The Abdomen – A Forgotten Closed Compartment
Early Animal Models of Intraabdominal Hypertension (IAH)

- **Haven Emerson** Arch Intern Med 1911;7:754-784
 - Pressures > 20-34 mm hg
 - Fatal to small animals
 - Respiratory failure/Circulatory collapse

- **Thorington** Am J Med Sci 1923;165:880-90
 - Oliguria in dogs
 - 15-30mm Hg
 - Anuria with pressure > 30
Early Observations: Human IAH

- **Gross (1948)** Forced closures of large omphaloceles could cause cardiovascular collapse in infants

- **Richards (1982)** 4 AAA patients with post-op hemorrhage developed anuria which reversed with reoperation

- **Kron (1984)** Described bladder pressure measurement
IAH: Who gets it?

- Major Trauma
- Independent risk factors:
 - >5 liters crystalloid in 24 hrs
 - >10 U PRBCs in 24 hrs
 - Hypothermia (<33)
 - Acidosis (pH < 7.2)
 - Obesity (BMI > 30)
IAH: Other Scenarios

- Post-op hemorrhage
- Septic Shock
- Severe Burns
- Severe Pancreatitis
- Portal Hypertension
 - Ligation / thrombosis PV
 - Intrinsic liver disease
ACS: Cardiovascular Pathophysiology

- ↓ Venous return
- ↓ Cardiac filling
- ↓ Cardiac output
- ↑ PVR
- Transiently reversible with volume
Pulmonary Pathophysiology

- ↑ Airway pressures
- ↓ Compliance
- ↓ P/F, ↑ CO₂
- Restrictive pulmonary disease
- Reversible with decompression
Renal Pathophysiology

- Vascular Resistance
- Blood flow
- GFR
- Urine flow
- Renin
Renal, cont:

• At IAP > 20
 • Renal vascular resistance is 5x normal
 • Increased venous resistance
 • Increased cortical arteriolar resistance
 • Decreased renal blood flow
 • FG (filtration gradient) drops in proportion to twice IAP
 • GFR drops by 75%
The Gut

- Splanchnic venous outflow is impeded
- Splanchnic blood flow diminished
- Associated with bacterial translocation in animals
- Can lead to infarction
- Evidence of bowel mucosal ischemia can be seen at modest increases in IAP
ACS

Sustained IAP >20 (Grade III or IV IAH) +

Adverse physiological consequences
(New organ dysfunction)
Modern Natural History Data

- 83 ICU Patients prospectively followed
- Mixed med/surg population
- 46% developed IAH (IAP>12)
- No specific therapies directed at IAH
- Mortality associated with IAH = 53%
- Mortality without IAH = 27%
- Mortality of ACS = 80%

Vidal, Crit Care Med, 2008
ACS – First Classification System

Grade I (10-15): Fluid Responsive
Grade II (15-25): Transient response to fluid
Grade III (25-35): Urgent Decompression
Grade IV (>35): Emergent Decompression

Burch, 1996
Current IAH Grading Scale (WSACS)

- “IAH is graded as follows:
 - Grade I IAP 12 - 15 mmHg
 - Grade II IAP 16 - 20 mmHg
 - Grade III IAP 21 - 25 mmHg
 - Grade IV IAP > 25 mmHg.”

The IAH grades have been revised downward as the detrimental impact of elevated IAP on end-organ function has been recognized.
ACS: Primary vs Secondary

- **Primary**: Due to Abdominal injury or condition
 - Major hepatic injury
 - Perforated viscus
 - Primary insult likely determines outcome
- **Secondary**: Develops during resuscitation
 - Capillary leak
 - Massive transfusion
 - Vigorous crystalloid resuscitation
 - Early recognition and treatment
Pathophysiology – Multiple Compartments

- Increased IAP affects many compartments
 - Extremities: Venous return
 - Thorax
 - Pleural
 - Pericardial
 - Intracranial
- “Polycompartment Syndrome”
ACS: How is it recognized?

- Appropriate suspicion:
 - Recognize the at risk patient
 - Mitigate IAH before it progresses to ACS
 - Intermittent (q4 hrs) or continuous bladder pressures
 - Oliguria, increased airway pressures, frank abdominal distension are late signs
IAP: How is it measured?

- Direct measurements: impractical
- Gastric/Rectal measurements suboptimal
- Bladder pressures: surrogate for IAP
 - Instill 25 cc into empty bladder/clamp/use manometer
 - May be unreliable in pts with abnormal bladder compliance
 - Elderly
 - Postoperative
 - Pelvic Packing
- Gold Standard (WSACS): Bladder pressure in a pt with
 - Neuromuscular blockade
 - Supine position
 - End Expiration
 - Transducer at midaxillary line
Required Reading:

Provides standard lexicon and definitions
Establishes evidence-based guidelines
Recognizes areas where evidence is lacking
Emphasizes RX of IAP before it progresses to frank ACS (goal IAP <15)

Estimates the effect of IAP on measured filling pressures (50%)

Emphasizes prompt surgical decompression when ACS does develop
Algorithm-driven Rx of IAP and ACS
Factors Affecting Intraabdominal Pressure

- Inciting Event
- Abdominal Wall Compliance
- Obesity
- Air, fluid, blood, bowel edema
- Level of sedation and analgesia
- Patient Positioning

Geisel, “Hop on Pop” 1963
93 ventilated patients at risk for ACS

- Prospectively measured IAP in different positions
- Using preemptive strategy, only one patient developed ACS
ICU Management

- **Patient positioning**
 - Supine (or <20 deg HOB) appears best

- **Patient comfort**
 - Deep sedation
 - Good Analgesia
 - Trials of NM blockers appropriate
More on neuromuscular blockade

- Single prospective study
- Bolus administration of cisatracurium
- Decreased IAP from 18 to 14
- No improvement in UOP
- No improvement in APP
ICU Management

• Abdominal Contents
 – Good gastric decompression
 – Colonic decompression
 – Enteral feeding acceptable

• Fluid Management
 – Hypertonic crystalloids, colloids have been recommended
 – Aim for zero to negative fluid balance by day 3
 – Consider CRRT
More on Fluid Management

• Balogh et al., 2003
 – Analysis of dataset of supranormal O2 delivery
 – Supranormal resuscitation
 • More crystalloid
 • Worse intestinal perfusion
 • Increased ACS
 • Increased MOF and death
Catheter Drainage

• Described in small case series

• Reed (2005)
 • DPL catheter placed in 8 consecutive pts with IAP > 20
 • Results:
 • IAP fell by mean 6 mm Hg
 • Abdominal perfusion pressure increased by 15 mm Hg
 • Four patients (50%) still required laparotomy

• DH practice: use bedside ultrasound. Two groups:
 • Ascites: → pigtail catheter
 • Bowel edema → laparotomy
Decompressive Laparotomy

• When other measures fail to alleviate ACS, prompt surgical decompression is mandatory

• Gold standard: midline laparotomy in OR with temporary closure

• Bedside ICU decompression a reasonable option
 • Bring the OR to the patient
 • Prompt improvement can be expected
 • Subsequent surgical interventions in OR

• “Minimally invasive” approaches
 • Endoscopic subcutaneous division of linea alba
 • 50% success described
 • Proceed with caution
Modern Outcomes

• Incidence in at-risk population falling
• Mortality from ACS is falling
• Potential contributors:
 – Early recognition
 – “Hemostatic Resuscitation”
 – Judicious use of fluids
 – Improved management of the open abdomen
Now What?
Modified grading system for open abdomen

A modification of a 2009 proposal, now adopted by WSACS

1 No fixation
 1A: Clean, no fixation
 1B: Contaminated, no fixation
 1C: Enteric leak, no fixation

2 Developing fixation
 2A: Clean, developing fixation
 2B: Contaminated, developing fixation
 2C: Enteric leak, developing fixation

3 Frozen abdomen
 3A: Clean, frozen abdomen
 3B: Contaminated, frozen abdomen

4 Established enteroatmospheric fistula, frozen abdomen
ACS: Summary

- Persistent IAP >12 is abnormal
 - Conservative measures warranted
 - Must be monitored
- IAP >20 with organ dysfunction
 - = ACS
 - Life threatening condition
 - Demands prompt resolution
- ACS treatment
 - Continues to improve
 - Has likely decreased mortality
THANK YOU