Skip to main content
Sign In
 

Vijay R. Ramakrishnan, MD

Associate Professor


Clinical Office:

1635 N. Aurora Court, 6th Floor
Aurora, CO 80045

Appointments:  720-848-7900

 
Academic Office:
12700 E. 19th Avenue
Mail Stop #8606
Aurora, CO 80045

Phone: 303-724-1950
Fax: 303-724-1961
Email: Vijay.Ramakrishnan@ucdenver.edu


Hospital Affiliations:
  • University of Colorado Hospital
  • Denver Veteran's Administration Medical Center
  • Denver Health Medical Center

Clinical Interests:
  • Rhinology, and Endoscopic Skull Base Surgery
  • Subspecialty Training: Rhinology and Skull Base Surgery

 

​​Vijay Ramakrishnan, MD​, joined the University of Colorado Department of Otolaryngology in 2010 after completing fellowship training in advanced rhinology and skull base surgery at the University of Pennsylvania. He is a board-certified Otolaryngologist and Fellow of the American Rhinologic Society. He serves as Co-Director of the CU Skull Base Program, with clinical expertise including the treatment of nasal obstruction, chronic rhinosinusitis and nasal polyps, complex sino-orbital diseases, CSF leaks and skull base tumors. He has participated in clinical research in the realm of minimally invasive endoscopic and skull base approaches, and is currently involved in a multicenter study of surgical outcomes in chronic rhinosinusitis (CRS). His research program examines chemosensory detection in the airway with specific regard to the microbiome and mucosal inflammation, with active grants from the NIH and FAMRI. 


Medical School

  • MD, Baylor College of Medicine, Houston, TX (2000-2004) 

Residency

  • Internship, General Surgery, University of Colorado, Denver, CO (2004-2005) 
  • Resident, Otolaryngology-Head & Neck Surgery, University of Colorado, Denver, CO (2005-2009)​

Fellowship

  • Fellow, Rhinology and Skull Base Surgery, University of Pennsylvania, Philadelphia, PA (2009-2010) 
  • Clinical Instructor, Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania, Philadelphia, PA (2009-2010) 
  • Board Certification, American Board of Otolaryngology (2010)

  • Fellow of the American Rhinologic Society
  • AAFPRS Leslie Berstein Investigator Development Award
  • American Rhinologic Society Basic Science Research Award-2014
  • ERS-ARS Research International Travel Award-2014
  • Univ of Colorado ENT Research Day Outstanding Resident Research Presentation (2013-2nd place, 2013-honorable mention, 2012-2nd place)
  • American Rhinologic Scoiety Fall Film FESStival Finalist-2014 

Our lab has been interested in the role of the microbiome in the chronic inflammatory state of CRS. In collaboration with the Frank Lab, we have shown healthy sinuses are not sterile and that clinical cultures are insufficient in enumeration of bacteria in disease.​

In fact, bacteria colonize the sinonasal mucosal surface in similar amounts in healthy sinuses when compared to sinuses in CRS subjects. Using modern bacterial DNA detection techniques, weVR Research 1.jpghave demonstrated that the local microbiome in CRS is compositionally different than that found in healthy subjects, even despite the underlying between-subject differences. Some common differences have been replicated by other labs, such as the preponderance for anaerobes in CRS, and the potential protective effect of certain healthy taxa. In a JACI 2015 article, we described sinonasal microbiome differences in CRS phenotypes, and identify Actinobacteria as predictive of surgical outcomes in refractory CRS cases. ​


In different investigations, our lab also was one of the first to identify solitary chemosensory cells and taste transduction machinery in human sinonasal tissues. Research mentors at the Rocky Mountain Taste and Smell Center (Finger, Tizzano) described the function of such cells in rodents, and established a role for their function in detection of irritants in the airway surface liquid.  These cells are elongated in shape with a microvillar tuft on the apical projection, express sweet and bitter taste receptors on their surface, utilize canonical taste transduction machinery, and are frequently innervated in rodents. Subsequently, we documented the presence of such cells and taste transduction molecules in human sinonasal tissues using PCR and immunohistochemistry. ​
VR Research 2.jpg
Interest in extraoral taste receptors, particularly bitter taste receptors, has exploded in the past few years. Their presence, whether on cilia or in specialized chemosensory cells, has been documented in many organ systems and they may serve a role in any number of physiologic functions. Our current research focuses on SCCs in the respiratory tract and their response to airway irritants. We utilize both mouse models and human tisues in a collaborative environment with other researchers in the RMTSC​.​

Dysbiosis in the CRS microbiome may seemingly serve as a biomarker or additional factor to endotype CRS subjects. However, we are currently interested in identifying functional roles for the microbiome in the health state, and potential causal mechanisms for induction or sustenance of chonic inflammation in CRS. This includes study of factors governing establishment of the airway microbiome, host-bacteria interactions at the airway surface, induction of inflammatory pathways, and resilience to perturbation. We have found age and cigarette smoke exposure to be factors in VR Research 3.jpgmultivariate analysis of healthy subjects, and continue to explore mechanistic aspects of the microbiome in the airway.

VR Research 4.jpg



















American Rhinologic Society
American Academy of Otolaryngic Allergy
American Academy of Otolaryngology-Head and Neck Surgery