Is it Rejection?
Work Up and Initial Management of AKI in the Transplant Patient

Alexander Wiseman, M.D.
Associate Professor, Division of Renal Diseases and Hypertension
Medical Director, Kidney and Pancreas Transplant Programs
University of Colorado Health Sciences Center
Outline

• Defining AKI in the kidney transplant recipient

• Betting the odds: is it rejection?

• If not rejection, then what is it?

• Evaluation of AKI in kidney transplant recipients

• Treatment
Defining AKI

In Native Kidneys:

<table>
<thead>
<tr>
<th>Risk</th>
<th>GFR criteria</th>
<th>Urine output criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury</td>
<td>Increased SCreat x1.5 or GFR decrease >25 percent</td>
<td>UO <.5 mL/kg/h x 6 hr</td>
</tr>
<tr>
<td>Injury</td>
<td>Increased SCreat x2 or GFR decrease >50 percent</td>
<td>UO <.5 mL/kg/h x 12 hr</td>
</tr>
<tr>
<td>Failure</td>
<td>Increase SCreat x3 GFR decrease 75 percent OR SCreat ≥4 mg/dL Acute rise ≥0.5 mg/dL</td>
<td>UO <.3 mL/kg/h x 24 hr or Anuria x 12 hrs</td>
</tr>
</tbody>
</table>

Loss
- Persistent ARF = complete loss of kidney function >4 weeks

ESKD
- End stage kidney disease (>3 months)

Typically an INPATIENT disease

In Kidney Transplant:

Immediate post-transplant:
- The lack of increased urine output, or fall in serum creatinine, or the persistent need for dialysis following transplant (DGF)
 - Multitudes of definitions

After a period of sustained function:
- “a plasma creatinine that is stable at an elevated level above the previous baseline or is increasing”
 - General consensus: 20-30% decline in renal function (SCr)

Bellomo R et al, Crit Care 2004; 8: B204
Acute Rejection: Definitions
(Adapted from Banff ‘07 Update)

<table>
<thead>
<tr>
<th>Antibody-Mediated:</th>
<th>T cell-Mediated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Rule of Three”</td>
<td>“Is it in the tubules/interstitum, or in the vessels?”</td>
</tr>
<tr>
<td>PMNs >> monocytes</td>
<td>Monocytes >> PMNs</td>
</tr>
<tr>
<td>• 1. C4d+</td>
<td>IA: >25% interstitial infiltration, (4\text{-}10) mononuclear cells/tubular cross-section</td>
</tr>
<tr>
<td>• 2. Presence of antidonor antibodies (DSA)</td>
<td>IB: >25% interstitial infiltration, (>10) mononuclear cells/tubular cross-section</td>
</tr>
<tr>
<td>• 3. Acute tissue injury:</td>
<td>IIA: Intimal arteritis -mild-to-moderate (0-25% of lumenal area)</td>
</tr>
<tr>
<td>I. ATN-like (minimal inflammation)</td>
<td>IIB. Intimal arteritis -severe (>25% of lumenal area)</td>
</tr>
<tr>
<td>II. Capillary and/or glomerular inflammation and/or thromboses</td>
<td>III. Transmural arteritis and/or fibrinoid change and necrosis of medial smooth muscle cells with accompanying lymphocyte inflammation</td>
</tr>
<tr>
<td>III. Arterial inflammation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Suspicious”</th>
<th>Borderline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 3 above (C4d, DSA or injury)</td>
<td>10-25% interstitial infiltration, <4 mononuclear cells/tubular cross-section</td>
</tr>
</tbody>
</table>
Prevalence of acute rejection - 2 eras

SRTR 1995-2000:
- Rate of AR fell from >40% to <20%
- After 1y, AR rates <3%

SRTR 2000-2008:
- 28,686 patients, 1st kidney transplant, on TAC/MMF/Pred +/- IL2ra
- 1y Acute rejection:
 - Overall: 12.3%
 - +IL2ra: 11.6%
 - No induction: 13.0%

Gralla and Wiseman, Transplantation 2010; 90: 639
Why do kidneys fail?

- Mayo Clinic: 1317 consecutive kidney transplants 1996-2006, 330 with graft loss at mean 50.3 mo f/u
 - 138 (43.4%) due to death
 - 39 (11.8%) due to 1° nonfunction
 - 153 (46.3%) due to graft failure:

- Conclusion: glomerular pathology most common cause of graft loss other than death, not acute rejection (or CNI toxicity)

Why do kidneys fail?

- Of “IF/TA”
 - 1/4 history of acute rejection

- Of “glomerular disease”
 - 40% “transplant glomerulopathy” (~HLA Ab?)

- ~1/3 of graft loss is linked to alloimmune/rejection response

Risk Factors for Acute Rejection

• Recipient Factors: sensitization, prior transplant, ethnicity, HLA mismatching

• Donor Factors: ECD (age, donor disease, cause of death), DCD

• Transplant Factors: immunosuppressive regimen
The Symphony Trial:
Acute rejection with various immunosuppressive regimens and the impact on outcomes

- 12-month randomized open-label multicenter trial of 1645 KTX
- 4 Treatment arms (IL2ra induction in “low” arms, MMF/Prednisone for all)
 - Standard: CSA 150-300 ng/ml x 3 months, then 100-200 ng/ml

At 12 months:

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Acute Rejection (%)</th>
<th>Graft Survival (%)</th>
<th>GFR (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA “standard”</td>
<td>25.8</td>
<td>89.3</td>
<td>57.1</td>
</tr>
<tr>
<td>CSA (50-100 ng/ml)</td>
<td>24.0</td>
<td>93.1</td>
<td>59.4</td>
</tr>
<tr>
<td>TAC (3-7 ng/ml)</td>
<td>12.3*</td>
<td>94.2*</td>
<td>65.4*</td>
</tr>
<tr>
<td>SRL (4-8 ng/ml)</td>
<td>37.2</td>
<td>89.3</td>
<td>56.7</td>
</tr>
</tbody>
</table>

NEJM 2007; 357: 2562-75
Impact of Early Steroid Withdrawal on Incidence of Acute Rejection

- 5 year, randomized double blind trial
- Steroid withdrawal after 7 days vs steroid taper to 5 mg at 6 months
- 274 pts, TAC/MMF, induction agent determined by center practice

Biopsy Proven Acute Rejection: KM Analysis

- Acute rejection rate 5y:
 - Maintenance: 10.8%
 - Withdrawal: 17.8%
 - \(p = 0.042 \) (log rank)

Bx Proven Acute Rejection: Induction Effect

- Thymoglobulin:
 - CCS: 10.3%
 - CSWD: 14.4%
- IL-2R:
 - CCS: 11.9%
 - CSWD: 24.2%

- Steroid Withdrawal: Higher acute rejection rate, particularly with IL-2ra induction (24.2% vs 14.4%)
- Control group: similar acute rejection rates (10.3% vs 11.9%) with either induction agent

For “high risk” patients: IL2ra or Thymoglobulin to prevent acute rejection?

- 278 patients at elevated risk (PRA>20%, retransplant, high risk for DGF)
 - rATG x 4 vs. basiliximab x 2 and triple immunosuppression (CSA)

<table>
<thead>
<tr>
<th>Status @1 year:</th>
<th>rATG (n=141)</th>
<th>Basiliximab (n=137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute rejection</td>
<td>15.6%</td>
<td>25.5% (p=0.02)</td>
</tr>
<tr>
<td>AR requiring Ab therapy</td>
<td>1.4%</td>
<td>8.0% (P=0.005)</td>
</tr>
</tbody>
</table>

- 227 patients at elevated risk (PRA>30%, retransplant)
 - rATG x 8 vs. daclizumab x 5 and triple immunosuppression (TAC)

<table>
<thead>
<tr>
<th>Status @1 year:</th>
<th>rATG (n=113)</th>
<th>Daclizumab (n=114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute rejection</td>
<td>15.0%</td>
<td>27.2% (p=0.016)</td>
</tr>
<tr>
<td>AR requiring Ab therapy</td>
<td>2.7%</td>
<td>14.9% (P=0.002)</td>
</tr>
</tbody>
</table>

- Thymoglobulin more effective in preventing acute rejection in “high risk” patients

Brennan DC et al, NEJM 2006; 355: 1967
Noel C et al, JASN 2009; 20: 1385
Incidence of acute antibody-mediated rejection: pretransplant DSA vs no DSA

- 334 patients (CDC negative crossmatch)
- 67 were retrospectively determined to have preformed donor-specific antibody by flow cytometry
- **No desensitization or depleting Ab induction**

AMR in 55% of those with DSA (but 45% did not!)

Incidence of AMR in absence of DSA: 6%
Defining risk of acute rejection by ethnicity: still valid?

2000-2008: Acute Rejection in 23,240 1st tx recips, 0% PRA, on TAC/MMF/Pred

<table>
<thead>
<tr>
<th>Induction type</th>
<th>AA N=5704 (25%)</th>
<th>Non-AA N=17,540 (75%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>Acute Rejection</td>
</tr>
<tr>
<td>No induction</td>
<td>2011 (35%)</td>
<td>16.1%*</td>
</tr>
<tr>
<td>IL2ra rATG</td>
<td>1754 (31%)</td>
<td>12.7%*</td>
</tr>
<tr>
<td></td>
<td>1939 (34%)</td>
<td>13.5%*</td>
</tr>
</tbody>
</table>

*p<0.001

• AA recipients still have 37% increased risk of acute rejection (adjusted analysis)

Gralla and Wiseman, ATC 2011
The risk of acute rejection increases with donor age and decreases with recipient age

• Analysis of 108,118 recipients from 1995-2008:
 • Older donors may be more immunogenic
 • Younger recipients may be more immunoresponsive:
 – 28% AR in patients age 18-29
 – 14% AR in patients >70

Tullius S et al, Ann Surgery 2010; 252: 662
Summary:
Risk of rejection

- Acute rejection is 10-12% in the first year in “low risk” patients.
- Acute rejection is 15-30% with steroid withdrawal, CNI avoidance.
- Acute rejection is 15-30% in “high risk” patients.
- Antibody-mediated rejection: 5% in de novo setting, 35-50% in setting of known DSA without pretreatment.
Differential Diagnosis of AKI: Timing (post transplant) is everything

<table>
<thead>
<tr>
<th>Immediate (0-1 week)</th>
<th>Early (1-12 weeks)</th>
<th>Late (after 12 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerenal: hypotension, volume depletion, thrombosis (renal a or v)</td>
<td>Prerenal: hypotension, volume depletion, CNI effects</td>
<td>Prerenal: hypotension, volume depletion, CNI effects, renal artery stenosis</td>
</tr>
<tr>
<td>Postrenal: bladder dysfunction, BPH > ureteral obstruction (leak, hematoma, lymphocoele, stricture)</td>
<td>Postrenal: ureteral obstruction (leak, hematoma, lymphocoele, stricture > bladder dysfunction, BPH)</td>
<td>Postrenal: bladder dysfunction, BPH > ureteral obstruction (stricture)</td>
</tr>
</tbody>
</table>
AKI in Kidney Transplant: Questions to ask

- **THE “OTHER” RIFLE CRITERIA!**
 - **R:** Is it Rejection?
 - Examples: CNI
 - **I:** Is it Infection?
 - Examples: pyelonephritis, BKV
 - **F:** Is it Flow?
 - Examples: hypovolemia, thrombosis, obstruction, leak
 - **L:** Is it their Last disease (recurrence)?
 - Examples: HUS, FSGS
 - **E:** Is Everything else stable?
 - Examples: new meds, new/unstable systemic disease
Recurrent glomerulonephritis following kidney transplant

<table>
<thead>
<tr>
<th>Disease</th>
<th>Approximate recurrence rate (%)</th>
<th>Graft loss due to recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membranous</td>
<td>10-30</td>
<td>Uncommon</td>
</tr>
<tr>
<td>FSGS</td>
<td>30–60</td>
<td>Common</td>
</tr>
<tr>
<td>HUS</td>
<td>20–50</td>
<td>Common</td>
</tr>
<tr>
<td>Type I MPGN</td>
<td>20–30</td>
<td>Common</td>
</tr>
<tr>
<td>Type II MPGN</td>
<td>80–100</td>
<td>Common</td>
</tr>
<tr>
<td>HSP</td>
<td>15–50</td>
<td>Uncommon</td>
</tr>
<tr>
<td>IgA nephropathy</td>
<td>30-50</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Anti-GBM</td>
<td>Rare</td>
<td>Uncommon</td>
</tr>
<tr>
<td>ANCA-Associated</td>
<td>20%</td>
<td>Common</td>
</tr>
</tbody>
</table>

Adapted from Wiseman AC et al, Diseases of the Kidney (Schrier RW, Ed)
Questions regarding initial assessment of AKI in kidney transplant recipients

- Should I order a BKV PCR? (blood? urine?)
- Should I order an HLA screen for donor-specific antibody?
- Should I order an ultrasound?
- Should I biopsy?
Initial Evaluation of AKI

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focus on VS/hypovolemia, graft tenderness, fever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CNI monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rule out infection (UA/micro)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rule out GN (urine dipstick)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaging:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rule out vascular compromise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rule out urinary leak or obstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanding the DDX:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BKV blood PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• HLA for DSA (usually in conjunction with biopsy, rather in lieu of a biopsy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allograft biopsy

And of course, consider acute rejection!
Screening for BKV as a cause of AKI

Unexplained kidney dysfunction >0.3 mg/dl over baseline:
- Check blood BKV PCR as part of workup

Blood BKV PCR >10,000 copies/ml:
- Kidney biopsy for BKV presence and staging

No BKV identified:
- ("Presumptive BKVAN")
 - Decrease Immunosuppression

BKV and vascular rejection +/- C4d+:
- ("BKVAN and rejection")
 - IVIg, decrease immunosuppression, consider change to leflunomide

BKV +/- tubulitis:
- ("BKVAN, with/without features of cellular rejection")
 - Decrease immunosuppression, consider corticosteroids or IVIg for tubulitis (controversial)

Continue to follow BKV PCR every 2-4 weeks until negative
- Decrease immunosuppression as needed for elevations in BKV PCR titer
- Consider ancillary therapies (cidofovir, leflunomide, IVIg, fluoroquinolones)

Adapted from Wiseman AC, AJKD 2009; 54: 131
Prospective screening for \textit{de novo} HLA Ab: \\
\textit{Can this help identify patients at risk for acute rejection?}

246 patients transplanted 9/07 to 9/09

185 without de-novo DSA (AR: 9%)

65 developed de-novo DSA

9/07 to 9/09

*De-Novo DSA detected prospectively in 26.4%

13 in the setting of clinical suspicion (AKI) (AR: 69%)

52 by protocol screening at 1, 6, 12 months (AR: 19%)

- When identified in setting of AKI, \textit{de novo} DSA associated with high probability of acute rejection
- When identified in stable patients, \textit{de novo} DSA often is clinically insignificant
- Bottom line: DSA cannot “rule in” or “rule out” current/future rejection

Cooper JE et al, Transplantation 2011; 91:1103
Indications for biopsy:

- When other causes of graft dysfunction have been ruled out
- Subtherapeutic immunosuppression or nonadherence, with renal dysfunction
- Renal dysfunction in a “high risk” patient (prior desensitization, known DSA)
- Whenever considering T cell depleting therapy (antithymocyte globulin)
Indications for empiric treatment for acute rejection?

- A trial of IV corticosteroids may be considered…

- Only after ruling out other causes of acute graft dysfunction:
 - BKV, obstruction, infection, CNI nephrotoxicity, glomerulonephritis, donor-specific antibody

- AND

- Only when biopsy is considered unsafe
 - Anticoagulation/bleeding risk, bowel overlying kidney
Acute rejection - Treatment

Steroids vs depleting Ab for acute rejection?

• Meta-analysis of 14 trials (965 patients) compared therapies for first rejection episodes:

 • Ab was better than steroid in reversing rejection (RR 0.57) and preventing graft loss (death-censored RR 0.74)

“Most trials were small, incompletely reported, especially for potential harms, and did not define outcome measures adequately.”

TPE/IVIg/Rituximab vs. IVIg for antibody-mediated rejection

- 24 patients with Ab-mediated rejection: all received solumedrol 500 mg x 3
- N=12: IVIg 2g/kg q 3 weeks x 4
- N=12: TPE x 4d with IVIg 100 mg/kg following TPE; then IVIg 2g/kg x 4 and RTX 375 mg/m² weekly x 2

% reduction in DSA at 3 mo

% Graft Survival at 36 mo

Treatment of Rejection
“standard practice”/ “in one’s experience”

• Patient with AKI:
 – US, UA/cx not revealing
 – Send blood HLA for DSA, BKV PCR, empiric treatment with corticosteroids while performing/awaiting biopsy (stain for SV40 and C4d)

• Treatment guided by biopsy:
 • TCMR Ia, Ib,IIa:
 – assess response to pulse IV corticosteroids, if improvement then continue for total 3-5 d; if no improvement after 1-2 (?) doses then advance to rATG 1.5 mg/kg x 4-14 doses
 • TCMR IIb:
 – rATG 4-14 doses
 • AHR:
 – Corticosteroids (rATG?), plasmapheresis, IVIg; consider rituxan or bortezomib
Conclusions

• Acute rejection remains an important consideration in the transplant patient presenting with AKI

• Risk factors and timing from transplant may improve pre-test probability, but ultimately the individual in front of you requires individual assessment

• Treatment beyond a brief course of steroids (when appropriate) will require histological assessment