A Phase II Trial of the Rexinoid Bexarotene for Poorly Differentiated Thyroid Cancer

Joshua Klopper, Madeleine Kane, Antonio Jimeno and Bryan Haugen
Disclosures

- None

- Learning Objectives
 - Understand the efficacy of long-term bexarotene treatment for poorly differentiated thyroid cancer
 - Understand the efficacy of bexarotene to improve radioiodine uptake in poorly differentiated thyroid cancer
 - Appreciate the effects of bexarotene on thyrotropin and peripheral thyroid hormone metabolism
 - Understand the side effect profile of bexarotene
Advanced Thyroid Cancer

- Accounts for the majority of thyroid cancer deaths
- Is often unresponsive to TSH-suppression and 131I
- Approved chemotherapy has modest efficacy with potentially high side effects
Superfamily of nuclear hormone receptors

- ligand binding domain (LBD) which upon activation transduces transcriptional activation.

Retinoid Receptors

- Retinoic Acid Receptors - RAR (α, β, γ)
- Retinoid X Receptors - RXR (α, β, γ)
 - RXR selective agonists: rexinoids
 - LGD1069 (bexarotene, Targretin® – Eisai Pharmaceuticals)
 - Cutaneous T-Cell Lymphoma
Clinical studies of bexarotene in advanced thyroid cancer

Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma

Ying Y Liu, Marcel P Stokkel¹, Alberto M Percira, Eleonora P Corssmit, Hans A Morreau², Johannes A Romijn and Johannes WA Smit

Departments of Endocrinology, ¹Nuclear medicine and ²Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

Radioiodine therapy after pretreatment with bexarotene for metastases of differentiated thyroid carcinoma

Ying Y. Liu*, Marcel P. Stokkel†, Hans A. Morreau‡, Alberto M. Pereira*, Johannes A. Romijn* and Johannes W. A. Smit*

Departments of *Endocrinology, †Nuclear Medicine and ‡Pathology, Leiden University Medical Centre, Leiden, the Netherlands
Clinical studies of bexarotene in advanced thyroid cancer

<table>
<thead>
<tr>
<th>LIU ET AL. EURO J ENDO 2006</th>
<th>LIU ET AL. CLIN ENDO 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 patients</td>
<td>8 patients</td>
</tr>
<tr>
<td>300mg/day for 6 weeks</td>
<td>300mg/day for 6 weeks</td>
</tr>
<tr>
<td>“improvement“ in 131I uptake after low dose WBS</td>
<td>Change in measurable disease 6 months after 131I therapy</td>
</tr>
<tr>
<td>Subtle increased uptake in some lesions</td>
<td>7400 MBq (200 mCi)</td>
</tr>
<tr>
<td>Incomplete matching with known lesions on CT</td>
<td>No CR or PR</td>
</tr>
<tr>
<td>Only visible by SPECT imaging and could not be quantitated</td>
<td>4/8 SD</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1μM LGD 1069 Inhibits RXRγ+ cancer cell proliferation

Klopper et al., Mol Cancer Ther 2004 3: 1011-1020
Rexinoid responsive xenografts – DRO (RXRg+, PPARg+)
Primary Objective
- To assess the tumor response of recurrent or metastatic radioiodine resistant thyroid cancer to bexarotene therapy.

Secondary Objectives
- To assess the ability of previously radioiodine resistant thyroid cancer to concentrate radioactive iodine after bexarotene therapy.
- To correlate tumor response with thyroid cancer expression of retinoid and peroxisome-proliferator activated receptor gamma (PPARγ) receptors
Study Design

- Open label
- Single Agent
 - Bexarotene 300mg/m^2/day initial dose
 - 1 year of therapy
 - 2 week run-in with high dose fish oils and continued use while on trial
 - Minimize hypertriglyceridemia
Enrollment Criteria

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicular cell derived thyroid cancer</td>
<td>Eligible for surgery</td>
</tr>
<tr>
<td>Progressive disease and/or PET+ measurable lesions</td>
<td>Pregnant or unwilling to take contraception during study period</td>
</tr>
<tr>
<td>Measurable disease by RECIST</td>
<td>Hyperlipidemia refractory to therapy</td>
</tr>
<tr>
<td>Cr < 1.5x ULN; LFTs < 2.5 ULN</td>
<td>Hypertriglyceridemia refractory to therapy</td>
</tr>
<tr>
<td>>18 y.o.</td>
<td>Other malignancy within the last 3 years</td>
</tr>
<tr>
<td>Primary or other thyroid cancer tissue available for study</td>
<td>Unable/unwilling to comply with study procedures</td>
</tr>
<tr>
<td>Negative rhTSH 123I WBS</td>
<td>Positive rhTSH 123I WBS</td>
</tr>
<tr>
<td>ECOG 0-1</td>
<td>ECOG > 1</td>
</tr>
</tbody>
</table>
Study Measurements

- Weeks: 8, 18, 24, 30, 38, 46 and 52
 - TSH, FT₄, TT₄, TT₃, Tg, Tg Abs
- Weeks 24 and 52
 - PET-CT fusion
 - Neck US
 - rhTSH ¹²³I WBS
Response Evaluation Criteria in Solid Tumors (RECIST)

- Target lesions > 2cm in maximal dimension
- Tumor response (as measured by the sum of the longest dimension of target lesions)
 - CR – no measureable disease
 - PR – >30% reduction in target lesions
 - SD - < 30% reduction and < 20% progression of target lesions
 - PD - > 20% of target lesions or appearance of new lesions
Safety and Monitoring

- For Grade 2 or greater AEs
 - Hold bexarotene for 1 week
 - Confirm AE resolved
 - 25% reduction from initial dose
- Future AEs
 - Further 25% decrease
 - 3 total decreases allowed (75%, 50%, 25% of initial dose)
Patient Characteristics

- 19 patients signed consent
- 9 screen failed
 - Leukopenia
 - Inability to obtain archived thyroid cancer tissue
 - Clinical deterioration
 - Unwilling to follow study requirements
Patient Characteristics

- 10 patients enrolled
- Avg age – 61.4 ± 8.1 yrs
- Gender
 - 7 female
 - 3 male
- Tumor type
 - 9 PTC
 - 1 FTC

- All had previously received 131I therapy
- 3 with other therapy
 - Adriamycin/taxol
 - XRT
 - Axitinib
 - Sorafenib
- Baseline disease
 - 9/10 with Progressive/PET+ disease
 - 1/10 with PET+ disease only
2/10 patients completed 1 year of therapy
 ▪ 1/10 only PET+ (no documented progression)
Average time on study: 128.8 days
 ▪ Average time if early cessation: 69.8 days
Average starting dose: 585 ± 85.1 mg
4/10 patients off study for PD
 ▪ 3/4 had no dose reduction prior to discovery of PD
4/10 patients off study for drug related toxicity
 ▪ 1 Neutropenia
 ▪ 3 Hypertriglyceridemia
Radioiodine uptake
rhTSH 123I WBS

- 0/4 patients with visible uptake at 6 mos
- 0/2 patients with visible uptake at 12 mos
Bexarotene effect on thyroid hormone levels

Central Hypothyroidism Associated with Retinoid X Receptor-Selective Ligands

Single-Dose Rexinoid Rapidly and Specifically Suppressed Serum Thymotropin in Normal Subjects

Bexarotene-Induced Hypothyroidism: Bexarotene Stimulates the Peripheral Metabolism of Thyroid Hormones

Johannes W. A. Smit, Marcel P. M. Stokkel, Alberto M. Pereira, Johannes A. Romijn, and Theo J. Visser

Departments of Endocrinology (J.W.A.S., A.M.P., J.A.R.) and Nuclear Medicine (M.P.M.S.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; and Department of Internal Medicine (T.J.V.), Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
Results

<table>
<thead>
<tr>
<th>Lab test</th>
<th>Baseline</th>
<th>Week 8</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>0.076 ± 0.095</td>
<td>0.05 ± 0.07</td>
<td>ns</td>
</tr>
<tr>
<td>FT4</td>
<td>1.72 ± 0.35</td>
<td>0.91 ± 0.43</td>
<td>< 0.01</td>
</tr>
<tr>
<td>TT4</td>
<td>11.9 ± 2.2</td>
<td>7.83 ± 3.6</td>
<td>< 0.05</td>
</tr>
<tr>
<td>TT3</td>
<td>104.8 ± 49.0</td>
<td>90.5 ± 37.5</td>
<td>ns</td>
</tr>
<tr>
<td>Tg (all pts Ab neg)</td>
<td>1676.39 ± 4853.99</td>
<td>2484.77 ± 5942.18</td>
<td>ns</td>
</tr>
</tbody>
</table>
Bexarotene therapy in poorly advanced thyroid cancer resulted in SD in 2/10 patients
- 1/10 with documented progression prior to therapy
- 4/10 had progressive disease on maximum tolerable dose

Toxicity was common resulting in dose reductions or removal from trial
- Symptomatically well tolerated

No appreciable increase in radioiodine uptake was observed up to one year on therapy

Bexarotene therapy caused a significant decrease in FT\textsubscript{4} and TT\textsubscript{4} serum concentrations
- Thyrotropin decreased but not significantly
Conclusions

- Bexarotene is unlikely to have a role as a single agent for advanced thyroid cancer therapy
 - or for redifferentiation for improved radioiodine uptake
- Potential for adjuvant therapy with a role at decreasing thyrotropin/thyroid hormone levels
- IHC for nuclear hormone receptors is currently underway
Acknowledgements

- Mentor
 - Bryan Haugen
- Co-Investigators
 - Madeleine Kane
 - Antonio Jimeno
- Clinical Investigators
- Shared Resource (UCCC)
 - Andrea Buchmeier
 - Brittany Hines
 - Rachel Wood
 - Nikki Ayodeji
 - Ryan Helber
 - Jessica McDonald
- Haugen Lab
 - Xia Jing
 - Jena French
- Funding
 - ACS IRG/UCCC Seed Grant Award
- Eisai
 - Bexarotene