q1 min or drip
- Ventricular pacing
- Sodium bicarbonate
- Milrinone (phosphodiesterase inhibitor)
- Lipid emulsion - maybe
Antidepressants

- SSRI
 - Serotonin syndrome
 - Altered mental status
 - Autonomic dysfunction
 - Neuromuscular irritability
 - Supportive
 - Sedation
 - Paralysis
 - Intubation
 - Anticonvulsants
 - Active cooling
 - Cyproheptadine (serotonin antagonist) 4-12 mg PO q8h
Antidepressants

• Cyclic antidepressants
 o CNS depression, seizures, hypotension, dysrhythmias, cardiac conduction abnormalities
 o Activated charcoal (some enterohepatic circulation), intubation (prevent respiratory acidosis), treat seizures, sodium bicarb (for acidosis and cardiac conduction abnormalities)

• MAO-I
 o Initial neuromuscular excitation (hyperadrenergic state) then
 o Catecholamine depletion
 o High dose benzodiazepine
 o Cooling, possible RSI and paralysis
 o Alkalization until cardiac conduction improves
 o Nitroprusside, nitroglycerin, esmolol -> epi, norepi
Cocaine

- **Sympathomimetic overdrive**
 - Tachycardia, hypertension, dilated pupils, agitation, hyperthermia, rhabdomyolysis

- **Cardiovascular effects**
 - Chest pain common, 6% have AMI
 - 18-45 y/o 25% of AMI are due to cocaine
 - Cardiac conduction
 - Prolonged QRS and QTc
 - Dyrhythmias
 - Sinus tachycardia, a.fib/flutter, SVT, V.Tach, V.fib, Torsade de pointes
 - Acute intestinal infarction
Cocaine

- No specific antidote
- Benzodiazepine
- Haldol
- Aggressive cooling
- Beta-blockers contra-indicated
 - Unopposed alpha stimulation
 - Paradoxic exacerbation of HTN
 - Worsening coronary vasoconstriction
- Acute Coronary Syndrom
 - ASA, benzo, NTG
 - Phentolamine (alpha-blocker) or CCB
 - False-positive ST-segment elevations – up to 43%
Amphetamines

• Ingestion, inhalation, intranasal, rectal, SC, IM, IV
• Catecholamine release
• Complications
 o AMI – Benzo, Beta-blocker ok, after r/o cocaine, CCB
 o Dysrhythmias
 o Cardiomyopathy
 o Intracranial bleed
 o Hyperthermia, rhabdomyolysis
 o Bronchospasm, pulmonary edema, ARDS – treat as normal
 o Pneumomediastinum, pneumothorax
Phencyclidine

- PCP – related to ketamine
- Ingested, inhaled or injected
- Delirium
- Violent or agitated behavior, rigid extremities
- Rhabdomyolysis
- Treatment
 - Benzos
 - Haldol
Narcotics/Opioid

- Miosis, respiratory failure, coma

- Naloxone
 - IV, IM, endotracheal, SL
 - 0.1-10 mg
 - 2mg frequent starting dose
 - t½ of 60-90min

- Fentanyl not detected on screening
Sedative/Hypnotic

• Benzodiazepines
 o GABA receptor binding
 o Flumazenil may precipitate withdrawal syndrome with seizures
 • Contra-indicated in TCA or chronic benzo use

• Barbiturates
 o Multi-dose activated charcoal
 o Hemodialysis or hemofiltration if cardiovascular instability

• Muscle relaxants, other sedatives
 o Soma, baclofen
 o Gamma hydroxybutyrate (GHB) or “pine needle oil”
Lithium

- Bipolar, depression, schizophrenia
- Induces neutrophilia 1.5-2x normal leukocyte counts
- Toxic if > 2.5-5 mmol/L
 - CNS
 - Renal (95% renal excretion)
 - Nephrogenic DI, Na wasting nephritis
 - Non-specific cardiac abnormalities
- Whole bowel irrigation
- IVF resuscitation to improve renal clearance
- +/- Kayexalate
- CRRT or HD if severe
Hydrofluoric Acid

- Industrial reagent 6-90%
 - High concentration – tissue injury
 - Low concentration – life-threatening hypocalcemia and hypomagnesemia
- Irrigation for > 15 min
- Calcium gluconate 2.3-2.5% water-soluble gel
 - At least 30 minutes
- Intra-arterial (or IV with Bier block) calcium perfusion
 - 50 mL of 2.5% calcium gluconate in saline over 4h, may repeat
- Inhalation
 - Supportive
 - Possible role for nebulized calcium gluconate solution
Salicylate

- N/V
- CNS disturbances
- Vasodilation/sweating, fever
- Dehydration, osmotic diuresis, HCO3 loss
- ↓Na, K, HCO3, iCa
- Respiratory alkalosis
 - Direct stimulation of medullary respiratory center
- Anion gap metabolic acidosis
- Coagulopathy
- Pulmonary edema
- Hepatotoxicity
Salicylate

- **Hydration**
 - Underappreciate a possible 5-6L volume deficit
- **If intubation, ensure hyperventilation to prevent life-threatening acidosis, give HCO3 prior to intubation**
- **Urine alkalization (pH 7.5)** UOP 1-2 cc/kg/h, replete K
- **Multi-dose activated charcoal, gastric lavage, whole bowel irrigation**
- **Hemodialysis**
 - 100 mg/dL salicylate level common threshold
 - Seizure, AMS, cerebral/pulmonary edema, renal failure
 - Refractory acidosis, T > 38
 - HCO3 rich bath, ensure adequate hydration
Hospital Acquired

• Gabapentin – AMS, coma
• Propylene glycol (Ativan)
• Topical anesthetics (methemoglobinemia)
 o 50mg IV methylene blue
• Propofol infusion syndrome
 o Sepsis, CHI, poor oxygen delivery
 o ICU patients (4 mg/kg/hr, 48h)
 o Surgical patients with lower dose
 • Myocardial failure, arrhythmias, bradycardia
 • Lactic acidosis
 • Hyperkalemia
 • Rhabdomyolysis
 • ARF
 • Hyperlipidemia
Questions

1. CHI trauma patient intubated and on lorazepam infusion for withdrawal, receiving 12mg/h. On PTD#4 he develops a new anion gap acidosis and osmolar gap. Which intervention is best?
 - A) Stop lorazepam, start midazolam infusion
 - B) Stop lorazepam, start diazepam infusion
 - C) Stop lorazepam, start fentanyl infusion
 - D) Initiate hemodialysis
Questions

1. CHI trauma patient intubated and on lorazepam infusion for withdrawal, receiving 12mg/h. On PTD#4 he develops a new anion gap acidosis and osmolar gap. Which intervention is best?
 - A) Stop lorazepam, start midazolam infusion
 - B) Stop lorazepam, start diazepam infusion
 - C) Stop lorazepam, start fentanyl infusion
 - D) Initiate hemodialysis

Propylene glycol toxicity
Questions

2. A 30 y/o M s/p self-inflicted radial artery injury from suicide attempt and history of depression, presents with altered mental status and EKG changes:

- A) Amiodarone
- B) Cardioversion
- C) Magnesium sulfate
- D) Sodium Bicarbonate
Questions

2. A 30 y/o M s/p self-inflicted radial artery injury from suicide attempt and history of depression, presents with altered mental status and EKG changes:

- A) Amiodarone
- B) Cardioversion
- C) Magnesium sulfate
- D) Sodium Bicarbonate

Antidepressant toxicity
Wide complex tachycardia
Questions

3. A 40 y/o M s/p auto-pedestrian accident with pulmonary contusion and rib fractures, toxicology screen positive for cannaboids and cocaine has chest pain & the following EKG changes:

Which is not appropriate:

A) Phentolamine
B) Aspirin
C) Metoprolol
D) Nitroglycerin
Questions

3. A 40 y/o M s/p auto-pedestrian accident with pulmonary contusion and rib fractures, toxicology screen positive for cannabinoids and cocaine has chest pain & the following EKG changes:

Which is not appropriate:

A) Phentolamine
B) Aspirin
C) Metoprolol
D) Nitroglycerin

No B-blockers in cocaine toxicity
Thank you