I am seeking motivated, enthusiastic postdoctoral fellows to study mechanisms of nutrient sensing and signaling. I have funding for these positions for at least one year, with the expectation of continued support. This is an excellent opportunity to establish an independent project on a novel problem.

We are studying a novel glucose signal transduction pathway that begins with glucose sensors in the membrane and ends at a transcription factor in the nucleus. We can trace the glucose signal from the cell surface all the way to the nucleus, and I believe recent breakthroughs have left us poised to come to a true understanding of how this novel signal transduction pathway works.

A complete list of our publications and my CV can be found at:
<http://www.ucdenver.edu/academics/colleges/medicalschool/departments/biochemistry/Faculty/PrimaryFaculty/Pages/Johnston.aspx>

The lab is in new state-of-the-art space in the highly collegial Department of Biochemistry and Molecular Genetics at the University of Colorado School of Medicine in Denver. I can report that Denver is a great place to live, and that CU Medical School and our Department is a great place to do science! Check it out at:
<http://www.ucdenver.edu/academics/colleges/medicalschool/departments/biochemistry/Postdocs/Documents/PostdocTalkingPoints.pdf>

Motivated, curious and independent individuals interested in joining me in Denver should send (preferably by e-mail) a letter of inquiry stating research interests along with a CV.
Postdoctoral positions

Nutrient Sensing and Signaling

Mark Johnston Laboratory
Department of Biochemistry and Molecular Genetics
University of Colorado School of Medicine, Denver, CO

Glucose sensing and signaling

Glucose fuels life, and organisms have evolved sophisticated mechanisms for sensing and responding to this key nutrient. This is especially apparent in the yeast *S. cerevisiae*, which has several ways of sensing the widely varying amounts of glucose it encounters during its lifetime. We are studying a novel glucose signal transduction pathway that begins with glucose sensors in the membrane and ends at a transcription factor in the nucleus. We can trace the glucose signal from the cell surface all the way to the nucleus, and we are poised to come to a true understanding of how this novel signal transduction pathway works. Our studies extend to the pathogenic yeast *C. albicans* because it offers an informative evolutionary comparison, and because this central signaling pathway may provide therapeutic targets.

Simpson-Lavy KJ, **JOHNSTON M**. SUMOylation regulates the SNF1 protein kinase. *Proc Natl Acad Sci U S A.* 2013 110:17432-7. PMID: 24108357; PMCID: PMC3808588

Kuttykrishnan S, Sabinaa J, Langton LL, **JOHNSTON M**, Brent MR. Quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. *Proc Natl Acad Sci USA*, 2010; 107:16743-8. PMID: 20810924

A complete list of publications from the lab can be viewed at:
<http://www.ucdenver.edu/academics/colleges/medicalschool/departments/biochemistry/Faculty/PrimaryFaculty/Pages/Johnston.aspx>

The University of Colorado is committed to diversity and equality in education and employment.