Metformin: Is it a cardiovascular drug?

Greg Schwartz MD PhD

Chief, Cardiology, VA Eastern Colorado Health Care System
Division of Cardiology, University of Colorado School of Medicine

No disclosures related to this presentation
Diabetes drugs and CV drugs: The traditional view
Diabetes drugs and CV drugs: The perspective in 2018

Does metformin fit this paradigm?
The basis for a changing paradigm

• Diabetes drugs with CV benefit in patients \textit{with T2DM}:
 – SGLT2 antagonist (empagliflozin, canagliflozin)
 – GLP1 agonists (liraglutide, semaglutide)
 – ?? Metformin

• Diabetes drugs with CV benefit in patients \textit{without T2DM}:
 – Pioglitazone
 – ?? Metformin
Metformin

• 1st line drug in T2DM; safe, generally well tolerated, cheap
• Used for 60 years; approved in US in 1994
• >100 million people with type 2 diabetes currently treated worldwide
• Third most frequently prescribed medication for chronic use in USA (following atorvastatin and amlodipine)
Is metformin a cardiovascular drug?

1. Clinical evidence for a CV benefit of metformin in patients with type 2 diabetes

2. Experimental evidence for favorable cardiovascular effects of metformin in animals without diabetes

3. Clinical evidence for/against benefit of metformin in patients without diabetes, using surrogate outcomes

4. Design of a clinical trial to test whether metformin has favorable CV effects in patients without diabetes
UKPDS

- Newly diagnosed, overweight patients with T2DM
- Patients enrolled 1977-1991
- Metformin substudy (UKPDS 34):
 - Conventional (dietary) treatment (n=411)
 - hypoglycemic meds added for FPG >270 mg/dl
 - Metformin (n=342): max dose 2550 mg/day
 - target FPG <90 mg/dl
- Average 10 year follow-up

UKPDS 34: Key results

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Percent Reduction (metformin vs. "conventional")</th>
<th>No. of events</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any diabetes-related endpoint</td>
<td></td>
<td>258</td>
<td>0.002</td>
</tr>
<tr>
<td>Diabetes-related mortality</td>
<td></td>
<td>83</td>
<td>0.02</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td>119</td>
<td>0.01</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td></td>
<td>112</td>
<td>0.01</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td>25</td>
<td>NS</td>
</tr>
<tr>
<td>Microvascular events</td>
<td></td>
<td>62</td>
<td>NS</td>
</tr>
</tbody>
</table>

No. of events: 258
P-value: 0.002
UKPDS Caveats

- Not blinded
- Usual care allowed substantial hyperglycemia
- Small sample size; small number of CV events
- In most cases, background therapy did not include statins, aspirin, other contemporary agents
- Hypothesis generating, but nonetheless, forms the basis for current treatment guidelines
Observational data: Metformin and mortality in patients with diabetes and atherosclerosis

- REACH registry: 19,691 patients with type 2 diabetes and established atherosclerosis
- ~70% treated with aspirin and statin; 2 year follow-up (2003-2004)

Findings remained significant after multivariable and propensity score adjustments

Roussel et al., *Arch Intern Med* 2010;170:1892-1899
What is the principal mechanism of action of metformin?
Metformin: a weak inhibitor of electron transport chain Complex I

METFORMIN

Complex I

OCT1: organic cation transporter 1

How can a metabolic inhibitor afford CV protection?

1. **Steep concentration gradient of adenine nucleotides:**
 - \([\text{[ATP]} / \text{[ADP]} / \text{[AMP]} \approx 100 : 10 : 1]\)
 - A small decrease in [ATP] with metformin is amplified into larger *relative* increases in [ADP] and [AMP]

2. **Adenylate kinase reaction buffers changes in [ATP]**
 - \(\text{AK} = \text{adenylate kinase: } 2\text{ADP} \rightleftharpoons \text{ATP} + \text{AMP}\)

3. **AMPK inhibits ATP-consuming anabolic processes**

4. **Net result:** Metformin can activate AMPK without degrading ATP levels

Adapted from: Dzeja P and Terzic A. *Int J Mol Sci* 2009;10: 1729–72
Effects of AMPK activation on metabolism

Promotes a shift from anabolic (ATP-consuming) to catabolic (ATP-generating) processes

- Decreases gluconeogenesis (liver)
- Enhancement of glycolysis and glucose and fatty acid oxidation
- Decrease protein and lipoprotein synthesis

Above serve to maintain cellular energy supply [ATP] under stress.
2. Experimental evidence for favorable cardiovascular effects of metformin and/or AMPK activation in animals without diabetes
Favorable CV effects of metformin treatment and/or AMPK activation in animal models

- Anti-atherogenic
- Improves endothelial function
- Reduces infarct size
- Maintains myocardial ATP levels under stress
- Prevents ischemic arrhythmias
Metformin exerts anti-atherosclerotic effect that is dependent upon AMPK

Cai et al., Circ Res 2016;119:422-433
Metformin activates AMPK, increases eNOS phosphorylation, and reduces myocardial infarct size in rats without diabetes.

Calvert et al., Diabetes 2008;57:696-705
Metformin restores balance of NO to peroxynitrite release from endothelium

- Obese Zucker rats on high-fat diet
- Metformin 300 mg/kg/day or vehicle x 4 weeks
- No difference in fasting blood glucose
- NO and peroxynitrite release from aortic rings in vitro under CaI stimulation

Metformin maintains myocardial ATP during ischemia in non-diabetic rat heart: 31P NMR

Kawabata et al., *Hypertens Res* 2003;26:107-110
Metformin modifies response to myocardial ischemia in metabolically normal pigs

- Juvenile domestic farm pigs, 25-30 kg
- Metformin 30 mg/kg/day for 2-3 weeks, vs untreated controls
- Low flow myocardial ischemia (50% LAD flow reduction for 90 min, followed by 45 min reperfusion)
Instrumentation of heart
(under anesthetized, open-chest conditions)

- Drill biopsy sites
- Infusion catheter in LAD
- Hydraulic occluder
- Ultrasonic flow probe
- Anterior interventricular vein catheter
- Left anterior descending coronary artery
- Anterior LV crystal array
- Ischemic region
- LA catheter
- LV micromanometer catheter
- Drill biopsy sites
Metformin increases survival free of ischemic VF in metabolically normal pigs

Lu et al., *Diabetologia* 2017; 60:1550-1558
Monophasic action potential technique

- Surrogate for single cell action potential
- Duration of MAP reflects duration of single-cell action potential
- Responds to ischemia and pharmacologic interventions similar to direct action potential recording

Franz M, Prog Cardiovasc Dis 1991;33:347
Anti-fibrillatory effect of metformin is due to stabilization of action potential during ischemia

The abrogation of action potential shortening in ischemia by metformin implies that metformin prevents K_{ATP} opening during ischemia

Lu et al., *Diabetologia* 2017; 60:1550-1558
Metformin reduces heterogeneity of repolarization between ischemic and non-ischemic regions, thereby ameliorating the conditions for arrhythmia.

* p<0.001 vs untreated
Anti-fibrillatory effect of metformin is associated with activation of AMPK and preservation of ATP

Lu et al., Diabetologia 2017; 60:1550-1558
Ischemia

↓ energy charge,
↓ [ATP]

K\textsubscript{ATP} channels open

Action potential shortens in ischemic myocardium

Dispersion of refractoriness between ischemic and non-ischemic regions

Ventricular fibrillation

Metformin

AMPK activation ± other cellular actions

Lu et al., Diabetologia 2017; 60:1550-1558
3. Clinical evidence for/against a benefit of metformin in patients without diabetes, based on surrogate outcomes
Metformin in patients without diabetes: Is there evidence of benefit?

<table>
<thead>
<tr>
<th>Measurement or marker</th>
<th>Benefit shown?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>Yes, average 3 kg reduction</td>
</tr>
<tr>
<td>Insulin sensitivity</td>
<td>Yes, increased</td>
</tr>
<tr>
<td>Vascular endothelial function</td>
<td>Yes, improved</td>
</tr>
<tr>
<td>Markers of thrombogenic tendency</td>
<td>Yes, improved</td>
</tr>
<tr>
<td>Progression from pre-diabetes to diabetes</td>
<td>Yes, delayed (DPP)</td>
</tr>
<tr>
<td>Progression of coronary calcification</td>
<td>Yes, attenuated</td>
</tr>
<tr>
<td>Carotid IMT</td>
<td>No, null effect</td>
</tr>
<tr>
<td>LV function after STEMI</td>
<td>No, null effect</td>
</tr>
</tbody>
</table>
Metformin prevents or retards progression from pre-diabetes to diabetes: DPP

- 3234 patients with pre-diabetes, no other serious illness
- Assigned to placebo, intensive lifestyle modification, or metformin
- Very few cardiovascular events

P<0.001 for:
- MET vs placebo
- LIFESTYLE vs placebo

Metformin retards progression of coronary calcification in patients with pre-diabetes

- 2029 participants with pre-diabetes in DPP assigned to metformin, placebo, or intensive lifestyle modification
- **Change in coronary artery calcium score** from baseline to mean 14 yrs’ follow-up

Goldberg RG et al., *Circulation* 2017;136:52-64.
No effect of metformin on carotid IMT in patients without diabetes

- 158 patients with established CAD, treated with statin, and not diabetic
- No lower limit on HbA1c (mean ± SD = 5.6 ± 0.3)
- Metformin (850-1700 mg/d) versus placebo

No effect of metformin on LVEF after STEMI in patients without diabetes

- 379 patients with STEMI
- Metformin 1000 mg/d or placebo for 4 months
- LVEF at 4 months by cMRI

<table>
<thead>
<tr>
<th>Table 2. Outcomes at 4 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>Primary end point, % (95% CI)</td>
</tr>
<tr>
<td>LVEF</td>
</tr>
</tbody>
</table>
4. Can metformin provide CV benefit in patients without T2DM?

Equipoise

\[\rightarrow\]

Need for a randomized, placebo-controlled CV outcomes trial
VA Cooperative Study #2002: clinicaltrials.gov NCT02915198

VA-IMPACT

Investigation of Metformin in Pre-Diabetes on Atherosclerotic CV Outcomes

- **Hypothesis**: Metformin reduces major adverse CV events in patients with pre-diabetes and established ASCVD

- **Rationale**:
 - Placebo-controlled trial not feasible in established T2DM
 - Patients with pre-diabetes and ASCVD comprise a high-risk population that might benefit from treatment
VA-IMPACT: design

• **Inclusion criteria**
 – Established coronary, cerebrovascular, or peripheral artery disease
 – Prediabetes (based upon HbA1c, FBG, or OGTT)
 – eGFR ≥45 mL/min/1.7m²

• **Randomized treatment assignment**
 – Metformin ER, titrated to target dose 2000 mg/d OR matching placebo
VA-IMPACT: design

• **Primary Outcome measure:**
 – Time to first occurrence of death, non-fatal MI, stroke, unstable angina, or ischemia-driven coronary revascularization

• **Anticipated event rate** in placebo group: 4.85% per year
 – Benchmarked to contemporary studies in similar populations

• **Projected HR** metformin/placebo 0.85

• **Sample size** ~7860 patients followed to 1360 primary endpoints to provide 85% power
 – Expected median f/u 4 years
VA-IMPACT: design

• 37 VA sites

• “Large, simple trial”:
 – Use of national VA electronic health record to identify patients
 – Telephone follow-up after randomization
 – Centralized, direct-to-patient drug dispensing
 – No blinded labs
 – Limited reporting of non-serious adverse events

• Projected completion 2025
Is metformin a CV drug?

stay tuned...
Collaborators

• Swine lab:
 – Li Lu MD PhD
 – Cliff Greyson MD
 – Rebecca Scalzo PhD
 – Leslie Knaub MS
 – Jane Reusch MD

• VA Cooperative Studies Program
 – Lee Anne Mandich RN
 – Bob Edson MA
 – Marcel Bizien PharmD
 – Jennifer Lee, MD PhD
 – Mei-Chiung Shih PhD
Anti-cancer effect of metformin

• 4085 Scottish patients with T2DM who were new users of metformin; 4085 matched controls (T2DM and no metformin use)
• Followed for new diagnosis of cancer

Postulated due to activation of tumor suppressor kinase LKB1

Libby et al., *Diabetes Care* 2009;32:1620-5
CSP Facts

- Multi-center clinical trials within VHA and in conjunction with NIH
- Studies involve 80+ VA medical centers
- Study duration: 3 – 15 years
- Study participants: 25 – 50,000
- History of landmark trials
CSP History

1946
VA Streptomycin Trial for TB

1960
A Double Blind Control Study of Antihypertensive Agents

1983
Aspirin after MI

2001
Shingles Vaccine

2009
Diabetes: VADT

2015
Blood Pressure Targets: SPRINT
No effect of metformin on contractile function or oxygen consumption during ischemia

Contractile function

- **Untreated CTL (N=8)**
 - Stroke Work Index (Pa)

- **Chronic Metformin MET (n=8)**
 - Stroke Work Index (Pa)

 NS

Oxygen consumption

- **Baseline**
 - CTL (N=8)
 - MET (n=8)

 NS

- **Isc 15 min**
 - CTL (N=8)
 - MET (n=8)
Upregulation of mitochondrial respiratory capacity in response to chronic metformin treatment

State 3 Respiration:
Complex I substrates

\[P = 0.002 \]

\[\text{O}_2 \text{ consumption (pmol/(s*mg))} \]

\[0 \text{mM MET} \quad 0.1\text{mM MET} \quad 1\text{mM MET} \]

\[P < 0.0001 \]
Untreated

Metformin

0.00

0.05

0.10

0.15

Metformin (mM)

0.00

0.05

0.10

0.15

Untreated

Metformin