Use of quantitative measures of brain MRI to predict cognitive outcomes after Subthalamic nucleus Deep Brain Stimulation in Parkinson’s disease

Laura J Weinkle BA,1,2 Olga Klepitskaya MD,2 Stefan Sillau PhD, Justin Honce MD, Jody Tanabe MD, John A. Thompson PhD, Brian Hoyt PhD

1 Modern Human Anatomy Program, University of Colorado School of Medicine; 2 Department of Neurology, University of Colorado School of Medicine; 3 Department of Neurosurgery, University of Colorado School of Medicine; 3 Department of Radiology, University of Colorado School of Medicine

Background/Rationale

- Deep Brain Stimulation (DBS) of the Subthalamic nucleus (STN) is a standard treatment for the motor symptoms of idiopathic Parkinson’s disease (iPD).
- Studies evaluating cognitive outcomes following STN-DBS report significant declines in domains such as executive function, verbal fluency, and attention.
- Few studies have assessed predictors of cognitive decline in PD patients treated with STN-DBS.
- Identification of pre-surgical MRI predictors might provide an important clinical tool for better risk-to-benefit assessment.

Objective

- The aim of this study is to explore whether pre-surgical white matter lesion volume (WML), forebrain parenchyma atrophy, or hippocampus volume, measured quantitatively on brain MR images, is predictive of cognitive outcomes following STN-DBS for iPD.

Hypothesis

- Patients with increased burden of pre-surgical WMLs will experience a greater decline in performance on neuropsychological (NP) tests post-DBS surgery than those with a lower burden of or absence of WMLs. Patients with more forebrain parenchyma or hippocampus atrophy will experience greater post-STN-DBS declines in performance of NP tests.

Methods

Fig 2 Flow Chart of Population Identification and MRI analysis

Study Population: 43 patients

NP data *See inset
Pre-surgical MRI
Clinical data

Correlation to quantitative measures of brain MRI

Inclusion criteria:
- Idiopathic PD
- Had STN-DBS between 01/2011 ~ 06/2016
- Pre-op and ≥ 6 month post-op NP testing

Covariates:
- Age at baseline
- Education
- Number of vascular comorbidities

WML volumes:
- Lesion Prediction Algorithm (LPA)
- Bilateral brain region volumes:
 - Forebrain parenchyma
 - Hippocampus

Results

Fig 3 Pre-surgical T2-FLAIR MRI pre-LPA processing (a, c) and post-LPA processing (b, d) showing “light” (b) and “heavy” (d) burden of pre-surgical WML.

Fig 4 Pre-surgical 3D T1-weighted MRI with segmented brain regions, showing forebrain parenchyma in red, and hippocampi in yellow. From left to right, axial, coronal, and sagittal sections.

Fig 5 Mean pre- and post-surgical group neuropsychological evaluation scores by domain.

* Significant change in performance on cognitive test.

Fig 6 Increased burden of pre-surgical lesions was significantly correlated with impaired pre/post performance on block-design, a visuospatial task.

Fig 7 Less pre-surgical left forebrain parenchyma atrophy was significantly correlated with better pre/post change in performance on the Brief test of attention (BTA).

Conclusions

- Significant correlation between greater burden of pre-surgical WML volume and impaired performance on a visuospatial task, and less bilateral forebrain parenchyma atrophy and better performance on an attention task.
- Beyond any clinical predictors, pre-surgical WML and brain region volumes, do not put STN-DBS candidates at an increased risk for post-surgical cognitive impairments.

Future Directions

- Correlate cognitive outcomes with lesion burden in specific cortical regions (e.g. frontal, parietal)
- Stratify patients according to pre/post change in cognitive status

Acknowledgements

Thank you to Joy Abraham for her assistance with data collection and review. Special thanks to the MSMHA program, and UCH DBS team for their aid and support in the completion of this project.