Learning Objectives:

• Summarize the current epidemiology and natural history of Nonalcoholic Fatty Liver Disease (NAFLD)

• Identify patients at increased risk for Nonalcoholic Steatohepatitis (NASH)

• Implement algorithm for decision for liver biopsy for diagnosis and staging

• Critically assess current treatment options in NAFLD
Outline:

- Definition
- Epidemiology
- Natural History
- Treatments
Non-alcoholic Fatty Liver Disease (NAFLD)

1. The presence of **fat** in the liver either on imaging or histology
2. The exclusion of secondary causes

Histology

Non-alcoholic Fatty Liver (NAFL)
- Hepatic Steatosis with no evidence of hepatocellular injury (hepatocyte ballooning)
 - "Bland Steatosis" or "Simple Steatosis"

Non-alcoholic Steatohepatitis (NASH)
- Hepatic Steatosis and inflammation with hepatocyte injury (ballooning) with or without fibrosis
Secondary Causes of Fatty Liver

Alcoholic Liver Disease

Significant EtOH intake?

- **Men:** > 21 drinks per week
- **Women:** > 14 drinks per week

(although no consensus)

TABLE 1. CAUSES OF FATTY LIVER DISEASE.

<table>
<thead>
<tr>
<th>NUTRITIONAL</th>
<th>DRUGS*</th>
<th>METABOLIC OR GENETIC</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein-calorie malnutrition†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starvation†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total parenteral nutrition†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid weight loss†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal surgery for obesity†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inflammatory bowel disease†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-bowel diverticulosis with bacterial overgrowth†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus infection†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental hepatotoxins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemicals†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic mushrooms†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic solvents</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *This is a partial list of agents that produce fatty liver. Some drugs produce inflammation as well. The association of fatty liver with calcium-channel blockers and valproic acid is weak, whereas the association with amiodarone is strong. Drug-induced fatty liver may have no sequelae (e.g., cases caused by glucocorticoids) or can result in cirrhosis (e.g., cases caused by methotrexate and amiodarone).
† This factor predominantly causes macrovesicular steatosis (mostly owing to imbalance in the hepatic synthesis and export of lipids).
‡ This factor predominantly causes microvesicular steatosis (mostly owing to defects in mitochondrial function).
§ This factor causes hepatic phospholipidosis (mostly owing to the accumulation of phospholipids in lysosomes).|

Angulo, Review in NEJM, 2002
Epidemiology NAFLD

• Most common cause of abnormal liver tests in the United States

• True prevalence is unknown → estimated about 20-30% of the general population

• Strong association with Metabolic Syndrome and Insulin Resistance
 – High risk groups such as obese and diabetics up to 70% prevalence

Clark, et al, 2003
Natural History

Bland Fatty Liver → NASH

Stable or Regression of Fibrosis

70%

20-30%

LNAH → Cirrhosis

Cirrhosis → Liver Failure

40-60% over 5-7 years

Liver Failure → Transplant or Death

Liver Failure → HCC

10% over 7 years

HCC → Transplant or Death

Ong et al, Clin Liver Dis, 2007
NAFLD will surpass HCV as leading indication for Liver Transplant by 2020

Charlton, Clin Gastro and Hep 2004
Table 3. Adjusted Odds Ratios for Severe Fibrosis (Septal Fibrosis or Cirrhosis).

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥45 yr</td>
<td>5.6 (1.5–21.7)</td>
</tr>
<tr>
<td>Obesity (body-mass index ≥30)</td>
<td>4.3 (1.4–13.8)</td>
</tr>
<tr>
<td>Aspartate aminotransferase:alanine aminotransferase</td>
<td>4.3 (1.5–12)</td>
</tr>
<tr>
<td>ratio >1</td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>3.5 (1.2–9.8)</td>
</tr>
</tbody>
</table>

*Adapted from Angulo et al. with the permission of the publisher. CI denotes confidence interval.

Angulo, Review in NEJM, 2002
Who to Biopsy?

1. Confirm Diagnosis:
 – Coexisting chronic liver disease cannot be excluded

2. Staging NAFLD:
 – Increased risk for steatohepatitis and advanced fibrosis
 – Important to identify those at risk for progressive liver disease to institute emerging treatment strategies
Suspected NAFLD
Chronically elevated AST/ALT (>6 months)
Exclude other causes of LFT elevations (viral, metabolic, autoimmune)

Evaluation: PE, Ultrasound, labs tests (glucose, lipids)

Risk Factors for NASH/Fibrosis

Clinical
- Age >45
- Obesity
- Diabetes/Insulin Resistance
- Components of Metabolic Syndrome
- Labs: Low pts, low Alb, >AST/ALT
- Imaging signs of portal hypertension

Non-invasive assessment
- NAFLD fibrosis score
- FIB4
- Fibroscan®

Low Risk for NASH/Fibrosis:
No Biopsy
Lifestyle advice and general practitioner follow up

High Risk for NASH:
Biopsy
Lifestyle changes, Emerging Treatment Strategies
Management

• The most common cause of death in patients with NAFLD is cardiovascular disease

• Important to treat underlying metabolic derangements:
 – Obesity
 – Hyperlipidemia – Statins are okay
 – Insulin resistance/T2DM
Therapeutics Specific for Liver

• Lifestyle intervention
 – Diet and Exercise Counseling

• Pharmacologic

• Surgical

• Future directions….
Lifestyle Intervention

• Diet:
 – Hypocaloric diet to achieve a 5-10% weight reduction
 – Consider nutritionist referral for education and counseling
 – Reduce saturated/trans fat
 – Minimize added sugars (especially fructose)
 – Minimize fast food
 – Minimize excess carbohydrates
 – Mediterranean Diet (Ryan et al, J of Hep, in press)

• Exercise
 – Exercise alone, independent of weight loss appears to reduce hepatic steatosis

Chalasani et al, AASLD Guidelines, 2012,
Zelber-Sagi et al, WJG, 2011
Pharmacologic

• No good data to support use:
 – Metformin
 – Ursodeoxycholic acid
 – Omega-3 fatty acids
 – Statin (although are safe to use for treatment HLD)

Chalasani et al, AASLD Guidelines, 2012
• **PIVENS Trial** from 2010

• **RCT** - 247 non-diabetic patients with NASH
 – Pioglitazone (30 mg/day),
 – Vitamin E (800 IU/day), or
 – Placebo

• Repeat Bx at 24 months

Sanyal, et al, NEJM, 2010
Results PIVENS

- Vit E showed improvement in NASH histology
 - (43% vs 19%, p=0.001)

- Pioglitazone showed no significant improvement in NASH histology
 - (34% vs 19%, p=0.04)*

- No significant difference in sub-analysis for improvement in fibrosis with either drug.

* Note significant p value < 0.025 given 2 primary outcomes

Sanyal, et al, NEJM, 2010
But....

- Study only in non-diabetics

- Pioglitazone
 - Safety concerns and tolerability limit use
 - Weight gain known issue (seen in PIVENS) (1)
 - Concern for risk of increased CHF (2)
 - Risk for Osteoporosis

- Vitamin E
 - Possible slight increase in all cause mortality in one analysis (3)
 - Also possible increased risk for prostate cancer (4)

Bariatric Surgery

• General Recommendations:
 – Patients with BMI of ≥ 40
 – Patients with BMI of ≥ 35 and features of metabolic syndrome

• But should it be done for primary indication of NAFLD/NASH?
Bariatric Surgery in NASH

• Cochrane Review in 2010 reviewed 21 prospective and retrospective cohort studies

• Pros:
 – 18 showed improved steatosis
 – 11 showed improved inflammation

• Cons:
 – 4 showed some worsening of fibrosis

• Bottom Line: No unbiased conclusion could be made on the benefit or harm of bariatric surgery in NAFLD based on lack of randomized controlled data

Chavez-Tapia et al, The Cochrane Collaboration, 2010
Future Directions:

• Awaiting Results Phase II RCT:
 – FLINT Trial from NASH CRN
 – The Farnesoid X Receptor (FXR) Ligand Obeticholic Acid in Nonalcoholic Steatohepatitis (NASH) Treatment Trial
 – Done enrolling → results out in 2014

• Currently enrolling Phase IIb RCT:
 – Novel agent GFT505 dual PPARα/δ agonist
 – University of Colorado participating site
GENFIT Trial

- Study to evaluate the efficacy and safety of GFT505 on NASH
 - GFT505 acts on several mechanisms involved in NASH pathogenesis
 - Both PPAR-alpha dependent and independent mechanisms
 - Improves insulin sensitivity
 - Lowers blood glucose
 - Improves plasma triglyceride and cholesterol profiles
- Phase IIb, Multicenter, Randomized, Double-Blind, Placebo-Controlled trial
- 52 weeks of treatment
- Liver biopsy at beginning and at end of study
- Enrollment begins ~July 2013
- PI: Kiran Bambha, MD, MSc
- Study Coordinator: Susan Hartley, RN
- Contact Information:
 303-724-1871
 susan.hartley@ucdenver.edu
Acknowledgments

• Special thanks to my mentor:
 – Dr. Kiran Bambha

• Organizer:
 – Dr. Gregory T. Everson

• All of University of Colorado Hepatology Faculty and Staff