Testosterone and Aging: revisiting physiology to understand the risks and benefits of treating “Low T”

Stephanie T. Page, MD, PhD
Associate Professor
University of Washington
Seattle, WA

October 16, 2014

Disclosures

Besins and Abvie have provided testosterone and placebo gel for investigator-initiated clinical studies
Clinical Uses for Androgen Manipulation in Men

ACCEPTED
- (-) Androgen deprivation for prostate cancer
- (+) Treating Hypogonadism (primary, central IHH, postsurgical)

CONTROVERSIAL
- Sarcopenia
- Aging with “low T”
- Male hormonal contraception
- ? Diabetes ? MetSyn?

Testosterone is a Billion Dollar Industry

Skyrocketing
Prescriptions for testosterone have risen sevenfold since 1998.

Dispensed testosterone prescriptions

Source: NCHS, Data from retail and mail order pharmacies.

Newsweek, Sept 29, 2003, page 50
CLINICAL CONTROVERSY: Testosterone and Aging

"Low T": Longitudinal Changes in serum Testosterone with Age

Multi-organ effects of sex steroids

Androgens
Estrogens

LIPIDS
GONADS
SPERMATOGENESIS

Cardiovascular Disease
Metabolic Syndrome
Diabetes

ERYTHROPOESIS
BONE

FAT

Prostate Cancer
BPH

Male Hormonal Contraceptio.

Metabolites of T are important mediators of end organ effects

T \rightarrow DHT (1% in blood)
5α-reductase

T \rightarrow E (1%)
aromatase

• Androgens: Lean body mass, prostate

• Estradiol: Fat mass, sexual function

Finkelstein J et al NEJM 2013
Clinical Controversies: Do Androgens contribute to Prostate Cancer or Cardiovascular Disease in Men?

- No “Men’s Health Initiative”: no long term, large studies examining health outcomes (Pca, MI, DM, death)
 - DATA > 10 YEARS AWAY (7 YEARS, 7,000 MEN)
- Recently completed “T Trial” in men NOT powered for morbidity/mortality endpoints; 800 men, one year

Approach: re-examining physiology

- Recognize gaps in knowledge (NO LARGE RCT)
- Use epidemiologic evidence to drive hypotheses
- Intervention studies to understand how androgen manipulation changes tissue hormone levels, gene expression, and clinically important endpoints: Prostate, CVD risk factors
Paradigm: GnRH clamp (Acyline) + T add back → Tissue

GnRH Antagonist

+/- Exogenous Testosterone +/- Arom Inhibitor

Body composition
Lipids
Prostate
Fat
Insulin sensitivity

LH
FSH

Testes

Sertoli Cells

Leydig Cells

Testosterone
Estradiol

GnRH

Hypothalamus

Pituitary

Acyline: a rapid and effective GnRH antagonist
Androgens and the Prostate

- Prostate is androgen sensitive

- 5α-reductase inhibitors, which block conversion of $T \rightarrow \text{DHT}$ within the prostate, are associated with a 25% ↓ risk of developing prostate cancer (PCPT, REDUCE)
 - But increased risk of higher grade disease

- Epidemiologic data and limited data with androgen replacement not compelling that higher serum androgens increase risk for prostate disease

Intraprostatic Androgen Micro-Environments

- Serum T: DHT = 10:1
- Prostate T: DHT = 1:10
- DHT 10x Potency of T

Geller J et al Prog Clin Biol Res 1979 33:103
Mohler J et al Canc Res 10:440
Intraprostatic Androgens in Healthy Men during Androgen “ablation”

- Normal men, age 35-55, PSA < 2
- Treatment (n=4/group) x 4 weeks:
 - Intact (Placebo)
 - Medical castration (GnRH antagonist, Acyline)
 - Medical castration plus T (Acyline + T)
- Blood sample and prostate biopsy at 4 weeks

Intraprostatic androgens are plentiful in healthy men during androgen “ablation”

- Serum Androgens (ng/ml)
- Intraprostatic Androgens (ng/g)
- Testosterone
- DHT

Page ST et al JCEM 2006 91:3850
Intraprostatic androgens during medical castration support AR-regulated processes

- **Gene array analysis:** Changes in known androgen regulated genes observed, but robust expression still present (few genes differentially regulated >2.5 fold)
 - PSA still 3rd most highly expressed message

- **Immunohistochemistry:** proliferation, apoptosis, AR expression = PLACEBO

Top 20 Down-Regulated Genes in Epithelial Samples:

Castrate vs. Placebo

Increasing serum DHT 7x ↑ in serum DHT does not alter intraprostatic androgens nor AR-regulated gene expression

- **No differences** between treatment groups:
 - AR-regulated gene expression (arrays)
 - PSA
 - Prostate volume
 - International Prostate Symptom Score (IPSS)

Page ST et al JCEM 2011
TRT in hypogonadal men does not increase intraprostatic androgens

- TE 150 mg/2 weeks vs. placebo
- T < 300 ng/ml + sx
- Prostate bx. before and after 6 months T
- N = 40

- No change in prostate cell turnover or AR-regulated gene expression

Marks LS et al. JAMA. 2006; 296:2351.

Increasing serum T does not increase intraprostatic DHT
Summary: Do Androgens Drive Prostate Disease?

- Little evidence that serum androgen concentrations predict prostate disease
- 5alpha-reductase inhibitors that lower DHT reduce incidence of low grade but not necessarily high grade prostate cancer
- Changes in serum androgen levels are not reflected in the intraprostatic environment
- Long-term intervention studies are needed, current evidence does not support the notion that serum androgens in the physiologic range drive prostate disease

Summary: Intraprostatic Androgens

- Is the assumption that alterations in serum androgens have parallel effects within the prostate correct? **NO**
- Does raising serum androgens as part of a male hormonal contraceptive regimen alter intraprostatic androgens or androgen-regulated processes? **Probably not**....raising serum DHT does not increase intraprostatic DHT or androgen-regulated gene expression
Clinical Controversy: Do Androgens contribute to Cardiovascular Disease in Men?

- No “Men’s Health Initiative”: no long term, large studies examining health outcomes (MI, DM, death)
 - DATA > 10 YEARS AWAY (7 YEARS, 7,000 MEN)

- Observational data in older men inconsistent

Observational Data: Androgens & CVD in Older Men

- LOW Androgen Concentrations: associated with earlier mortality; suggests protective
 - Rancho Bernando, VA, MMAS, Mr. Os

- LOW Androgen Concentrations: Androgen deprivation therapy ↑ incidence of CVD, DM2: suggests protective

- ↑ Androgen Concentrations: Recent observational data examining testosterone prescriptions mixed results
Mechanism:
Examining effects of androgens on CVD Risk factors

Physiologic effects of Androgens:
Testosterone ↑ fat-free mass and ↓ fat mass

Bhasin S et al JCEM 2005
Benefits of Testosterone:

↑ Strength, Muscle Mass ↔ ↑ Physical Function

![Graph showing improvements in physical performance over time with testosterone treatment.](attachment:image.png)

Page et al. JCEM 2004

Androgen withdrawal acutely increases Insulin Resistance in young men

![Graph showing changes in serum testosterone and HOMA-IR over study days with and without androgen withdrawal.](attachment:image.png)

- similar results in older men (M Smith et al.), and men IHH

Increased serum adiponectin is observed with T withdrawal but not E2 withdrawal

- and ↑ inflammatory markers (MCP-1, Leptin)
Rubinow et al Clin Endocrinol 2011

What about effects of exogenous T Insulin Resistance? MIXED
TIMES2 Trial: Androgens improve IR in hypogonadal men with DM2
HOMO-IR

But multiple, small RCT in older men with Low T not convincing
Clinical Controversy: Do Androgens contribute to CVD risk factors in Men?

- Summary of observational data: MIXED
- Body composition changes: favorable

- Insulin Resistance:
 - Summary of RCT: MIXED
 - Next step: looking at tissue hormone levels (fat and muscle), ongoing

- No effects on blood pressure
- What about Lipids?

Androgens and Lipids

- Exogenous androgens in men
 - ↓ TC, lower ↓ LDL
 - ↓ HDL-C
 - Route of administration likely important
 - Androgen deprivation ≠ exogenous androgens given within the physiologic range (lesser effects)

? what effect risk mild ↓ HDL-C has on CVD risk
Central role of HDL in CVD under fire

- CETP inhibitor studies: ↑ HDL ⇒ ↑ CVD events
- AIM-HIGH: niacin + statin no better than statin alone despite higher HDL

ARE THERE BETTER METRICS FOR ASSESSING HDL FUNCTION (as opposed to HDL-C= HDL-cholesterol concentration)?

The Dysfunctional HDL Hypothesis

HDL

- Cholesterol Efflux
- Particle size
- Proteins
- Anti-inflammatory

Dysfunctional-HDL

↓ Cholesterol Efflux

- Altered particle size
- Altered Proteins
- Pro-inflammatory

J. Heinecke
We can assay HDL efflux capacity

J774 cells (macrophages)

SERUM

PEG precipitation

Apo-B containing particles

Highest v. lowest efflux by quartiles:
OR 0.38 (0.25-0.58)
P<0.001

Metrics of HDL function: lower HDL-mediated cholesterol efflux is associated with CVD

- **Efflux better predictor of CVD status than HDL-C**
- **No intervention data**

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>1.92 (1.26-2.93)</td>
<td>0.000</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.89 (1.11-2.47)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.80 (0.95-1.75)</td>
<td>0.10</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>1.01 (0.86-1.16)</td>
<td>0.99</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>0.85 (0.70-1.03)</td>
<td>0.06</td>
</tr>
<tr>
<td>Efflux capacity</td>
<td>0.75 (0.63-0.90)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Figure 1. Odds Ratios for Coronary Artery Disease According to Efflux Capacity and Selected Risk Factors.

Androgens and HDL-C

- **HYPOTHESES:**
 - Androgen withdrawal increases HDL-C but has a negative effect on HDL function
 - Correction of hypogonadism lowers HDL-C but improves HDL function

- **Confounders:**
 - **Dose:** High doses of exogenous androgens decrease HDL-C
 - **Route:** Oral androgens > transdermal or injectables
 - **Patients:** correction of hypogonadism to normal, physiologic levels minor effect

Androgen Deprivation increases HDL-C and HDL-Efflux (2)

- **EFFLUX / HDL-C DOWN 8 % (not significant. P=0.17))**
- Numbers too small to correct for changes in HDL-C
- Retrospective: Correction of age-associated hypogonadism with transdermal gel for 3 months (n=17): no change in HDL-C, no change in efflux

Rubinow 2012 J. Lipid Res
Rubinow Steroids 2011
Alternate metrics of HDL function:

HDL proteome analyses, HDL particle analyses

HDL of patients with CVD is enriched in specific proteins

Vaiser,...Heinecke

JCI 2007

HDL particle number or subspecies may be enriched in patients with CVD

Sex Steroid Deprivation Alters the HDL Proteome

<table>
<thead>
<tr>
<th>Protein</th>
<th>Day 0</th>
<th>Day 28</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp(a)</td>
<td>5.4 (2.2)</td>
<td>1.2 (2.4)</td>
<td>0.004</td>
</tr>
<tr>
<td>ApoA-I</td>
<td>31.9 (8.3)</td>
<td>38.4 (6.1)</td>
<td>0.04</td>
</tr>
<tr>
<td>ApoA-II</td>
<td>3.6 (3.1)</td>
<td>5.6 (3.1)</td>
<td>0.005</td>
</tr>
<tr>
<td>ApoE</td>
<td>2.5 (0.5)</td>
<td>2.0 (0.5)</td>
<td>0.08</td>
</tr>
<tr>
<td>SERPINA1</td>
<td>10.7 (2.9)</td>
<td>12.7 (1.5)</td>
<td>0.06</td>
</tr>
<tr>
<td>ApoA-2</td>
<td>1332 (31)</td>
<td>1399 (204)</td>
<td>0.56</td>
</tr>
<tr>
<td>ApoA-III</td>
<td>259 (71)</td>
<td>321 (31)</td>
<td>0.53</td>
</tr>
<tr>
<td>ApoE</td>
<td>51 (15)</td>
<td>51 (17)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

* p < 0.015

•**Retrospective:**

Correction of age-associated hypogonadism with transdermal gel for 3 months (n=17) altered HDL proteome observed (PON1, ApoA-IV, PON3)

Rubinow 2012 J. Lipid Res
Rubinow et al Steroids 2012
Summary and Ongoing studies

- **Androgens and Prostate Disease**
 - Observational data does not show clear association between endogenous androgen levels and PCa risk
 - RCT data does not point to increased risk (although increased risk for biopsy)
 - Physiology suggests that increasing serum androgen levels within the normal range (for young men) **DOES NOT** increase Intraprostatic Androgen levels nor AR-regulated gene expression
 - Ongoing studies to examine dose-response effects in different tissues

NEED LONG TERM RANDOMIZED CLINICAL TRIAL

What do we tell our patients?

Androgens and CVD RISK

- Epidemiology and observational studies mixed; unclear whether increased risk of CVD events for older men taking testosterone
- Pre-existing CVD or frailty may be a relative contraindication to treating “Low T”
 - **CONSIDER:** indication, age, likelihood of benefit, how low T is, route and dose all likely important
 - What are you treating? Cost?

NEED LONG TERM RANDOMIZED CLINICAL TRIAL
Acknowledgements

• Katya Rubinow
• Christin Snyder, Lori Cooper, Jing Chao
• John K. Amory
• Bradley Anawalt
• William J. Bremner
• Alvin M. Matsumoto

FUNDING:
NICHD U54 HD42454
NIA R01
NIDDK -DRC Pilot Award
NICHD K12, NIDDK T32

Metabolism
• Patrick Hutchins
• Jay Heinecke
• Tomas Vaisar
• Mario Kratz

Urology/Oncology
Daniel Lin
Jonathan Wright
Elahe Mostaghel

Summary and Ongoing studies

◆ Androgens and CVD risk factors
 ◆ Observational data does not show clear association between endogenous androgen levels and CVD risk
 ◆ Recent observational data suggesting T-prescriptions increase CVD events counter to other studies suggesting T might be protective. Older, frail men may be more risk.
 ◆ Physiology associated with increased androgen levels MIXED: body comp favorable, IR equivocal, Lipids mixed
 ◆ Ongoing studies to examine HDL-C function, effects of T and E in fat
 ◆ NEED LONG TERM RANDOMIZED CLINICAL TRIAL
Androgen withdrawal acutely increases Insulin Resistance in young men

- similar results in older men (M Smith et al), and men IHH

Caution: Exogenous Testosterone and ↑ CVD in older, frail men

- Previous RCT data no AE
- TOM TRIAL: very frail, older men (avg age 75) with low T given higher dose T (up to 15g)
 - stopped by DSMB due to increase CVD events (200/250 enrolled)
 - 50% had pre-existing CVD
 - “events” included edema (how many???)
 - “atherosclerosis” events 7 total, 6 in T: 1 in placebo
- Similar study in Europe did not observe same (n=260)
 - (Wu et al JCEM 2010)
Increased serum adiponectin is observed with T withdrawal but not E2 withdrawal.

Rubinow et al Clin Endocrinol 2011

- and ↑ inflammatory markers (MCP-1, Leptin)