Protocol Biopsy in Kidney Transplant Recipients

James E. Cooper, M.D.
Assistant Professor, University of Colorado at Denver Division of Renal Disease and Hypertension, Kidney and Pancreas Transplant Program
Has no real or apparent conflicts of interest to report.
Long term graft survival has not improved despite falling acute rejection rates

Acute Rejection (AR) %

Relative Risk of Graft Loss

Chronic allograft nephropathy (CAN) is second only to “death with functioning graft” in causes of late graft loss. (Pascual; NEJM 2003, vol 346: 580-90).

Nankivell, N Engl J Med 2003;349:2326-33
Interstitial Fibrosis/Tubular Atrophy (IF/TA) (CAN) is a histological result of immune and non-immune processes.

- **Immunologic**
 - Acute Rejection
 - Subclinical Rejection
 - Chronic Rejection

- **Non-immunologic**
 - Poor Donor Graft Quality
 - Hypertension
 - DGF
 - Chronic CNI Toxicity
A quick review of the Banff classification of renal allograft biopsies

- **T-cell mediated rejection - ACUTE:**
 - IA: >25% interstitial infiltration, moderate tubulitis (i2, t2)
 - IB: >25% interstitial infiltration, severe tubulitis
 - IIA and IIB: mild – severe intimal arteritis

- **Chronic Allograft Nephropathy (CAN or IF/TA):**
 - I: mild <25% cortical area affected
 - II: moderate 26-50% cortical area affected
 - III: severe >50% cortical area affected

- **Borderline Changes:** “Suspicious” for acute T-cell mediated rejection (10-24% interstitial infiltrate).

- **Subclinical Rejection:** Tubulointerstitial mononuclear infiltration identified from a biopsy specimen, without concurrent functional deterioration (Creat within 10-20% of baseline).

Solez et al, AJT 2008; 8: 753-60
To look for subclinical rejection (SCR) or not: important questions

- Does SCR detected by protocol biopsy impact graft outcome?
- Can treating SCR detected by protocol biopsy impact graft outcome?
- How often is SCR found on protocol biopsy?
Nankivell’s study shed light on the significance of SCR in protocol biopsies

- 120 SPK recipients from 1987 to 2001
- Large variation in immunosuppression depending on era (CsA, AzA, Tac, MMF, pred)
- Protocol biopsies done 1 and 2 wk, 1, 3, 6, and 12 mo, then yearly x 10 yrs
- SCR present in 34% of all (959) biopsy specimens

Nankivell et al; N Engl J Med 2003;349:2326-33
Nankivell et al; Transplantation 2004;78: 242–249
SCR leads to progression of IF/TA and reduced GFR

Nankivell et al; *Transplantation* 2004;78: 242–249

Protocol biopsy performed at day 14 on those with stable graft function.

Immunosuppression included pred + CsA (n=274) or Tac (n=30 since 1998), MMF (n=50 since 2000).

Clinical AR in 33%. SCR or borderline rejection diagnosed in 50%, SCR in 13%
SCR diagnosed 14 days after transplant is associated with worse graft survival

(SCR)

Choi et al. AJT 2005; 5: 1354–1360
Graft survival has been worse in patients with combined IF/TA and SCR

Moreso et al. AJT 2006; 6: 747-752
Cosio et al. AJT 2005; 5: 2464–2472
Does treating SCR seen in protocol biopsies effect outcome?

- 72 renal transplant recipients (11 LRD and 61 cadaveric) 1992 – 1995 randomized to protocol biopsy group (1, 2, 3, 6, 12 mo) or control group (biopsy at 6 and 12 mo only).
- Immunosuppression = CsA, Aza, pred. OKT3 as induction for 12 ptns.
- All rejection (SCR or clinical) treated with pulse steroids.
- Primary endpoint: 50% reduction in acute or chronic pathology at 6 month biopsy

Less acute rejection and IF/TA in the protocol biopsy group

<table>
<thead>
<tr>
<th>Clinical AR</th>
<th>Biopsy (n=36)</th>
<th>Control (n=36)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo 2-3</td>
<td>41%</td>
<td>69%</td>
<td>.02</td>
</tr>
<tr>
<td>Mo 7-12</td>
<td>11%</td>
<td>33%</td>
<td>.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Biopsy</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 1 mo</td>
<td>43%</td>
<td>15%</td>
<td>.09</td>
</tr>
<tr>
<td>2 mo</td>
<td>32%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>3 mo</td>
<td>27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td></td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>IF/TA 1 mo</td>
<td>0%</td>
<td>6%</td>
<td>.05</td>
</tr>
<tr>
<td>2 mo</td>
<td>0%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>3 mo</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creatinine at 1 year lower in protocol biopsy group

Protocol biopsies tested in a prospectively in living-related transplants

- 102 low-risk recipients of living-related donor kidneys from 2004-2005 randomized to biopsy group 1 (3 and 6 mo) or no protocol biopsies (group 2).
- Primary endpoint 6 and 12 month creatinine
- All rejection (SCR and clinical) treated with pulse steroids
- SCR seen in 17% at 1 mo, 12% at 3 mo.

Kurtkoti et al. AJT 2008; 8: 317–323
Majority of patients on CsA-based immunosuppression

Baseline Immunosuppression

<table>
<thead>
<tr>
<th></th>
<th>Biopsy (n=52)</th>
<th>Control (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsA</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>Tac</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>MMF</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>Aza</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Clinical AR (1yr)</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Kurktoti et al. *AJT* 2008; 8: 317–323
Improved creatinine and GFR in biopsy group

Creatinine (mg/dl)

<table>
<thead>
<tr>
<th>Time</th>
<th>Group I</th>
<th>Group II</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month</td>
<td>1.18 ± 0.21</td>
<td>1.19 ± 0.24</td>
<td>0.82</td>
</tr>
<tr>
<td>6 months</td>
<td>1.28 ± 0.33</td>
<td>1.55 ± 0.39</td>
<td>0.0003</td>
</tr>
<tr>
<td>12 months</td>
<td>1.20 ± 0.33</td>
<td>1.52 ± 0.41</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Prospective study of protocol biopsies with Tac/MMF/pred maintenance

- Biopsy arm: 1, 2, 3, 6 months. Control arm: 6 mo only.
- All patients received Tac/MMF/pred maintenance immunosuppression, no data on induction.
- All rejection (SCR and clinical) treated with 2 week tapering course of oral pred (200mg).

Rush et al. AJT 2007; 7: 2538–2545
No difference between groups at 6 mo with Tac/MMF regimens – very low rejection %

- IF/TA (ci + ct score) same in both groups (prim endpoint).

<table>
<thead>
<tr>
<th></th>
<th>Biopsy Arm</th>
<th>Control Arm</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (mmol/L)</td>
<td>119</td>
<td>124</td>
<td>.84</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>73</td>
<td>69</td>
<td>.18</td>
</tr>
<tr>
<td>SCR (at 6 mo)</td>
<td>9%</td>
<td>6%</td>
<td>.48</td>
</tr>
<tr>
<td>Clinical AR (first 6 mo)</td>
<td>9%</td>
<td>7.5%</td>
<td>.44</td>
</tr>
</tbody>
</table>

Rush et al. AJT 2007; 7: 2538–2545
Prevalence of SCR found on protocol biopsy is variable

<table>
<thead>
<tr>
<th>Study</th>
<th>Induction</th>
<th>Immunosuppression</th>
<th>Bx schedule</th>
<th>Prev of SCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nankivell ’87-‘00</td>
<td>Rare</td>
<td>Various (CsA, Tac, MMF, AZA, Pred)</td>
<td>3mo, 6-12mo, 2-5yrs, 6-10yrs</td>
<td>42, 37, 20, 12</td>
</tr>
<tr>
<td>Gloor ’98-’00</td>
<td>About 1/2</td>
<td>Tac + MMF + Pred</td>
<td>3mo</td>
<td>2.6</td>
</tr>
<tr>
<td>Rush ‘92–’95</td>
<td>Rare</td>
<td>CsA (sandimmune) + Aza + Pred</td>
<td>1, 2, 3, 6mo</td>
<td>43, 32, 27, 15</td>
</tr>
<tr>
<td>Nickerson ‘96-’98</td>
<td>Rare</td>
<td>CsA (Neoral) + MMF + Pred</td>
<td>1, 2, 3, 6mo</td>
<td>38, 25, 31, 25</td>
</tr>
<tr>
<td>Cosio ’98–’01</td>
<td>Thymo 67%</td>
<td>Tac + MMF + Pred (72%). CsA (10%), Rapa (18%).</td>
<td>12mo</td>
<td>5</td>
</tr>
<tr>
<td>Choi ‘93-’03</td>
<td>None</td>
<td>CsA + Pred (most)</td>
<td>2 weeks</td>
<td>13</td>
</tr>
<tr>
<td>Moreso ‘88-’03</td>
<td>About 1/3</td>
<td>Various (CsA, Tac, MMF, AZA, Pred, Rapa)</td>
<td>1-6mo</td>
<td>Tac: 16%; CsA: 32%; CNI free: 56%</td>
</tr>
<tr>
<td>Rush ‘01-’04</td>
<td>None</td>
<td>Tac + MMF + Pred</td>
<td>1, 2, 3, 6mo</td>
<td>4.6 overall</td>
</tr>
<tr>
<td>Kurtkoti ‘04-’05</td>
<td>Rare</td>
<td>CsA>Tac, + MMF or Aza, + pred</td>
<td>1, 3mo</td>
<td>17, 12</td>
</tr>
<tr>
<td>Heilman ‘03-’08</td>
<td>All (mixed)</td>
<td>Tac + MMF (pred-free)</td>
<td>1, 4mo</td>
<td>27 (total)</td>
</tr>
<tr>
<td>Yango ‘04-’05</td>
<td>All (Thymo)</td>
<td>Tac + MMF + Pred</td>
<td>6mo</td>
<td>0</td>
</tr>
</tbody>
</table>
Baseline immunosuppression effects histology seen in protocol biopsies in Nankivell’s SPK study

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>61</td>
<td>13</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>CsA(s), Aza, pred</td>
<td>CsA(me), Aza, pred</td>
<td>CsA(me), MMF, Pred</td>
<td>Tac, MMF, Pred</td>
</tr>
<tr>
<td>SCR @ 3mo</td>
<td>63%</td>
<td>33%</td>
<td>24%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

Nankivell et al; *Transplantation* 2004;78: 242–249
Can we identify patients at higher risk for SCR?

- **LNRD vs. LRD transplant, 2 HLA-DR mismatch, previous AR** (Cosio et al. AJT 2005; 5: 2464–2472)
- **Donor age >40, PRA >10%, CNI free regimen** (Moreso et al. AJT 2006; 6: 747-52)
- **Re-transplantation** (Seron et al. KI 2007; 72: 690-97)
- **Steroid free** (Heilman et al. AJT 2010)
- **DGF** (Qureshi et al. Transplantation 2002; 74:1400-1404)
Limitations to protocol biopsies

- **Complications:**
 - Furness et al: 2127 protocol biopsies in 5 centers: no death, 1 graft loss (.04%), 6 hemorrhage requiring procedure or transfusion (.28%) (Transplantation 2003 Vol. 76, 969–973).
 - Schwarz et al: 1171 protocol biopsies at single center: hematuria 3.5%, hematoma 2.5%, requiring procedure or transfusion 1%, no graft loss (AJT 2005; 5: 1992–1996).

- **“Sample effect”:** rejection and fibrosis are patchy processes. Sorof et al. reported on 70 transplant biopsy sample pairs examined independently by pathologists: AR grade differed by ≥1 Banff grade in 30% of cases unblinded, and 50% of cases blinded (Transplantation 1995; 60: 1215).

- Cost and availability of clinical resources.
- Inconvenience to patients, especially those that commute long distances to the transplant center.
A quick word about chronic lesions in protocol biopsies

- Chronic histologic damage is seen frequently in allografts, even early after transplant (25-30% at 3mo).
- Degree of IF/TA is predictive of graft function and survival, and does not appear to vary with CNI (Cosio et al. AJT 2005; 5: 2464-2472).
- CNI-free protocols have seen less chronic damage:
 - CNI avoidance: Flechner et al: 61 patients randomized to SRL vs. CsA, + MMF and steroids, after KTx. 48 had protocol biopsy at 2yrs:
 - CNI withdrawal: RMR trial: 547 KTx recipients on CsA, SRL, pred randomized to either stop or continue CsA at 3mo. 1yr protocol biopsy in a subset of 96 showed significantly less chronic damage in the withdrawal arm.
Summary

- SCR found on protocol biopsy can lead to fibrosis and atrophy, worse graft outcomes.
- Prevalence of SCR has been widely variable in the literature and depends on immunosuppression, timing of biopsy, histologic definition.
- In the pre-”tacrolimus/MMF/pred” era, treatment of SCR found on protocol biopsy led to improved outcomes compared to a control group, but may not be as beneficial for all patients in the modern era where SCR rates are low.
- Protocol biopsy may be useful for patients with risk factors for SCR, and for identifying those at risk for graft loss due to IF/TA.
Thank You