Diagnosis and Treatment of Acute Rejection

Alexander Wiseman, M.D.
Associate Professor, Division of Renal Diseases and Hypertension
Medical Director, Kidney and Pancreas Transplant Programs
University of Colorado Health Sciences Center
Outline-Acute Rejection

• Definitions-Histopathology

• Prevalence

• Significance

• Diagnosis (beyond the biopsy)

• Treatment
Acute Rejection: Definitions
(Adapted from Banff ‘07 Update)

<table>
<thead>
<tr>
<th>Antibody-Mediated:</th>
<th>T cell-Mediated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Rule of Three”</td>
<td>“Is it in the tubules/interstitum, or in the vessels?”</td>
</tr>
<tr>
<td>PMNs >> monocytes</td>
<td>Monocytes >> PMNs</td>
</tr>
<tr>
<td>1. C4d+</td>
<td>IA: >25% interstitial infiltration, 4-10 mononuclear cells/tubular cross-section</td>
</tr>
<tr>
<td>2. Presence of antidonor antibodies (DSA)</td>
<td>IB: >25% interstitial infiltration, >10 mononuclear cells/tubular cross-section</td>
</tr>
<tr>
<td>3. Acute tissue injury:</td>
<td>IIA: Intimal arteritis -mild-to-moderate (0-25% of lumenal area)</td>
</tr>
<tr>
<td>I. ATN-like (minimal inflammation)</td>
<td>IIB. Intimal arteritis -severe (>25% of lumenal area)</td>
</tr>
<tr>
<td>II. Capillary and/or glomerular inflammation and/or thromboses</td>
<td>III. Transmural arteritis and/or fibrinoid change and necrosis of medial smooth muscle cells with accompanying lymphocyte inflammation</td>
</tr>
<tr>
<td>III. Arterial inflammation</td>
<td>Borderline</td>
</tr>
<tr>
<td>“Suspicious”</td>
<td>10-25% interstitial infiltration, <4 mononuclear cells/tubular cross-section</td>
</tr>
<tr>
<td>2 of 3 above (C4d, DSA or injury)</td>
<td></td>
</tr>
</tbody>
</table>

- **PMNs >> monocytes**
- **Monocytes >> PMNs**
Problems with current histopathologic diagnosis of Acute Rejection

• Antibody Mediated:
 – Lack of standardization of C4d staining
 – Inflammation *in absence of C4d* correlates with graft loss
 – C4d *in absence of DSA* correlates with graft loss

• T cell mediated:
 – Inflammation in areas of atrophy correlates with graft loss
Evidence that antibody-mediated injury occurs in the absence of C4d staining:

- 54 patients with +DSA but negative crossmatch underwent deceased donor KTX:
- 3 mo and 1y protocol biopsies were performed:

<table>
<thead>
<tr>
<th>3 mo biopsy result:</th>
<th>At 1 year post-transplant:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFR (ml/min)</td>
<td>% with IF/TA</td>
</tr>
<tr>
<td>"Subclinical AMR" (N=14)</td>
<td>39</td>
</tr>
<tr>
<td>C4d+/DSA+/capillaritis+</td>
<td></td>
</tr>
<tr>
<td>"Borderline" (N=22)</td>
<td>46</td>
</tr>
<tr>
<td>C4d- /DSA+/capillaritis+</td>
<td></td>
</tr>
<tr>
<td>No AMR (N=9)</td>
<td>62</td>
</tr>
<tr>
<td>DSA+ only</td>
<td></td>
</tr>
</tbody>
</table>

Evidence that C4d predicts graft loss even in the absence of DSA:

- 173 subjects underwent biopsy for new onset late graft dysfunction (mean time after transplant 7.3 y)
- Subjects were divided into four groups based on C4d and DSA:
- After 2 years, both (C4d+) groups were at significantly greater risk for graft loss. Adjustment for inflammation (Banff i, t, g, and ptc scores) did not change the outcome.

Gaston R et al, Transplantation 2010; 90: 68
Inflammation is meaningful even if it is not tubulitis

- DeKAF study of 337 patients with “new onset late graft survival” undergoing biopsies:
 - Inflammation in areas of tubular atrophy (“iatr”) was associated with decreased graft survival
 - NOT accounted for in current Banff grading schema

Mannon R et al, Am J Transplant 2010; 10: 2066
Prevalence of acute rejection - 2 eras

- **SRTR 1995-2000:**
 - Rates of AR >50% falling to <20%
 - After 1y, AR rates <3%

- **SRTR 2000-2008:**
 - 28,686 patients, 1st kidney transplant, on TAC/MMF/Pred +/- IL2ra
 - 1y Acute rejection:
 - Overall: 12.3%
 - +IL2ra: 11.6%
 - No induction: 13.0%

Gralla and Wiseman, Transplantation 2010; 90: 639
The Symphony Trial: Acute rejection with various immunosuppressive regimens and the impact on outcomes

- 12-month randomized open-label multicenter trial of 1645 KTX
- 4 Treatment arms (IL2ra induction in “low” arms, MMF/Prednisone for all)
 - Standard: CSA 150-300 ng/ml x 3 months, then 100-200 ng/ml

At 12 months:

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Acute Rejection (%)</th>
<th>Graft Survival (%)</th>
<th>GFR (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA “standard”</td>
<td>25.8</td>
<td>89.3</td>
<td>57.1</td>
</tr>
<tr>
<td>CSA (50-100 ng/ml)</td>
<td>24.0</td>
<td>93.1</td>
<td>59.4</td>
</tr>
<tr>
<td>TAC (3-7 ng/ml)</td>
<td>12.3*</td>
<td>94.2*</td>
<td>65.4*</td>
</tr>
<tr>
<td>SRL (4-8 ng/ml)</td>
<td>37.2</td>
<td>89.3</td>
<td>56.7</td>
</tr>
</tbody>
</table>

NEJM 2007; 357: 2562-75
Impact of Early Steroid Withdrawal on Incidence of Acute Rejection

- 5 year, randomized double blind trial
- Steroid withdrawal after 7 days vs steroid taper to 5 mg at 6 months
- 274 pts, TAC/MMF, induction agent determined by center practice

Steroid Withdrawal: Higher acute rejection rate, particularly with IL-2ra induction (24.2% vs 14.4%)

Control group: similar acute rejection rates (10.3% vs 11.9%) with either induction agent

For “high risk” patients:

IL2ra or Thymoglobulin to prevent acute rejection?

• 278 patients at elevated risk (PRA>20%, retransplant, high risk for DGF)
 • rATG x 4 vs. basiliximab x 2 and triple immunosuppression (CSA)

<table>
<thead>
<tr>
<th>Status @1year:</th>
<th>rATG (n=141)</th>
<th>Basiliximab (n=137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute rejection</td>
<td>15.6%</td>
<td>25.5% (p=0.02)</td>
</tr>
<tr>
<td>AR requiring Ab therapy</td>
<td>1.4%</td>
<td>8.0% (P=0.005)</td>
</tr>
</tbody>
</table>

• 227 patients at elevated risk (PRA>30%, retransplant)
 • rATG x 8 vs. daclizumab x 5 and triple immunosuppression (TAC)

<table>
<thead>
<tr>
<th>Status @1year:</th>
<th>rATG (n=113)</th>
<th>Daclizumab (n=114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute rejection</td>
<td>15.0%</td>
<td>27.2% (p=0.016)</td>
</tr>
<tr>
<td>AR requiring Ab therapy</td>
<td>2.7%</td>
<td>14.9% (P=0.002)</td>
</tr>
</tbody>
</table>

• Thymoglobulin more effective in preventing acute rejection in “high risk” patients

Brennan DC et al, NEJM 2006; 355: 1967
Noel C et al, JASN 2009; 20: 1385
Incidence of acute antibody-mediated rejection: pretransplant DSA vs no DSA

- 334 patients (CDC negative crossmatch)
- 67 were retrospectively determined to have preformed donor-specific antibody by flow cytometry
- No desensitization or depleting Ab induction

Amico P et al, Transplantation 2009; 7: 1681

- AMR in 55% of those with pre-tx DSA (but 45% did not!)
- Incidence of AMR in absence of DSA: 6%
Defining risk of acute rejection by ethnicity: still valid?

2000-2008: Acute Rejection in 23,240 1st tx recips, 0% PRA, on TAC/MMF/Pred

<table>
<thead>
<tr>
<th>Induction type</th>
<th>AA N=5704 (25%)</th>
<th>Non-AA N=17,540 (75%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL2ra rATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 (35%) 1754 (31%)</td>
<td>16.1%* 12.7%*</td>
<td>5980 (34%) 6680 (38%)</td>
</tr>
<tr>
<td>1939 (34%)</td>
<td>13.5%*</td>
<td>4880 (28%) 9.8% 8.4%</td>
</tr>
</tbody>
</table>

*p<0.001

- In modern era, AA recipients still have 37% increased risk of acute rejection (adjusted analysis)

Gralla and Wiseman, ATC 2011
Summary: Risk of rejection

- Acute rejection is 10-12% in the first year in “low risk” patients
- Acute rejection is 15-30% with steroid withdrawal, CNI avoidance
- Acute rejection is 15-30% in “high risk” patients
- Antibody-mediated rejection: 5% in de novo setting, 35-50% in setting of known DSA without pretreatment

- **6y Graft Survival**
 - No AR: 74.4%
 - AR and return to baseline: 72.7%
 - AR and 85-95% of baseline: 67.0%
 - AR and 75-85% of baseline: 50.2%
 - AR and <75% of baseline: 38.0%

Recovery from acute rejection is associated with better outcomes.

Over time a smaller percentage of cases of rejection recovered to baseline.

Impact of Acute Rejection on Graft Survival: AUST/NZ 1997-2004

- Vascular rejection portends worse outcomes than cellular rejection, even with “good” response to therapy!

<table>
<thead>
<tr>
<th>Response to therapy</th>
<th>Cellular rejection</th>
<th>Vascular rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Good” (return to baseline)</td>
<td>1.25 (ns)</td>
<td>2.35</td>
</tr>
<tr>
<td>“Poor”</td>
<td>1.74</td>
<td>2.23</td>
</tr>
</tbody>
</table>

McDonald S et al, Am J Transplant 2007; 7: 1201
Why do kidneys fail?

Mayo Clinic: 1317 consecutive kidney transplants 1996-2006, biopsies performed in patients with failing grafts at a mean 4.7 mo prior to graft loss

- Of “IF/TA”
- 1/4 history of acute rejection
- Of “glomerular disease”
- 40% “transplant glomerulopathy” (~HLA Ab?)
- ~1/3 of graft loss is linked to alloimmune/rejection response

Summary:
Significance of rejection

• Cellular Rejection: if responsive to therapy, may not be of clinical consequence

• Vascular rejection: worse outcomes regardless of response to therapy

• Antibody-mediated rejection: the presence/development of anti-HLA DSA with other features of AMR likely has a cumulative effect on graft loss
Diagnosis of Acute Rejection - within and beyond the biopsy

• Additional features of the biopsy:
 – Genetic analysis
 – Cellular phenotyping (NK cells, macrophage/monocytes)
 – Non-HLA antibodies

• Urine/blood:
 – mRNA (perforin, granzyme B, FOXP3, TIM-3)

• Blood:
 – cell function assays (ELISPOT for IFN-γ; CD4 T cell ATP release)
Urinary mRNA transcripts: Can they diagnose rejection?

- Comparison of urinary cell levels of mRNAs (rtPCR) in 21 recipients with graft dysfunction and BPAR, and 25 recipients with stable graft function and normal biopsy results.

[Graph showing box plots for OX40, OX40L, and PD-1 mRNA levels in acute rejection and normal biopsy samples.]

- ROC curve analysis:
 - acute rejection sensitivity 95% specificity 92% (area under the curve=0.98, P<0.0001) using a combination of levels of mRNA for OX40, OX40L, PD-1, and levels of mRNA Foxp3.

Afaneh C et al, Transplantation 2010; 90: 1381
In the setting of delayed graft function (DGF): is it ATN or acute rejection?

- T-cell immunoglobulin domain, mucin domain (TiM-3) is selectively expressed on the surface of T-helper (Th)1 cells
- Tim-3 mRNA expression in biopsies, peripheral blood leukocytes (PBL) and urinary cells (UC) were studied in 160 biopsies from 115 patients:

Manfro RC et al, Transplantation 2008; 86: 1869
Can one distinguish BKVAN from rejection using urine cytokines?

- CXCL9 and CXCL10 are induced by IFNγ: can a urinary chemokine assay determine AR from BKV or other causes of graft dysfunction?
- 156 subjects categorized as: healthy volunteer, stable KTX, AR, BKV, with CNI toxicity, or IFTA)

Jackson JA et al, Am J Transplant 2011; 11: 2228

- ROC curve for CXCL9: c-stat 0.87 (sensitivity 86%, specificity 80%) for AR or BKV vs other causes)
- Difficult to segregate the inflammation of BKV vs the inflammation of AR!
Acute rejection - Treatment

Steroids vs depleting Ab for acute rejection?

- Meta-analysis of 14 trials (965 patients) compared therapies for first AR episodes

- Ab was better than steroid in reversing rejection (RR 0.57) and preventing graft loss (death-censored RR 0.74)

- No difference in preventing subsequent rejection or death at 1 year

“Most trials were small, incompletely reported, especially for potential harms, and did not define outcome measures adequately.”

<table>
<thead>
<tr>
<th>Antibody-Mediated:</th>
<th>T cell-Mediated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVIg</td>
<td>High dose corticosteroids</td>
</tr>
<tr>
<td>Plasmapheresis</td>
<td>Depleting T cell therapy (rATG, ATGAM)</td>
</tr>
<tr>
<td>Rituximab</td>
<td>Novel therapies</td>
</tr>
<tr>
<td>Novel therapies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High dose corticosteroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depleting T cell therapy</td>
</tr>
<tr>
<td>Novel therapies</td>
</tr>
</tbody>
</table>
TPE/IVIg/Rituximab vs. IVIg for antibody-mediated rejection

- 24 patients with Ab-mediated rejection: all received solumedrol 500 mg x 3
- N=12: IVIg 2g/kg q 3 weeks x 4
- N=12: TPE x 4d with IVIg 100 mg/kg following TPE; then IVIg 2g/kg x 4 and RTX 375 mg/m^2 weekly x 2

% reduction in DSA at 3 mo

% Graft Survival at 36 mo

Treatment of Rejection
“standard practice”/ “in one’s experience”

- Patient with AKI:
 - US, UA/cx not revealing
 - Send blood HLA for DSA, BKV PCR, empiric treatment with corticosteroids while performing/awaiting biopsy (stain for SV40 and C4d)

- Treatment guided by biopsy:
 - TCMR Ia, Ib,IIa:
 - assess response to pulse IV corticosteroids, if improvement then continue for total 3-5 d; if no improvement after 1-2 (?) doses then advance to rATG 1.5 mg/kg x 4-14 doses
 - TCMR IIb:
 - rATG 4-14 doses
 - AHR:
 - Corticosteroids (rATG?), plasmapheresis, IVIg; consider rituxan or bortezomib
Bortezomib in the treatment of acute antibody-mediated rejection

- 6 patients with cellular and humoral rejection (C4d+, donor-specific antibodies) refractory to TPE/Rituxan/Thymoglobulin

- Bortezomib 1.3 mg/m² x 4 doses reversed rejection and reduced DSA levels

Donor-specific Ab levels (MESF)

Everly M et al, Transplantation 2008; 86: 1754
Bortezomib in combination with TPE/IVIg for antibody-mediated rejection

- 16 kidney-only and 4 kidney-combined organ recipients with de novo donor-specific antibody (DSA) and PTC C4d+ on biopsy
- IV corticosteroids followed by a 2-week cycle on days 1-4-8-11 of plasmapheresis and 1.3 mg/m² bortezomib; then IVIg 0.5 mg/kg x4.

Only two patients (10%) had undetectable DSA after treatment
Only 25% returned to their baseline renal function before AMR,
Urine protein/cr > 0.5 in 41% and > 1.0 in 18%.

Flechner SM et al, Transplantation 2010; 90:1486
Conclusions/Future Directions

• Acute rejection remains an important cause of early morbidity and later graft dysfunction/loss

• Refinements in the diagnosis of rejection (beyond Banff) are key to developing better treatment alternatives

• Many questions remain:
 – Do we treat inflammation in areas of IFTA? If so, how?
 – Do we treat +DSA? If so, when and how?
 – How to treat the patient with “subacute” antibody-mediated rejection?