Optimal Use of mTOR Inhibitors

Alexander Wiseman, M.D.
Associate Professor, Division of Renal Diseases and Hypertension
Medical Director, Kidney and Pancreas Transplant Programs
University of Colorado Health Sciences Center
Alexander Wiseman, M.D.
Associate Professor, Division of Renal Diseases and Hypertension
Medical Director, Kidney and Pancreas Transplant Programs
University of Colorado Health Sciences Center

I have financial relationship(s) within the last 12 months relevant to my presentation with:

Novartis: Grant/ Research, Consultant, Speakers Bureau

My presentation does include discussion of off-label or investigational use of Sirolimus and Everolimus

I do intend to reference unlabeled/unapproved uses of drugs or products in my presentation:

Use of everolimus and sirolimus (the entire presentation)
Proposed reasons to use mTOR inhibitors

• For GFR preservation
• For antineoplastic effects
• For cyst-reduction effects
• As a replacement agent for other agents due to side effects
 – For mycophenolate
 – For CNI
Proposed reasons NOT to use mTOR inhibitors

- Proteinuria
- Synergistic nephrotoxicity with CNI
- Wound healing
- Post-surgical events: lymphohocoele, delayed graft function
Proposed reasons to use mTOR inhibitors

• For GFR preservation
• For antineoplastic effects
• For cyst-reduction effects
• As a replacement agent for other agents due to side effects
 – For mycophenolate
 – For CNI
Why consider mTORi (or any other agent) for GFR? No improvements in graft survival despite newer agents, lower rejection rates

<table>
<thead>
<tr>
<th>Year</th>
<th>5 Year Adjusted Graft Survival, Kidney Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Living</td>
</tr>
<tr>
<td>1998-03</td>
<td>80.2%</td>
</tr>
<tr>
<td>1999-04</td>
<td>80.2%</td>
</tr>
<tr>
<td>2000-05</td>
<td>80.3%</td>
</tr>
<tr>
<td>2001-06</td>
<td>80.8%</td>
</tr>
<tr>
<td>2002-07</td>
<td>81.4%</td>
</tr>
</tbody>
</table>
CNI use in solid organ transplant, and the burden of chronic kidney disease

- **Organ** | **At Discharge** | **At 1 year**¹
- Liver | 97% | 93%
- Heart | 98% | 93%
- Lung | 100% | 92%

CKD (% with GFR<30)²

² Ojo AO et al, NEJM 2003;349: 931
Biopsy-Diagnosed Renal Disease in Patients After Transplantation of Other Organs and Tissues

Non-renal transplant recipients with native renal biopsies:

<table>
<thead>
<tr>
<th>Biopsies</th>
<th>Liver n = 41</th>
<th>Lung n = 30</th>
<th>Heart n = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after tx (mos)</td>
<td>35</td>
<td>19</td>
<td>66</td>
</tr>
<tr>
<td>eGFR at biopsy (mL/min)</td>
<td>37.6</td>
<td>28.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Acute tubular injury</td>
<td>49%</td>
<td>75%</td>
<td>70%</td>
</tr>
<tr>
<td>IF/TA >20%</td>
<td>51%</td>
<td>64%</td>
<td>35%</td>
</tr>
<tr>
<td>Arteriolar hyalinosis</td>
<td>13%</td>
<td>64%</td>
<td>70%</td>
</tr>
<tr>
<td>Benign nephrosclerosis</td>
<td>41%</td>
<td>54%</td>
<td>40%</td>
</tr>
<tr>
<td>Global glom. sclerosis</td>
<td>18%</td>
<td>18%</td>
<td>30%</td>
</tr>
<tr>
<td>Nephrocalcinosis</td>
<td>13%</td>
<td>0</td>
<td>5%</td>
</tr>
<tr>
<td>Primary glom. disease</td>
<td>26%</td>
<td>0</td>
<td>15%</td>
</tr>
<tr>
<td>Thrombotic microangiopathy</td>
<td>13%</td>
<td>14%</td>
<td>0</td>
</tr>
<tr>
<td>Polyoma virus nephropathy</td>
<td>0</td>
<td>4%</td>
<td>0</td>
</tr>
</tbody>
</table>

Schwarz A et al, AJT 2010;10: 2017
mTORi-based immunosuppression: When is it the “right” time?

Early

Late

De Novo? Within 1-6 months? At time of renal dysfunction?

Tx
The Symphony Trial: Defining today’s “Gold Standard”

- 12-month randomized open-label multicenter trial of 1645 KTX
- 4 Treatment arms: all receive Basiliximab induction, MMF/Prednisone
 - CSA 150-300 ng/ml x 3 months, then 100-200 ng/ml
 - CSA 50-100 ng/ml
 - TAC 3-7 ng/ml
 - SRL 4-8 ng/ml

At 12 months:

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Acute Rejection (%)</th>
<th>Graft Survival (%)</th>
<th>GFR (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA “standard”</td>
<td>25.8</td>
<td>89.3</td>
<td>57.1</td>
</tr>
<tr>
<td>CSA “low”</td>
<td>24.0</td>
<td>93.1</td>
<td>59.4</td>
</tr>
<tr>
<td>TAC “low”</td>
<td>12.3*</td>
<td>94.2*</td>
<td>65.4*</td>
</tr>
<tr>
<td>SRL “low”</td>
<td>37.2</td>
<td>89.3</td>
<td>56.7</td>
</tr>
</tbody>
</table>
CNI avoidance with Sirolimus: true benefit?

Rabbit anti-thymocyte globulin x 5/MMF/Pred+
 SRL (15-20ng/ml x 4 mo, then 10-15 ng/ml)
vs. TAC (10-12ng/ml x 1 mo, 8-10ng/ml x 3 mo then 6-8 ng/ml)

• At 1 year:
 SRL group (n=81)
 TAC group (n=84)

 Acute rejection 13.0% 10.0% (p=ns)
 GFR @1y 56 ml/min 55 ml/min (p=ns)
 GFR @2y 55 ml/min 55 ml/min (p=ns)

• Biopsy data @1y:
 chronic vascular changes: 26% 43% (p=0.03) (cv1 or greater)
 *no differences in interstitial fibrosis, tubular atrophy, or glomerulopathy

• Discontinuation rate 38% 16%

Larson TS et al, Am J Transplantation 2006;6: 514
mTORi-based immunosuppression: When is it the “right” time?

Early

- De Novo?
- Within 1-6 months?

Late

- At time of renal dysfunction?
The CONVERT study: Can CNIs be withdrawn later after transplant to preserve renal function?

CNI* (n=830)
6 months to 120 months posttransplant

Randomization
Mean of 3.2 years after kidney transplantation

CNI*
(n=275)
Baseline GFR
STRATUM 1: 20-40 mL/min: n=29
STRATUM 2: >40 mL/min: n=246

Sirolimus*
(n=555)
Baseline GFR
STRATUM 1: 20-40 mL/min: n=58
STRATUM 2: >40 mL/min: n=497

* Concomitant medications included mycophenolate mofetil (MMF) or azathioprine (AZA), and corticosteroids
* 93% of patients in the SRL arm and 88% of patients in the CNI arm had CAN≥1

Late conversion from CNI to SRL: no benefit, potential for harm

(ITT Analysis, baseline GFR > 40 mL/min)

<table>
<thead>
<tr>
<th></th>
<th>SRL conversion</th>
<th>CNI continuation</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 month eGFR (mL/min)</td>
<td>59.0</td>
<td>57.7</td>
<td>0.28</td>
</tr>
<tr>
<td>24 month eGFR (mL/min)</td>
<td>53.7</td>
<td>52.1</td>
<td>0.30</td>
</tr>
</tbody>
</table>

• Late conversion to a sirolimus-based regimen showed no renal function benefit, with worsening proteinuria:
 – Release of CsA-induced afferent arteriolar vasoconstriction\(^1\), antagonism of VEGF\(^2\), loss of nephrin expression with mTOR\(^3\) are potential mechanisms

CNI Withdrawal in the setting of graft dysfunction: are there subgroups that benefit?

- 159 patients underwent transition from TAC/MMF/P to SRL/MMF/P
- Baseline biopsy: IF/TA score 1.01 (NOT SEVERE “CAN!”)
 - Baseline proteinuria: UACR 98 (NOT SEVERE GLOMERULAR INJURY!)
- Of 136 who remained on SRL >90d, 101 (76%) improved eGFR:
 - Time to conversion = 17 months in responders vs 34 months in nonresponders
 - Baseline eGFR = 28 ml/min in responders vs 19 ml/min in nonresponders, p=0.001
CNI withdrawal with SRL vs. CNI reduction in heart tx recipients with CKD

63 HTx pts with GFR<60
CNI/MMF/±Pred (CsA>100 or TAC>9)

Randomization: mean 5.8y from transplant

- **SRL (8-14 ng/ml)**
- CNI tapered, discontinued when SRL therapeutic (mean 2.6 weeks) (n=30*)

- **CNI reduction by 40% over 4 weeks** (n=33)

Groetzner J et al, *Transplantation* 2009; 87: 726
CNI withdrawal with SRL vs. CNI reduction in heart tx recipients with CKD

- Renal function significantly better with CNI withdrawal:
 - n=0 initiated dialysis in CNI withdrawal
 - n=6 initiated dialysis in CNI reduction arm

- No difference in rejection
 - 4 in CNI reduction
 - 2 in SRL

- Higher rate of side effects in CNI withdrawal (SRL) primarily dermatologic

In those not initiating dialysis:

>10 ml/min improvement in GFR with SRL transition/CNI discontinuation

Groetzner J et al, Transplantation 2009; 87: 726
mTORi-based immunosuppression: When is it the “right” time?

Early

De Novo?

Late

Within 1-6 months?

At time of renal dysfunction?

Tx
“MMF-based immunosuppression with SRL: The Spare-the-Nephron trial”

Open label, prospective, randomized, multi-center study

Patients Post-Transplant Maintained on CNI+MMF ± Steroids

30-180 Days Randomization n=305

CNI+MMF
MMF 1-1.5 g BID

Sirolimus+ MMF
MMF 1-1.5 g BID
SRL Loading Dose: 2-10 mg
SRL trough: 5-10 ng/mL

<table>
<thead>
<tr>
<th></th>
<th>MMF/SRL n=148</th>
<th>MMF/CNI n=151</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Change in eGFR at 24 months</td>
<td>+9.8%</td>
<td>+2.1%</td>
</tr>
<tr>
<td>BPAR, %</td>
<td>9.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Graft Loss, %</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Death, %</td>
<td>0</td>
<td>3*</td>
</tr>
<tr>
<td>Proportion of Patients DC Treatment for AEs,%</td>
<td>21</td>
<td>13</td>
</tr>
</tbody>
</table>

Weir MR et al, Kidney Int. 2010 Dec 29
Conversion to EVR/ MMF/Steroids vs CsA/MMF/Steroids at 4.5 months post-renal transplant

The ZEUS Study

Multi-center, randomized, controlled trial in 300 renal transplant recipients

IL2ra + CsA/MPA/Steroids n=503

300 Randomized at Month 4.5

Group A: **Everolimus**: 6-10 ng/mL to M12 + MPA 1440 mg/d + steroids

Group B: CsA 125-175 ng/mL to M6, 100-150 ng/mL to M12 + MPA 1440mg/d + steroids

300 Randomized at Month 4.5

At 12 months:

<table>
<thead>
<tr>
<th></th>
<th>EVR/MPA/Steroids n=154</th>
<th>CsA/MPA/Steroids n=146</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR, Nankivell</td>
<td>71.8 ml/min</td>
<td>61.9 ml/min</td>
<td><0.0001</td>
</tr>
<tr>
<td>Patient Survival</td>
<td>99%</td>
<td>100%</td>
<td>NS</td>
</tr>
<tr>
<td>Death Censored Graft Survival</td>
<td>100%</td>
<td>100%</td>
<td>NS</td>
</tr>
<tr>
<td>BCAR after randomization</td>
<td>10%</td>
<td>3%</td>
<td>0.04</td>
</tr>
<tr>
<td>Discontinuations</td>
<td>24%</td>
<td>19%</td>
<td>NS</td>
</tr>
</tbody>
</table>

Higher rates of proteinuria, stomatitis, hyperlipidemia treatment in mTORi arm

A Randomized, Multi-Center Trial of Early Conversion to SRL/MMF/Steroids vs CsA/MMF/Steroids in Renal Transplantation

The SMART Study

Multi-center, randomized, controlled trial in 196 renal transplant recipients

Group A: Sirolimus: 8-12 ng/mL to M3, then 5-10 ng/mL to M12 + MMF 1.5 g/d + steroids

Group B: CsA 150-200 ng/mL to M3, then 100-150 ng/mL to M12 + MMF 2 g/d + steroids

Creatinine Clearance, Nankivell

<table>
<thead>
<tr>
<th>Group</th>
<th>Creatinine Clearance, Nankivell</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>65.2 ml/min</td>
<td>0.004</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>54.1 ml/min</td>
<td></td>
</tr>
</tbody>
</table>

Creatinine Clearance, MDRD

<table>
<thead>
<tr>
<th>Group</th>
<th>Creatinine Clearance, MDRD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>55.3 ml/min</td>
<td>0.03</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>47.3 ml/min</td>
<td></td>
</tr>
</tbody>
</table>

Patient Survival

<table>
<thead>
<tr>
<th>Group</th>
<th>Patient Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>98.6</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>98.6</td>
</tr>
</tbody>
</table>

Death Censored Graft Survival

<table>
<thead>
<tr>
<th>Group</th>
<th>Death Censored Graft Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>100</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>98.6</td>
</tr>
</tbody>
</table>

BCAR

<table>
<thead>
<tr>
<th>Group</th>
<th>BCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>23.2</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Discontinuations

<table>
<thead>
<tr>
<th>Group</th>
<th>Discontinuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>36.2</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>19.7</td>
</tr>
</tbody>
</table>

CMV Viremia

<table>
<thead>
<tr>
<th>Group</th>
<th>CMV Viremia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/MMF/Steroids</td>
<td>5.8</td>
</tr>
<tr>
<td>CsA/MMF/Steroids</td>
<td>26.8</td>
</tr>
</tbody>
</table>

“Early Withdrawal of Calcineurin Inhibitors and Everolimus Monotherapy in de novo Liver Transplant Recipients Preserves Renal Function”

Il2ra/CsA/Steroids
Pred taper off by 5 weeks posttransplant

Day 10 Randomization

Everolimus (8-10 ng/ml)
CsA discontinued at 4 weeks (n=52)

CsA Maintenance
CsA target 225-200-150 over 12mo (If CNI complications, +MMF with CsA target 100 ng/ml) (n=26)

Masetti M et al, AJT 2010; 10: 2252
Early Withdrawal of CsA with Everolimus Monotherapy results in better GFR at 1y in de novo OLTx

\[
\begin{align*}
eGFR \text{ at 1y:} \\
\text{CsA} & \quad 59.9 \text{ ml/min} \\
\text{EVR} & \quad 87.7 \text{ ml/min}
\end{align*}
\]

\[
\begin{align*}
\% \text{ CKD} \geq 3 \text{ at 1y:} \\
\text{CsA} & \quad 52.2\% \\
\text{EVR} & \quad 14.4\%
\end{align*}
\]

Masetti M et al, AJT 2010; 10: 2252
mTORi-based immunosuppression for GFR: Conclusions

<table>
<thead>
<tr>
<th>Graft Outcomes (GFR, rejection, biopsy data)</th>
<th>De novo</th>
<th>1-6 mo</th>
<th>> 1 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Yes and no</td>
<td>No and yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary</th>
<th>De novo</th>
<th>1-6 mo</th>
<th>> 1 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute rejection higher, surgical complications a concern, large trials do not support</td>
<td>Multiple studies consistently show improved GFR despite increased risk of acute rejection</td>
<td>Depends on biopsy findings/proteinuria: not advisable in patients with proteinuria</td>
<td></td>
</tr>
</tbody>
</table>

Early Late

Have we been successful?
Proposed reasons to use mTOR inhibitors

- For GFR preservation
- For antineoplastic effects
- For cyst-reduction effects
- As a replacement agent for other agents due to side effects
 - For mycophenolate
 - For CNI
mTOR inhibition and malignancy

- 1996-2001 registry data (f/u censored at 963d)
- mTOR use associated with significantly lower rates of malignancy

<table>
<thead>
<tr>
<th>REGIMEN</th>
<th>Number of transplants</th>
<th>De novo malignancy</th>
<th>De novo nonskin solid malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRL/ERL</td>
<td>504</td>
<td>0.60</td>
<td>0.0</td>
</tr>
<tr>
<td>SRL/ERL + CNI</td>
<td>2321</td>
<td>0.60</td>
<td>0.47</td>
</tr>
<tr>
<td>CNI</td>
<td>30,424</td>
<td>1.81*</td>
<td>1.00*</td>
</tr>
</tbody>
</table>

- Rapamune Maintenance Regimen (RMR) trial, SRL/ST vs SRL/CSA/ST
- on-therapy analysis of malignancy:
- mTOR use associated with significantly lower rates of malignancy

Campistol JM et al. J ASN 2006;17:581
Sirolimus for Kaposi's Sarcoma in Renal-Transplant Recipients

• In 15 renal-transplant recipients with cutaneous Kaposi's sarcoma, cyclosporine was stopped and sirolimus was started
• All skin lesions in all patients regressed within six months, likely due to inhibition of VEGF and AKT signalling in tumor cells
• No episodes of rejection or deterioration in GFR at 6 months

mTOR inhibition provided benefit in survival and prevention of disease progression in late-stage renal cell carcinoma.

626 patients with newly diagnosed metastatic renal-cell cancer:

<table>
<thead>
<tr>
<th>End point</th>
<th>IFN</th>
<th>Temsirolimus</th>
<th>IFN + Temsirolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median survival</td>
<td>7.3 mo</td>
<td>10.9 mo</td>
<td>8.4 mo</td>
</tr>
<tr>
<td>“Clinical benefit”</td>
<td>15.5%</td>
<td>32.1%</td>
<td>28.1%</td>
</tr>
</tbody>
</table>

Hudes G et al. NEJM 2007;356:2271
Switch to SRL for skin cancer in long-term renal transplant recipients:

Randomized, prospective, assessor-blinded study

44 KTX patients with premalignant/malignant skin changes

25 pts SRL transition

19 pts usual care

<table>
<thead>
<tr>
<th>Clinical assessment (month 12)</th>
<th>Arm A (sirolimus) n (Patients)</th>
<th>%</th>
<th>Arm B (control) n (Patients)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Marked worsening</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 = Worsening</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>3 = Slight worsening</td>
<td>0</td>
<td>0.0</td>
<td>10</td>
<td>58.8</td>
</tr>
<tr>
<td>4 = Unchanged</td>
<td>4</td>
<td>26.7</td>
<td>5</td>
<td>29.4</td>
</tr>
<tr>
<td>5 = Slight improvement</td>
<td>6</td>
<td>40.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>6 = Improvement</td>
<td>4</td>
<td>26.7</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>7 = Marked improvement</td>
<td>1</td>
<td>6.7</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100.0</td>
<td>17</td>
<td>100.0</td>
</tr>
</tbody>
</table>

New skin ca: 1

Salgo R et al. AJT 2010; 1385
Conclusions-mTORi and Malignancy

- mTORi appears to have both immunosuppressive and antineoplastic effects, and may provide a practical advantage in graft recipients with Kaposi's sarcoma, skin cancer and other neoplasms that arise in immunosuppressed patients
Proposed reasons to use mTOR inhibitors

• For GFR preservation
• For antineoplastic effects
• For cyst-reduction effects
• As a replacement agent for other agents due to side effects
 – For mycophenolate
 – For CNI
Rationale

• In autosomal dominant polycystic kidney disease (ADPKD), aberrant activation of mTOR pathway is associated with progressive kidney enlargement

• 2 multicenter randomized controlled trials in early CKD for impact of mTOR inhibition on cyst/kidney volume

Serra AL et al. NEJM 2010;363:820
Walz G et al. NEJM 2010;363:830
Sirolimus and Kidney Growth in ADPKD

Sirolimus vs placebo in an 18-month open-label, randomized, controlled trial of 100 adults with ADPKD and early CKD (eGFR 92 ml/min, 43% on RAS agents)

- Sirolimus 2 mg/d did not halt polycystic kidney growth
- (<7% had CKD III as baseline, so no impact on GFR was expected)

Serra AL et al. NEJM 2010;363:820
Everolimus in Patients with ADPKD

2-year, double-blind trial of 433 patients with ADPKD randomly assigned to receive either placebo or everolimus to determine effect on kidney/cyst size (via MRI), baseline GFR 55 ml/min, 80% on RAS agents

• Everolimus slowed the increase in kidney volume by MRI, but did not slow the progression of renal impairment

Walz G et al. NEJM 2010;363:830
Proposed reasons to use mTOR inhibitors

• For GFR preservation
• For antineoplastic effects
• For cyst-reduction effects
• As a replacement agent for other agents due to side effects
 – For mycophenolate
 – For CNI
Large database analysis supported TAC/MMF vs. TAC/SRL from 2000-2004

<table>
<thead>
<tr>
<th>Regimen</th>
<th>One Year Graft Survival</th>
<th>Three Year Graft Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC/MMF</td>
<td>94.2</td>
<td>85.9</td>
</tr>
<tr>
<td>CsA/MMF</td>
<td>92.9</td>
<td>85.3</td>
</tr>
<tr>
<td>CsA/SRL</td>
<td>92.8</td>
<td>82.2</td>
</tr>
<tr>
<td>TAC/SRL</td>
<td>91.8</td>
<td>80.3</td>
</tr>
</tbody>
</table>

Tac/SRL vs. Tac/MPA as Maintenance Immunosuppression in Adult Renal Transplantation

354 patients from 2003-2006 at a single center

<table>
<thead>
<tr>
<th>Group (N)</th>
<th>Mean Tac trough at 1 Yr</th>
<th>AR at 1 Yr (%)</th>
<th>Mean 1Yr GFR (ml/min)</th>
<th>3 Yr Graft Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC/SRL (191)</td>
<td>6.6</td>
<td>7.9</td>
<td>57.9#</td>
<td>88.2%</td>
</tr>
<tr>
<td>TAC/MPA (163)</td>
<td>6.9</td>
<td>12.9</td>
<td>63.0</td>
<td>88.9%</td>
</tr>
</tbody>
</table>

#p=0.01

TAC/SRL well tolerated, but highlighted greater emphasis on reduced CNI trough goals

Gralla J and Wiseman AC, Transplantation 2009; 87: 1712
mTORi in place of MPA, with CsA Minimization

- Everolimus and Very Low CSA Exposure in De Novo Renal Transplant

Mean Trough CSA Level, ng/mL

- **EVR + reduced-dose CsA (n = 274)**
- **MPA + standard-dose CsA (n = 274)**

GFR at Month 12

<table>
<thead>
<tr>
<th></th>
<th>EVR 3-8 ng/mL</th>
<th>MPA 1.44 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFR at Month 12</td>
<td>54.6</td>
<td>52.2</td>
</tr>
<tr>
<td>Treated BPAR</td>
<td>16.2%</td>
<td>17.0%</td>
</tr>
<tr>
<td>Graft loss</td>
<td>4.3%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Any wound event</td>
<td>35.0%</td>
<td>25.6%</td>
</tr>
<tr>
<td>Total infections</td>
<td>61.7%</td>
<td>67.8%</td>
</tr>
<tr>
<td>CMV</td>
<td>1.1</td>
<td>8.4</td>
</tr>
<tr>
<td>BKV</td>
<td>0.7</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Data Source: Tedesco-Silva et al, Am J Transplant 2010; 10: 1401
Optimal use of mTOR inhibitors

• For GFR preservation: mixed bag; stable lower-risk patients can be converted to mTOR from CNI. Liver/heart tx data similar to renal data

• For antineoplastic effects: provocative; consistent trends in most studies support mTORi use

• For cyst-reduction effects: experimental data have not translated into clinical success

• Can be considered as a replacement agent for mycophenolate, both at time of transplant and as substitute for side effects, *but CNI exposure should be minimized*

• Avoid: patients with proteinuria or significant fibrosis, uncontrolled hyperlipidemia, obesity/risk of wound healing